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GROUPS WITH THE RÉDEI PROPERTY

SÁNDOR SZABÓ

Let G be a �nite abelian group of type (4, 4, 2) or (p2, p), where p is
a prime. Assume that AB is a direct product giving G , where A and B are
subsets of G both containing the identity element of G . Then A or B lies in
a proper subgroup of G .

1. Introduction.

Let G be a �nite abelian group written multiplicatively with identity
element e. If A and B are subsets of G such that G = AB and the product AB
is direct we will say that G is factored by its subsets A and B . In other words
G = AB is a factorization of G if each g in G is uniquely expressible in the
form g = ab, where a ∈ A and b ∈ B . If e ∈ A and e ∈ B we say that the subsets
A and B are normed or normalized and also we call the factorization G = AB
in this case a normed or normalized factorization. The smallest subgroup of
G which contains a subset A of G , that is, the span of A we will denote by
�A�. By the fundamental theorem of �nite abelian groups each �nite abelian
group is a direct product of cyclic groups. The fact that G is a direct product
of cyclic groups of orders t1, . . . , tr we will express shortly saying that G is of
type (t1, . . . , tr ). If from each factorization G = AB it follows that �A� �= G
or �B� �= G we will say that G has the Rédei property. Equivalently, G has the
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Rédei property if whenever G = AB is a normed factorization of G then one
of the factors A, B must be contained by a proper subgroup of G .

A.D. Sands [6] showed that groups of type (pα, qβ), where p and q
are distinct primes, have the Rédei property and asked if each �nite abelian
group has the Rédei property. Using result from coding theory O. Fraser
and B. Gordon [2] proved that if p is a prime p ≥ 5, then groups of type
(p, . . . , p)(p + 1 p�s) do not have the Rédei property. By a construction of
S. Szabó [7] groups of type (t1, . . . , tr ) do not have the Rédei property if r ≥ 3
and ti/pi ≥ 4, where pi is the least prime divisor of ti . We would like to point
out that groups of type (4, 4, 4) do not posses the Rédei property. This does not
follow from [7] directly. However, [7] contains a relevant construction and an
inspection shows that none of the factors spans the whole group. L. Rédei [4]
conjectured that groups of type (p, p, p) have the Rédei property, where p is a
prime. S. Szabó and C. Ward [8] veri�ed this conjecture in the p ≤ 11 special
case.

A subset A of a �nite abelian group G is called periodic if there is an
element g ∈ G \ {e} such that Ag = A. Each element g with this property is
called a periodic of A. All the periods of A together with the identity element
form a subgroup H of G . In addition there is a subset C of G such that
A = HC , where the product is direct. If from each factorization G = AB
it follows that either A or B is periodic, then we say that the �nite abelian group
G has the Hajós property. By A.D. Sands [5] the classi�cation of �nite abelain
groups with Hajós property is complete. Namely, a �nite abelian group has the
Hajós property if it is one of the following types or a subgroup of such a group.

(pα, q), (p2, q2), (p2, q, r), (p, q, r, s),

(p3, 2, 2), (p2, 2, 2, 2), (p, 22, 2), (p, 2, 2, 2, 2),

(p, q, 2, 2), (p, 3, 3), (32, 3), (2α, 2),

(22, 22), (p, p),

where p, q, r, s are distinct primes; the p = 2 and p = 3 cases are included;
α ≥ 3 is an integer.

We will see that the Hajós property implies the Rédei property and so the
groups described above have the Rédei property. The purpose of this paper is
to show that groups of type (p2, p), and (4, 4, 2) have the Rédei property. The
proofs of these results represent two different approaches. The �rst one uses
a standard technique, replacing factors, from the factorization theory of �nite
abelian groups. The second is based on an ad hoc combinatorial argument.
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2. p-groups.

First we verify our claim about the connection between the Hajós and
Rédei properties.
Then we will consider p-groups of types (pα, pβ ), (pα, pβ , pγ ), where p is a
prime.

Lemma 1. The Hajós property implies the Rédei property.

Proof. Let G be a �nite abelian group with the Hajós property. We show that
if G = AB is a normed factorization of G , then either �A� �= G or �B� �= G .
We proceed by induction on n, the number of not necessarily distinct prime
factors of |G|. If n = 1, then since |G| = |A||B| it follows that either A = G ,
B = {e} or A = {e}, B = G . Hence either �A� �= G or �B� �= G . Suppose that
n ≥ 2. As G has the Hajós property, either A or B is periodic. Assume that B
is periodic, that is, B = HC , where the product is direct H is a proper subgroup
and C is a subset of G . From the factorization G = AB = A(HC) we get the
factorization G = AB of the factor group G = G/H , where A = (AH )/H and
B = (HC)/H . Note that |G| < |G| and that G also have the Hajós property
because of its type so by the inductive assumption either �A� �= G or �B� �= G .
From this it follows that either �A� �= G or �B� �= G . This completes the proof.

