CAUSAL (ANTICAUSAL) BESSSEL DERIVATIVE
AND THE ULTRAHYPERBOLIC BESSSEL OPERATOR

MANUEL AGUIRRE TÉLLEZ - RUBÉN ALEJANDRO CERUTTI

Let B_C^α and B_A^α be ultrahyperbolic Bessel operator causal (anticausal) of the order α defined by $B_C^\alpha f = G_\alpha(P + i0, m, n) * f$, $B_A^\alpha f = G_\alpha(P - i0, m, n) * f$ and let D_C^α and D_A^α be generalized causal (anticausal) Bessel derivative of order α defined by $D_C^\alpha f = G_{-\alpha}(P - i0, m, n) * f$, $D_A^\alpha f = G_{-\alpha}(P + i0, m, n) * f$. In this note we give a sense to several relations of type:

\[
\begin{align*}
B_C^\alpha(B_A^\beta f) + B_A^\alpha(B_C^\beta f), \\
D_C^\alpha(D_A^\beta f) + D_A^\alpha(D_C^\beta f), \\
e^{i(\alpha-\beta)\pi i}B_C^\alpha(B_C^\beta f) + e^{-i(\alpha-\beta)\pi i}B_A^\alpha(B_A^\beta f), \\
e^{i(\alpha-\beta)\pi i}D_C^\alpha(D_C^\beta f) + e^{-i(\alpha-\beta)\pi i}D_A^\alpha(D_A^\beta f).
\end{align*}
\]

I.1. Introduction.

Let $t = (t_1, t_2, \ldots, t_n)$ be a point of the n-dimensional Euclidean space \mathbb{R}^n and let $P = P(t)$ be a non degenerate quadratic form in n-variables of the form

\[(I;1.1) \quad P = P(t) = t_1^2 + \ldots + t_p^2 - t_{p+1}^2 - \ldots - t_{p+q}^2,\]

where $p + q = n$.

Entrato in Redazione l’ 8 settembre 1997.
Let $G_\alpha(P \pm i0, m, n)$ be the causal (anticausal) distribution defined by

(I.1.2) \[G_\alpha(P \pm i0, m, n) = H_\alpha(m, n)(P \pm i0)^{1/2}(\mp i/2)K_{\mp\alpha}(\sqrt{m^2(P \pm i0)}), \]

where m is a positive real number, α a complex number, K_ν designates the modified Bessel function of third kind

\[K_\nu(z) = \frac{\pi}{2} \frac{I_{-\nu}(z) - I_\nu(z)}{\sin \pi \nu}, \]

\[I_\nu(z) = \sum_{m=0}^{\infty} \frac{(z^2/4)^m}{m! \Gamma(m + \nu + 1)} \]

and

\[H_\alpha(m, n) = \frac{2^{1 - \alpha/2} (m^2)^{1/4} e^{\frac{\pi}{4} \alpha i}}{\pi^{\frac{3}{2}} \Gamma(\frac{\alpha}{2})}, \]

$(P \pm i0)^\lambda$ is the distribution defined by

(I.1.3) \[(P \pm i0)^\lambda = \lim_{\epsilon \to 0}(P \pm i\epsilon |t|^2)^\lambda; \]

where $\epsilon > 0$, $|t|^2 = t_1^2 + \cdots + t_n^2$, $\lambda \in \mathbb{C}$ and $P = P(t)$ is the quadratic form defined in (I.1.1) (cf. [7], p. 275).

The following formula is valid (cf. [11], p. 35)

(I.1.4) \[\mathcal{F}[G_\alpha(P \pm i0, m, n)] = \frac{e^{\frac{i\pi}{4}}}{(2\pi)^{\frac{3}{2}}} (m^2 + Q \mp i0)^{-\frac{\lambda}{2}}, \]

where $(m^2 + Q \pm i0)^\lambda$ is the distribution defined by

(I.1.5) \[(m^2 + Q \pm i0)^\lambda = \lim_{\epsilon \to 0}(m^2 + Q \pm i\epsilon |t|^2)^\lambda; \]

m is a positive real number, $\lambda \in \mathbb{C}$ and \mathcal{F} denotes the Fourier transform.

