DECOMPOSITION OF THE BESSEL FUNCTIONS WITH RESPECT TO THE CYCLIC GROUP OF ORDER n

YOUSSÈF BEN CHEIKH

Let n be an arbitrary positive integer. We decompose the functions

$$
j_{v}(z)=\left\{\begin{array}{ll}
\Gamma(v+1)\left(\frac{z}{2}\right)^{-v} J_{v}(z) & \text { if } z \neq 0 \\
1 & \text { if } z=0
\end{array}, \quad v \geq \frac{-1}{2}\right.
$$

where J_{v} is the Bessel function of the first kind of order v, as the sum of n functions $\left(j_{\nu}\right)_{[2 n, 2 k]}, k=0,1, \ldots, n-1$, defined by

$$
\left(j_{v}\right)_{[2 n, 2 k]}(z)=\frac{1}{n} \sum_{\ell=0}^{n-1} \exp \left(-\frac{2 i \pi k \ell}{n}\right) j_{v}\left(z \exp \left(\frac{i \pi \ell}{n}\right)\right), \quad z \in \mathbb{C} .
$$

In this paper, we establish the close relation between these components and the hyper-Bessel functions introduced by Delerue [3]. The use of a technique described in an earlier work [1] leads us to derive, from the basic identities and relations for j_{ν}, other analogous for the components $\left(j_{\nu}\right)_{[2 n, 2 k]}$ that turn out to be some integral representations of Sonine, Mehler and Poisson type, an operational representation and a differential equation of order $2 n$. Thereafter, two identities for j_{v} are expressed by the use of the components $\left(j_{v}\right)_{[2 n, 2 k]}$.

[^0]
1. Introduction.

All the notations and conventions begun in [1] will be continued in this paper. We recall in particular that $\Omega(I) \equiv \Omega$ denotes the space of complex functions admitting a Laurent expansion in an annulus I with center in the origin and for an arbitrary positive integer p, every function f in Ω can be written as the sum of p functions $f_{[p, r]} ; r=0,1, \ldots, p-1$; defined by (cf. Ricci [14], p. 44, Eq.(3.3)):

$$
f_{[p, r]}(z)=\frac{1}{p} \sum_{\ell=0}^{p-1} \omega_{p}^{-k \ell} f\left(\omega_{p}^{\ell} z\right), \quad z \in I
$$

with $\omega_{p}=\exp \left(\frac{2 i \pi}{p}\right)$ the complex p-root of unity.
Let n be an arbitrary positive integer, in view of (1.2) and (1.3) in [1], we have

$$
\Omega=\bigoplus_{r=0}^{p-1} \Omega_{[p, r]}=\bigoplus_{\ell=0}^{p n-1} \Omega_{[p n, \ell]}=\bigoplus_{r=0}^{p-1} \bigoplus_{k=0}^{n-1} \Omega_{[p n, p k+r]}
$$

from which we deduce that a function f in Ω can be written as the sum of $p n$ functions $f_{[p n, \ell]} ; \ell=0,1, \ldots, p n-1$; and if moreover, $f \in \Omega_{[p, r]}$, this decomposition coincides with the decomposition of f with respect to the cyclic group of order n. We have in fact,

$$
\begin{equation*}
f=\sum_{k=0}^{n-1} f_{[p n, p k+r]} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{[p n, p k+r]}(z)=\frac{1}{p n} \sum_{\ell=0}^{p n-1} \omega_{p n}^{-\ell(p k+r)} f\left(\omega_{p n}^{\ell} z\right) \tag{1.2}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
f_{[p n, p k+r]}(z)=\frac{1}{n} \sum_{s=0}^{n-1} \omega_{p n}^{-s(p k+r)} f\left(\omega_{p n}^{s} z\right) \tag{1.3}
\end{equation*}
$$

This paper deals with the decomposition with respect to the cyclic group of order n of one of the most important special functions, the function j_{v} defined by

$$
j_{v}(z)=\left\{\begin{array}{ll}
\Gamma(v+1)\left(\frac{z}{2}\right)^{-v} J_{v}(z) & \text { if } z \neq 0 \tag{1.4}\\
1 & \text { if } z=0
\end{array}, \quad v \geq \frac{-1}{2}\right.
$$

where J_{v} is the Bessel function of the first kind of order v.
Notice that $j_{-\frac{1}{2}}(z)=\cos z$.
The function j_{v} belongs to $\Omega_{[2,0]}$ since we have

$$
\begin{equation*}
j_{v}(z)=\sum_{m=0}^{\infty} \frac{\Gamma(v+1)}{\Gamma(m+v+1) \cdot m!} \cdot\left(\frac{-z^{2}}{4}\right)^{m}, \quad|z|<\infty \tag{1.5}
\end{equation*}
$$

it follows then that we can write it as the sum of n functions $\left(j_{\nu}\right)_{[2 n, 2 k]}$; $k=0,1, \ldots, n-1$; defined by

$$
\begin{equation*}
\left(j_{\nu}\right)_{[2 n, 2 k]}(z)=\frac{1}{n} \sum_{\ell=0}^{n-1} \omega_{n}^{-k \ell} j_{\nu}\left(\omega_{2 n}^{\ell} z\right) \tag{1.6}
\end{equation*}
$$