Let A and A� be subsets of a �nite abelian group G . We say that A can
be replaced by A� if G = A� B is a factorization of G whenever G = AB is a
factorization of G .

Lemma 2. Let G be a �nite abelian p-group, where p is a prime. Let G = AB
be a normed factorization of G. If |A| = p, then either �A� is an elementary
p-group or B is periodic.

Proof. If each a ∈ A \ {e} is of order p, then �A� is of type (p, . . . , p), that is,
�A� is an elementary group and so there is nothing to prove. We may assume
that there is an a ∈ A \ {e} with |a| ≥ p2. By L. Rédei [3] A can be replaced by
A� = {e, a, a2, . . . , a p−1} for each a ∈ A \ {e}. The factorization G = A�B is
equivalent to that the subsets

B, aB, a2B, . . . , a p−1B

form a partition of G . Multiply the factorization G = A�B by a to obtain the
factorization G = Ga = (aA�)B . This means that the subsets

aB, a2B, a3B, . . . , a pB

form a partition of G . Comparing the two partitions of G gives that B = a pB .
As a p �= e, B is periodic. This completes the proof.
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Theorem 1. Let G be a group of type (pα, pβ ), where p is a prime. If G = AB
is a normed factorization of G such that |A| = p, then either �A� �= G or
�B� �= G.

Proof. We may assume that α ≥ β . We proceed by induction on n = α + β .
If n = 1, then |A| = p and |B| = 1. Hence B = {e} and so �B� �= G . If
n = 2, then |A| = |B| = p so by the main result of L. Rédei [3] either A or
B is a subgroup of G and so either �A� �= G or �B� �= G . For the remaining
part of the proof suppose that n ≥ 3. Now α ≥ 2 and consequently G is not
an elementary group. By Lemma 2 either �A� is an elementary group or B is
periodic. If �A� is an elementary group, then �A� cannot be equal to G and so
we are done. Assume that B is periodic, that is, B = HC , where the product
is direct H is a proper subgroup and C is a subset of G . From the factorization
G = AB = A(HC) we get the factorization G = AB of the factor group
G = G/H , where A = (AH )/H and B = (HC)/H . Since |G| < |G| and
since the type of G has not charged by the inductive hypothesis either �A� �= G
or �B� �= G . From this it follows that either �A� �= G or �B� �= G . This
completes the proof.

Corollary 1. Groups of type (p2, p) have the Rédey property for each prime p.

Proof. Let p be a prime and let G = AB be a normed factorization, where
G is a group of type (p2, p). As |G| = |A||B| by relabelling we may assume
that |A| = p and |B| = p2. By Theorem 1 either �A� �= G or �B� �= G . This
completes the proof.

Theorem 2. Let G be a group of type (pα, pβ, pγ ), where p is a prime p ≤ 11.
If G = AB is a normed factorization of G such that |A| = p, then either
�A� �= G or �B� �= G.

Proof. We may assume that α ≥ β ≥ γ . The γ = 0 case is covered by
Theorem 1 so we assume that γ ≥ 1. We proceed by inductionon n = α+β+γ .
If n = 3, then |A| = p, |B| = p2 and as γ ≥ 1, G is of type (p, p, p). Hence
by S. Szabó and C. Ward [8] either �A� �= G or �B� �= G . In the remaining part
of the proof we suppose that n ≥ 4. Now G cannot be an elementary group.
By Lemma 2 either �A� is an elementary group or B is periodic. If �A� is an
elementary group, then �A� �= G and we are done. So we may assume that B is
periodic, that is, B = HC , where the product is direct H is a proper subgroup
and C is a subset of G . From the factorization G = AB of the factor group
G = G/H , where A = (AH )/H and B = (HC)/H . In the way we have we
seen in the proof of Theorem 1, it follows that either �A� �= G or �B� �= G .
This completes the proof.
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3. 2-groups.

In this section we will deal with 2-groups of type (2α1 , . . . , 2αs ), where
1 ≤ αi ≤ 2 for each i, 1 ≤ i ≤ s . First we prove two lemmas essentially about
groups of types (4, 4, 4) and (4, 4, 2).

Lemma 3. If G = AB is a normed factorization of the �nite abelian group G,
where |A| = 4 and �A� is of type (4, 4, 4), then B is periodic.

Proof. Let b ∈ B . Multiplying the factorization G = AB by b−1 we get
the factorization G = Gb−1 = A(Bb−1). Let H = �A�. Restricting the
factorization G = A(Bb−1) to H we get the factorization H = G ∩ H =

A(Bb−1∩ H ) = AC of H . Here C = (Bb−1∩ H ). Set A = {e, x , y, z}. By the
hypothesis of the lemma x , y, z form a basis of H , that is, H = �x�×�y�×�z�,
where |x | = |y| = |z| = 4.