From [3], p. 566, we have,

(I.1.6) \[(m^2 + Q \pm i0)^\lambda = (m^2 + Q)^\lambda_\pm + e^{\pm i\pi} (m^2 + Q)^\lambda_\mp, \]

where

(I.1.7) \[(m^2 + Q)^\lambda_\pm = \begin{cases} (m^2 + Q)^\lambda & \text{if } m^2 + Q \geq 0 \\ 0 & \text{if } m^2 + Q < 0 \end{cases} \]
and
\[
(m^2 + Q_+^\lambda)^\pm = \begin{cases} 0 & \text{if } m^2 + Q > 0 \\ (-m^2 - Q)^\lambda & \text{if } m^2 + Q \leq 0 \end{cases}.
\]

From (I;1.6) and considering the formula
\[
(I;1.9) \quad \Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin z\pi}
\]
we have
\[
(I;1.10) \quad (m^2 + Q)_\lambda = \Gamma(\lambda)\Gamma(1 - \lambda)(2\pi i)^{-1}[(m^2 + Q + i0)^\lambda - (m^2 + Q - i0)^\lambda]
\]
and
\[
(I;1.11) \quad (m^2 + Q)^+\lambda = \Gamma(\lambda)\Gamma(1 - \lambda)(2\pi i)^{-1} \cdot \left[e^{\lambda\pi i}(m^2 + Q - i0)^\lambda - e^{-\lambda\pi i}(m^2 + Q + i0)^\lambda\right]
\]

On the other hand, S.E. Trione ([11], p. 23, formula (I.3.6)) proves the validity of multiplicative product:
\[
(I;1.12) \quad (m^2 + Q \pm i0)^\lambda \cdot (m^2 + Q \pm i0)^\mu = (m^2 + Q \pm i0)^{\lambda + \mu}
\]
for } m > 0}, where
\[
(I;1.13) \quad m^2 + Q = m^2 + y_1^2 + \ldots + y_p^2 - y_{p+1}^2 - \cdots - y_{p+q}^2
\]
and \((m^2 + Q \pm i0)^\lambda\) is defined by (I;1.5).

Let } B^\alpha f } be the ultrahyperbolic Bessel operator defined by the formula
\[
(I;1.14) \quad B^\alpha f = G_\alpha * f, \quad f \in S,
\]
(cf. [10], p. 75).

We consider an auxiliary weight function } \lambda_\alpha(P \pm i0, m, n) \text{ defined as follows
\[
(I;1.15) \quad \lambda_\alpha(P \pm i0, m, n) = \frac{e^{i\frac{\pi}{2}q}2^{\frac{q}{4}}(m^2)^{\frac{1}{4}}(\frac{m^2}{\sqrt{2\pi}})}{\Gamma(\frac{m^2}{\sqrt{2\pi}})}(P \pm i0)^{\frac{q}{2}} K_{\frac{q}{2}}\left(\sqrt{m^2(P \pm i0)}\right).
\]
(cf. [6]), and

\[
\lambda_\alpha(|t|^2, m = 1) = \frac{1}{\Gamma\left(\frac{\alpha+\eta}{2}\right)} \int_0^\infty \eta^\frac{\alpha+\eta}{2} e^{-\eta^2} \frac{\partial}{\partial \eta} d\eta,
\]

\[\lambda_\alpha(P \pm i0, m, n)\] is the causal (anticausal) analogue of the weight function introduced by Rubin (cf. [8]).

Let \(f \) be a function belong to \(S \), \(S \) the Schwartz class of infinitely differentiable functions on \(\mathbb{R}^n \) decreasing at infinity faster than \(|x|^{-1} \). The weighted difference of order \(\ell \) of a function \(f \) at the point \(x \), with interval \(t \) and weight \(\lambda_\alpha \), is defined by

\[
(\Delta_\ell^t f)(x, \lambda_\alpha) = \sum_{k=0}^{\ell} \binom{\ell}{k} (-1)^k \lambda_\alpha(k(P \pm i0)) f(x - kt).
\]

Let the following causal hypersingular operator on weighted differences defined by

\[
(T_\ell^\alpha f)(x) = \\
= \int_{\mathbb{R}^n} (P + i0)^{-\frac{\alpha+\eta}{2}} \left\{ \sum_{k=0}^{\ell} \binom{\ell}{k} (-1)^k \lambda_\alpha(k(P + i0)) f(x - kt) \right\} dt,
\]

(cf. [5], p. 72).

The following formula is valid (cf. [5])

\[
\mathcal{F}[T_\ell^\alpha f](\xi) = d_{n,\ell}(\alpha)(m^2 + Q - i0)^{\frac{\alpha}{2}} \mathcal{F}[f](\xi),
\]

where

\[
d_{n,\ell}(\alpha) = \left\{ \begin{array}{ll}
\frac{\pi^{\frac{\alpha+1}{2}} e^{\frac{\alpha}{2} \eta} A_{\ell}(\alpha)}{2\alpha \Gamma\left(\frac{\alpha+\eta}{2}\right) \Gamma\left(\frac{\alpha}{2} + 1\right) \sin \frac{\pi \eta}{2}} & \text{for } \alpha \neq 2, 4, \ldots \\
\frac{(-1)^{\frac{\alpha}{2}} \pi^{\frac{\alpha+1}{2}} e^{\frac{\alpha}{2} \eta} 2^{1-\alpha}}{\Gamma\left(\frac{\alpha}{2} + 1\right) \Gamma\left(\frac{\alpha+\eta}{2}\right)} A_{\ell}(\alpha) & \text{for } \alpha = 2, 4, \ldots
\end{array} \right.
\]

here \(A_{\ell}(\alpha) \) is defined by

\[
A_{\ell}(\alpha) = \sum_{k=0}^{\ell} \binom{\ell}{k} (-1)^k k^\alpha.
\]
For $\alpha \neq 1, 3, 5, \ldots$ we define the generalized causal Bessel derivative as follows

(I; 1.22) \[D_C^\alpha f(x) = \frac{1}{d_{n,\ell}(\alpha)}(T_\ell^\alpha f)(x) \]

(cf. [5]).

Then in virtue of (I; 1.11), we have

(I; 1.23) \[\mathscr{F}[D^\alpha f](\xi) = (m^2 + Q - i0)^2 \mathscr{F}[f](\xi). \]

We define (cf. [5]) the ultrahyperbolic causal Bessel operator by the formula

(I; 1.24) \[B_C^\alpha f = G_\alpha(P + i0, m, n) * f \]

and the ultrahyperbolic anticausal Bessel operator as

(I; 1.25) \[B_A^\alpha f = G_\alpha(P - i0, m, n) * f. \]

The generalized anticausal Bessel operator is the anticausal analogue to the define in (I; 1.14), and in the same way we have the generalized anticausal Bessel derivative

(I; 1.26) \[D_A^\alpha f = \frac{1}{d_{n,\ell}(\alpha)}(T_\ell^\alpha f)(x). \]

We had prove (cf. [5]) that

(I; 1.27) \[\mathcal{D}_C^\alpha B_C^\alpha f = f \]

and, analogously

(I; 1.28) \[\mathcal{D}_A^\alpha B_A^\alpha f = f. \]

Also we had prove that (cf. [5])

(I; 1.29) \[\mathcal{D}_C^\alpha f = G_{-\alpha}(P - i0, m, n) * f. \]
1.2. In this paragraph we will consign some elementary properties of the ultrahyperbolic causal Bessel kernel. We begin by observe that the distributional function $G_\alpha(P \pm i0, m, n)$ is the causal (anticausal) analogue of the kernel due to A. Calderón and Aronszajn-Smith (cf. [4] and [2]) and share many properties with the Bessel kernel, like the following:

a) for all α, β complex numbers

(I;2.1) \[\mathcal{F}[G_\alpha \ast G_\beta] = \mathcal{F}[G_\alpha] \cdot \mathcal{F}[G_\beta] \]

and

(I;2.2) \[G_\alpha \ast G_\beta = G_{\alpha + \beta} \]