We show that C is periodic with period (xyz)2 . This gives that (xyz)2 ∈

C = Bb−1 ∩ H and so
(xyz)2 ∈

�

b∈B

Bb−1.

From this by Lemma 4 of [1] it follows that (xyz)2 is a period of B .
Consider the subgroup T = �x� × �y� of H . Let n0, n1, n2, n3 be the

number of elements of C contained by the cosets T , T z, T z2, T z3 respectively.
As H = AC is a factorization we get the following system of equations.

3n0 + n3 = 16

n0 + 3n1 = 16

n1 + 3n2 = 16

n2 + 3n3 = 16

This gives n0 = n1 = n2 = n3 = 4, that is, each coset contains 4 elements from
C .

The following tables show that there are only 4 possibilities for C ∩ T .
Namely, it can only be

�xy�, �x 2, y2�, �x 2y�, �xy2�.

The entries marked by [ ] belong to C; and the entries marked by ( ) do not
belong to C ∩ T .

[e] y (y2) y3 [e] y [y2] y3

x [xy] xy2 (xy3) x (xy) xy2 (xy3)

(x 2) x 2y [x 2y2] x 2y3 [x 2] x 2y [x 2y2] x 2y3

x 3 (x 3y) x 3y2 [x 3y3] x 3 (x 3y) x 3y2 (x 3y3)
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[e] y [y2] y3 [e] y y2 (y3)

x (xy) xy2 (xy3) x (xy) [xy2] xy3

x 2 [x 2y] x 2y2 [x 2y3] [x 2] x 2y x 2y2 (x 2y3)

(x 3) x 3y (x 3y2) x 3y3 x 3 (x 3y) [x 3y2] x 3y3

Note that C∩T determines C∩T z3 uniquely; C∩T z3 determines C∩T z2 ;
C∩T z2 determines C∩T z. Thus C can only be one of the following subgroups
of H

�xy� × �x 2z3�, �x 2, y2� × �xyz3�, �x 2y� × �xyz3�, �xy2� × �xyz3�.

We can now verify that in each cases (xyz)2 is a period of C . This completes
the proof.

Lemma 4. Let G = AB be a normed factorization,where G is of type (4, 4, 2),
|A| = 4, �A� = G. Then �B� �= G.

Proof. As �A� = G , there is a basis x , y, z of G such that |x | = |y| = 4,
|z| = 2 and A = {e, x , y, az}, where a ∈ �x , y� = T . Let n0, n1 be the number
of elements of B contained by the cosets T , Tz respectively. The factorization
G = AB yields the following system of equations.

3n0 + n1 = 16

n0 + 3n1 = 16

The only solution of this system is n0 = 4, n1 = 4 and consequently the cosets
T , Tz both contain 4 elements from B . In the way we have seen in the proof of
Lemma 3 we get that

�xy�, �x 2, y2�, �x 2y�, �xy2�

are the only possibilities for B ∩T . Observe that in each of the four cases B ∩T
determines B ∩ T z and so the whole of B uniquely. Thus B = K ∪ Kb, where
b ∈ G and K is one of the above four subgroups of G . Now |�B�| ≤ |K | · |b| ≤

4 · 4 = 16 and so �B� �= G . This completes the proof.

Theorem 3. Let G be a group of type (2α1 , . . . , 2αs ), where 1 ≤ αi ≤ 2 for
each i, 1 ≤ i ≤ s. If G = AB is a normed factorization of G, where |A| = 2
or |A| = 4, then either �A� �= G or �B� �= G.
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Proof. Wemay assume that �A� = G since otherwise there is nothing to prove.
If |A| = 2, then A contains only one nonidentity element. Hence G must be
of type (2) or (4) by the assumption on the type of G . In these cases G has the
Hajós and consequently the Rédei property.

Turn to the case when |A| = 4. A contains three nonidentity elements and
so by the type of G it follows that the type of �A� = G is one of the following.

(2, 2, 2), (4, 2, 2), (4, 4, 2), (4, 4, 4).

In the �rst two cases G has the Hajós property and so �B� �= G . In the third case
Lemma 4 leads to this conclusion. In the last case by Lemma 3 B is periodic,
that is, B = HC , where the product is direct and H is a proper subgroup
of G . In this case considering the factorization G = AB of the factor group
G = G/H , where A = (AH )/H and B = (HC)/H completes the proof in the
known way.

Corollary 2. A group of type (4, 4, 2) has the Rédei property.

Proof. Let G be a group of type (4, 4, 2) and let G = AB be a normed
factorization of G . We may assume that |A| ≤ |B| and so either |A| = 2
or |A| = 4. Further we may assume that �A� = G since otherwise there is
nothing to prove. When |A| = 2 A has only one nonidentity element and in this
case A cannot span the whole G . So |A| = 4. Now by Lemma 4 �B� �= G .
This completes the proof.
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