(cf. [11], p. 37).

b)

(I;2.3) \[G_{-2k}(P \pm i0, m, n) = K^k(\delta) \]

and when $k = 0$

(I;2.4) \[G_0(P \pm i0, m, n) = \delta, \]

where K^k designate the n-dimensional ultrahyperbolic Klein-Gordon operator iterated k-times

(I;2.5) \[K^k = \left\{ \frac{\partial^2}{\partial t_1^2} + \cdots + \frac{\partial^2}{\partial t_p^2} - \frac{\partial^2}{\partial t_{p+1}^2} - \cdots - \frac{\partial^2}{\partial t_{p+q}^2} + m^2 \right\}^k, \]

where m is a positive real number.

c) The distributional functions $G_{2k}(P \pm i0, m, n)$ where n is an integer ≥ 2; $k = 1, 2, \ldots$, are elementary causal (anticausal) solutions of the ultrahyperbolic Klein-Gordon operator iterated k times.

(I;2.6) \[K^k[G_{2k}] = \delta. \]
I.3. Along this paper we shall need the following Lemmas.

Lemma 1. Let λ and μ be complex numbers such that λ, μ and $\lambda + \mu \neq -k$, $k = 1, 2, \ldots$; then the following formulae are valid

\[(1;3.1)\hspace{1cm} e^{(\lambda - \mu)\pi i} (m^2 + Q - i0)^\lambda \cdot (m^2 + Q + i0)^\mu +
\]
\[+ e^{-(\lambda - \mu)\pi i} (m^2 + Q + i0)^\lambda \cdot (m^2 + Q - i0)^\mu =
\]
\[= [1 - C(\lambda, \mu)] e^{(\lambda + \mu)\pi i} (m^2 + Q + i0)^{\lambda + \mu} +
\]
\[+ [1 + C(\lambda, \mu)] e^{-(\lambda + \mu)\pi i} (m^2 + Q - i0)^{\lambda + \mu},
\]

and

\[(1;3.2)\hspace{1cm} (m^2 + Q + i0)^\lambda \cdot (m^2 + Q - i0)^\mu + (m^2 + Q - i0)^\lambda \cdot (m^2 + Q + i0)^\mu =
\]
\[= [1 + C(\lambda, \mu)] (m^2 + Q - i0)^{\lambda + \mu} +
\]
\[+ [1 - C(\lambda, \mu)] (m^2 + Q + i0)^{\lambda + \mu},
\]

where

\[(1;3.3)\hspace{1cm} C(\lambda, \mu) = 2i \sin \lambda \pi \cdot \sin \mu \pi \csc(\lambda + \mu)\pi =
\]
\[= \frac{2\pi i \Gamma(\lambda + \mu) \Gamma(1 - \lambda - \mu)}{\Gamma(\lambda) \Gamma(1 - \lambda) \Gamma(\mu) \Gamma(1 - \mu)}
\]

and $(m^2 + Q \pm i0)^\lambda$ is defined by $(1;1.5)$.

Proof. It results from $(1;1.10)$, $(1;1.11)$ and considering the multiplicative product $(1;1.12)$ (see [11], p. 39).

In the next we will write

\[(1;3.4)\hspace{1cm} G^a_c = G_a(P + i0, m, n)
\]

and

\[(1;3.5)\hspace{1cm} G^a_A = G_a(P - i0, m, n),
\]

where $G_a(P \pm i0, m, n)$ is defined by $(1;1.2)$.

On the other hand, from [11], p. 37, we have

\[(1;3.6)\hspace{1cm} G_{-2k}(P \pm i0, m, n) \in O'_C
\]

and

\[(1;3.7)\hspace{1cm} G_a(P \pm i0, m, n) \in S' \text{ for all } \alpha \in C,
\]

where O'_C designates the space of rapidly decreasing distribution ([9], p. 244) and S' designates the dual of S and S is the Schwartz set of functions ([9], p. 268).
Lemma 2. Let α and β be complex numbers, then the following formula is valid

(I;3.8) \[e^{\frac{1}{2}(\alpha-\beta)\pi i} (G_A^\alpha \ast G_C^\beta) + e^{-\frac{1}{2}(\alpha-\beta)\pi i} G_A^\alpha \ast G_C^\beta = \]
\[= \left[1 - C \left(-\frac{\alpha}{2}, -\frac{\beta}{2} \right) \right] e^{-\frac{1}{2}(\alpha+\beta)\pi i} G_A^{\alpha+\beta} + \]
\[+ \left[1 + C \left(-\frac{\alpha}{2}, -\frac{\beta}{2} \right) \right] e^{\frac{1}{2}(\alpha+\beta)\pi i} G_C^{\alpha+\beta} \]
and

(I;3.9) \[G_A^\alpha \ast G_C^\beta + G_A^\alpha \ast G_C^\beta = \]
\[= \left[1 + C \left(-\frac{\alpha}{2}, -\frac{\beta}{2} \right) \right] G_C^{\alpha+\beta} + \left[1 - C \left(-\frac{\alpha}{2}, -\frac{\beta}{2} \right) \right] G_A^{\alpha+\beta}. \]

Proof. From (I;2.14) we conclude, by appealing to the theorem of Schwartz (cf. [9], p. 268), that the following formula is valid

(I;3.10) \[\mathcal{F}\{e^{\frac{1}{2}(\alpha-\beta)\pi i} (G_A^\alpha \ast G_C^\beta) + e^{-\frac{1}{2}(\alpha-\beta)\pi i} (G_C^\alpha \ast G_A^\beta)\} = \]
\[= e^{\frac{1}{2}(\alpha-\beta)\pi i} \mathcal{F}\{G_A^\alpha\} \cdot \mathcal{F}\{G_C^\beta\} + e^{-\frac{1}{2}(\alpha-\beta)\pi i} \mathcal{F}\{G_C^\alpha\} \cdot \mathcal{F}\{G_A^\beta\} \]
and

(I;3.11) \[\mathcal{F}\{G_A^\alpha \ast G_C^\beta + G_C^\alpha \ast G_A^\beta\} = \mathcal{F}\{G_A^\alpha\} \cdot \mathcal{F}\{G_C^\beta\} + \mathcal{F}\{G_C^\alpha\} \cdot \mathcal{F}\{G_A^\beta\}. \]

Substituting (I;1.4) into (I;3.10) and (I;3.11) we have

(I;3.12) \[\mathcal{F}\{e^{\frac{1}{2}(\alpha-\beta)\pi i} (G_A^\alpha \ast G_C^\beta) + e^{-\frac{1}{2}(\alpha-\beta)\pi i} (G_C^\alpha \ast G_A^\beta)\} = \]
\[= e^{\frac{1}{2}(\alpha+\beta)\pi i} \frac{1}{2} \cdot (m^2 + Q + i0)^{-\frac{\alpha}{2}} (m^2 + Q - i0)^{-\frac{\beta}{2}}](2\pi)^{-n} + \]
\[+ e^{-\frac{1}{2}(\alpha-\beta)\pi i} \frac{1}{2} \cdot (m^2 + Q - i0)^{-\frac{\alpha}{2}} (m^2 + Q + i0)^{-\frac{\beta}{2}}](2\pi)^{-n} \]
and

(I;3.13) \[\mathcal{F}\{G_A^\alpha \ast G_C^\beta + G_C^\alpha \ast G_A^\beta\} = \]
\[= e^{(\alpha+\beta)\pi i} \frac{1}{2} \cdot (m^2 + Q + i0)^{-\frac{\alpha}{2}} (m^2 + Q - i0)^{-\frac{\beta}{2}}](2\pi)^{-n} + \]
\[+ e^{(\alpha+\beta)\pi i} \frac{1}{2} \cdot (m^2 + Q - i0)^{-\frac{\alpha}{2}} (m^2 + Q + i0)^{-\frac{\beta}{2}}](2\pi)^{-n}. \]
Putting \(\lambda = -\frac{\alpha}{2} \) and \(\mu = -\frac{\beta}{2} \) in (I;3.1) and (I;3.2) and substituting in the right hand member of (I;3.12) and (I;3.13) we have

\[
\mathcal{F}\{e^{\frac{1}{2}(\alpha - \beta)\pi i}(G_A^\alpha * G_C^\beta) + e^{-\frac{1}{2}(\alpha - \beta)\pi i}(G_C^\alpha * G_A^\beta)\} = \\
= (2\pi)^{-\alpha} e^{(\alpha + \beta)\frac{1}{2}} \left\{ (1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})) e^{-\frac{1}{2}(\alpha + \beta)\pi i}(m^2 + Q + i0)^{-\frac{\alpha + \beta}{2}} + \\
+ \left(1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right) e^{\frac{1}{2}(\alpha + \beta)\pi i}(m^2 + Q - i0)^{-\frac{\alpha + \beta}{2}} \right\}
\]

and

\[
\mathcal{F}\{G_A^\alpha * G_C^\beta + G_C^\alpha * G_A^\beta\} = \\
= (2\pi)^{-\alpha} e^{(\alpha + \beta)\frac{1}{2}} \left\{ (1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2}))(m^2 + Q - i0)^{-\frac{\alpha + \beta}{2}} + \\
+ \left(1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right)(m^2 + Q + i0)^{-\frac{\alpha + \beta}{2}} \right\}
\]

By substituting (I;1.4) in (I;3.14), (I;3.15) and taking into account the uniqueness theorem of the Fourier transform, we conclude

\[
e^{\frac{1}{2}(\alpha - \beta)\pi i}(G_A^\alpha * G_C^\beta) + e^{-\frac{1}{2}(\alpha - \beta)\pi i}(G_C^\alpha * G_A^\beta) = \\
= \left(1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right) e^{-\frac{1}{2}(\alpha + \beta)\pi i}G_A^{\alpha + \beta} + \\
+ \left(1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right) e^{\frac{1}{2}(\alpha + \beta)\pi i}G_C^{\alpha + \beta}
\]

and

\[
G_A^\alpha * G_C^\beta + G_C^\alpha * G_A^\beta = \\
= \left(1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right)G_C^{\alpha + \beta} + \left(1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right)G_A^{\alpha + \beta}
\]

which is the thesis of Lemma 2.

II.1.

Theorem 1. Let \(\alpha, \beta \) be complex numbers and let \(B_C^\gamma \) (resp. \(B_A^\gamma \)) be the ultrahyperbolic causal (anticausal) Bessel operator of order \(\lambda \) of a function \(f \) belong to \(S \). Then

\[
(B_C^\gamma f)^\alpha + (B_A^\gamma f)^\beta = [1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})]B_C^{\alpha + \beta} f + [1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})]B_A^{\alpha + \beta} f.
\]
Proof. It results from the definitions (I;1.16), (I;1.17) and from (I;3.9).

Theorem 2. Let \(\alpha, \beta\) be complex numbers and let \(D^\lambda_C\) (resp. \(D^\lambda_A\)) be the generalized causal (anticausal) Bessel derivative of order \(\lambda\) of a function \(f\) belong to \(S\). Then

\[
(\text{II;1.2}) \quad D^\alpha_C(D^\beta_A f) + D^\alpha_A(D^\beta_C f) = [1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})]D^{\alpha+\beta}_C f + [1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})]D^{\alpha+\beta}_A f.
\]

Proof. It results from (I;1.14), (I;1.16) and (I;3.9).

Theorem 3. Let \(\alpha, \beta\) be complex numbers and let \(B^\alpha_C\) (resp \(B^\alpha_A\)) be the ultra-hyperbolic causal (anticausal) Bessel operator of order \(\lambda\) of a function \(f\) belong to \(S\). Then the following formula is valid

\[
(\text{II;1.3}) \quad e^{\frac{1}{2}(\alpha-\beta)^\pi i} B^\alpha_A(B^\beta_C f) + e^{-\frac{1}{2}(\alpha-\beta)^\pi i} B^\alpha_C(B^\beta_A f) = \left[1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right]e^{-\frac{1}{2}(\alpha+\beta)^\pi i} B^\alpha_A B^\beta_C f + \left[1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right]e^{\frac{1}{2}(\alpha+\beta)^\pi i} B^\alpha_C B^\beta_A f.
\]

Proof. (II;1.3) it results from (I;1.16), (I;1.17) and (I;3.8).

Theorem 4. Let \(\alpha, \beta\) be complex numbers and let \(D^\lambda_C\) (resp. \(D^\lambda_A\)) be the generalized causal (anticausal) Bessel derivative of order \(\lambda\) of a function \(f\) belong to \(S\). Then is valid

\[
(\text{II;1.4}) \quad e^{\frac{1}{2}(\alpha-\beta)^\pi i} D^\alpha_C(D^\beta_A f) + e^{-\frac{1}{2}(\alpha-\beta)^\pi i} D^\alpha_A(D^\beta_C f) = \left[1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right]e^{-\frac{1}{2}(\alpha+\beta)^\pi i} D^\alpha_A D^\beta_C f + \left[1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2})\right]e^{\frac{1}{2}(\alpha+\beta)^\pi i} D^\alpha_C D^\beta_A f.
\]

Proof. (II;1.4) it results from (I;1.14), (I;1.18) and (I;3.8).

Otherwise we can observe that the following formulae are valid for \(\alpha\) and \(\beta\) complex numbers

(II;1.5) \(D_C^\beta B_C^\alpha f = D_C^{\beta+\alpha} f.\)

(II;1.6) \(D_A^\beta B_A^\alpha f = D_A^{\beta+\alpha} f.\)

(II;1.7) \(B_C^\beta D_C^\alpha f = B_C^{\beta+\alpha} f.\)

(II;1.8) \(B_A^\beta D_A^\alpha f = B_A^{\beta+\alpha} f.\)
Theorem 5. Let α, β be complex numbers and let $B^\lambda_\alpha(B^\lambda_\beta)$ be the ultrahyperbolic causal (anticausal) Bessel operator and let $D^\mu_C(D^\mu_A)$ be the generalized causal (anticausal) Bessel derivative of order μ of a function f belong to S. Then the following formula is valid

$$B^\alpha_C(D^\beta_A f) + B^\alpha_A(D^\beta_C f) =$$

$$= (1 + C(-\frac{\alpha}{2}, -\frac{\beta}{2}))B^{\alpha-\beta}_C + (1 - C(-\frac{\alpha}{2}, -\frac{\beta}{2}))B^{\alpha-\beta}_A.$$

Proof. (II:1.9) results from (I;1.16), (I;1.17) and (I;2.8).

Theorem 6. Let α, β be complex numbers and let $B^\lambda_\alpha(B^\lambda_\beta)$ be the ultrahyperbolic causal (anticausal) Bessel operator of order λ and let D^μ_C (resp D^μ_A) be the generalized causal (anticausal) Bessel derivative of order μ of a function f belong to S. Then is valid

$$D^\alpha_C(B^\beta_A f) + D^\alpha_A(B^\beta_C f) =$$

$$= (1 + C(\frac{\alpha}{2}, -\frac{\beta}{2}))D^{\alpha+\beta}_C f + (1 - C(\frac{\alpha}{2}, -\frac{\beta}{2}))D^{\alpha+\beta}_A f.$$

Proof. From (I;1.14), (I;1.15) and (I;2.13) it results (II;1.10).

REFERENCES

Manuel Aguirre Téllez,
Facultad de Ciencias Exactas,
Universidad del Centro de la Provincia de Buenos Aires,
Pinto 399,
7000 Tandil (ARGENTINA)
Rubén Alejandro Cerutti,
Facultad de Ciencias Exactas,
Universidad Nacional del Norderste,
9 de Julio 1449,
3400 Corrientes (ARGENTINA)