With the two additional parameters n and k the functions $\left(j_{v}\right)_{[2 n, 2 k]}$ can be viewed as generalizations of the function j_{v} since; for $n=1$; we have $\left(j_{\nu}\right)_{[2,0]}=j_{\nu}$. Then we begin by situating the components $\left(j_{\nu}\right)_{[2 n, 2 k]}$ among the generalizations in the literature of the function j_{ν}, more precisely, we shall state the relation between these components and the hyper-Bessel functions introduced by Delerue [3]. Thereafter, the use of the technique described in [1] leads us to derive, from the basic identities and relations for j_{ν}, other analogous for the components $\left(j_{v}\right)_{[2 n, 2 k]}$ that turn out to be a hypergeometric serie representation, some integral representations of Sonine, Mehler and Poisson type, an operational representation and a differential equation of order $2 n$. A Parseval formula and a n th-order circulant determinant will be also stated for the function j_{v}.

2. Representation as a hypergeometric function.

We recall that the generalized hypergeometric function is defined by (see, for instance, Luke [12], p. 136, Eq. (1)):

$$
{ }_{p} F_{q}(z)={ }_{p} F_{q}\left(\begin{array}{ccc}
a_{1}, & \cdots & , a_{p} \tag{2.1}\\
b_{1}, & \cdots & , b_{q}
\end{array} ; z\right)=\sum_{m=0}^{+\infty} \frac{\left(a_{1}\right)_{m} \cdots\left(a_{p}\right)_{m}}{\left(b_{1}\right)_{m} \cdots\left(b_{q}\right)_{m}} \cdot \frac{z^{m}}{m!}
$$

where

- $(a)_{m}$ is the Pochlammer symbol defined by

$$
(a)_{m}=\frac{\Gamma(a+m)}{\Gamma(a)}, \quad a \neq 0,-1,-2, \ldots
$$

- $\quad p$ and q are positive integers or zero (interpreting an empty product as 1);
- z the complex variable;
- the numerator parameters $a_{i}, i=1, \ldots, p$, and the denominator parameters $b_{j}, j=1, \ldots, q$, take on complex values, providing that $b_{j} \neq$ $0,-1,-2, \ldots, j=1, \ldots, q$.
The ${ }_{p} F_{q}$ series in (2.1) converges for $|z|<\infty$ if $p \leq q$.
Now, to express $\left(j_{v}\right)_{[2 n, 2 k]}$ by a generalized hypergeometric function, we start from:

$$
j_{v}(z)={ }_{0} F_{1}\left(\begin{array}{cc}
- & ; \frac{-z^{2}}{4} \tag{2.2}\\
v+1
\end{array}\right)
$$

which we deduce from (1.5) and (2.1). We write this expression under the form:

$$
j_{v}(z)=S_{\frac{i}{2}}(\psi \circ g)(z)
$$

where

- $S_{\alpha}, \alpha \in \mathbb{C}$, is the scaling operator on Ω defined by $S_{\alpha}(f)(z)=f(\alpha z)$, for all $f \in \Omega$ and for all $z \in \mathbb{C}$;
- ψ and g the two functions given by

$$
g(z)=z^{2} \text { and } \psi(z)={ }_{0} F_{1}\left(\begin{array}{cc}
- & \\
v+1
\end{array} \quad ; z\right)
$$

The use of Corollary II. 3 and the identity (I-9) in [1] yield

$$
\left.\begin{array}{rl}
\left(j_{v}\right)_{[2 n, 2 k]}(z) & =\frac{1}{k!(v+1)_{k}}\left(\frac{i z}{2}\right)^{2 k} \tag{2.3}\\
{ }_{0} F_{2 n-1}\left(\begin{array}{cc}
- & - \\
\Delta^{*}(n, k+1), & \Delta(n, v+1)
\end{array}\right. & ;\left(\frac{i z}{2 n}\right)^{2 n}
\end{array}\right), ~ l
$$

where, for convenience, $\Delta(n, \alpha)$ (resp. $\left.\Delta^{*}(n, k+1)\right)$ stands for the set of n (resp. $n-1$) parameters $\frac{\alpha}{n}, \frac{\alpha+1}{n}, \ldots, \frac{\alpha+n-1}{n}\left(\right.$ resp. $\left.\Delta(n, k+1) \backslash\left\{\frac{n}{n}\right\}\right)$.
Then an equivalent expression as an infinite series is deduced:

$$
\begin{equation*}
\left(j_{v}\right)_{[2 n, 2 k]}(z)=\sum_{m=0}^{\infty} \frac{1}{(v+1)_{n m+k} \cdot(n m+k)!} \cdot\left(\frac{-z^{2}}{4}\right)^{n m+k} ; \quad|z|<\infty \tag{2.4}
\end{equation*}
$$

or, equivalently,

$$
\begin{aligned}
\left(j_{v}\right)_{[2 n, 2 k]}(z)= & \frac{1}{k!(v+1)_{k}}\left(\frac{i z}{2}\right)^{2 k} . \\
& \cdot \sum_{m=0}^{\infty} \frac{1}{\prod_{j=0}^{n-1}\left(\frac{k+1+j}{n}\right)_{m} \prod_{j=0}^{n-1}\left(\frac{v+1+j}{n}\right)_{m}}\left(\frac{i z}{2 n}\right)^{2 n m} .
\end{aligned}
$$

Notice that the function $\left(j_{-\frac{1}{2}}\right)_{[2 n, 2 k]}$ can be expressed by the trigonometric functions of order $2 n$ and $2 k$ th kind defined by (cf. Erdélyi et al. [7], p. 215, Eq. (18)):

$$
\begin{equation*}
g_{n, k}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(n m+k)!} \cdot z^{n m+k} ; n \in \mathbb{N}^{*}, \quad k=0,1, \ldots, n-1, \tag{2.5}
\end{equation*}
$$

or, equivalently,

$$
g_{n, k}(z)=\frac{(-z)^{k}}{k!}{ }_{0} F_{n-1}\left(\begin{array}{c}
- \tag{2.6}\\
\Delta^{*}(n, k+1)
\end{array} ;\left(\frac{-z}{n}\right)^{n}\right)
$$

we have in fact,

$$
\begin{equation*}
\left(j_{-\frac{1}{2}}\right)_{[2 n, 2 k]}(z)=(\cos)_{[2 n, 2 k]}(z)=e^{\frac{i \pi \pi}{n}} \cdot g_{2 n, 2 k}\left(e^{\frac{i \pi(n-1)}{2 n}} z\right) \tag{2.7}
\end{equation*}
$$

which we can be deduced from (2.3) and (2.6) since

$$
\Delta^{*}(n, k+1) \cup \Delta\left(n, \frac{1}{2}\right) \equiv \Delta^{*}(2 n, 2 k+1)
$$

Also, among the consequences of the identity (2.3), we mention the possibility of stating a relation between ${ }_{0} F_{2 n-1}$ and Bessel functions that generalizes the Carlson ones [2]. Indeed, if we combine (2.3) and (1.6) we obtain
(2.8) ${ }_{0} F_{2 n-1}\left(\begin{array}{ccc}- & - & ; z \\ \Delta^{*}(n, k+1) & \Delta(n, v+1+k) & \end{array}\right.$

$$
=(-1)^{k} \frac{\Gamma(\nu+1+k) k!}{n}\left(\frac{\xi}{2}\right)^{-v-2 k} \sum_{h=0}^{n-1} \exp \left[\frac{i \pi h(\nu+2 k)}{n}\right] J_{v}\left(\xi e^{\frac{i \pi h}{n}}\right),
$$

where $\xi=2 n i z^{\frac{1}{2 n}}$.
Two special cases of this identity are worthy of note here:
If we set $n=2, k=0$ and $c=\frac{v+1}{2}$ (or $n=2, k=1$ and $c=\frac{v+2}{2}$) in (2.8) and we use the well known identity (cf. [15], p. 203):

$$
I_{v}(z)=e^{-\frac{1}{2} v \pi i} J_{v}\left(z e^{i \frac{\pi}{2}}\right)
$$

we derive the following relations stated by Carlson (cf. [2], p. 233, Eq. (7)):

$$
\begin{align*}
& \frac{1}{\Gamma(2 c)}{ }_{0} F_{3}\left(\begin{array}{ccc}
- & ; z)= \\
\frac{1}{2}, & c, & c+\frac{1}{2}
\end{array}\right) \tag{2.9}\\
& =\frac{1}{2}\left(2 z^{\frac{1}{4}}\right)^{1-2 c}\left[I_{2 c-1}\left(4 z^{\frac{1}{4}}\right)+J_{2 c-1}\left(4 z^{\frac{1}{4}}\right)\right] \\
& \frac{1}{\Gamma(2 c)}{ }_{0} F_{3}\left(\begin{array}{c}
- \\
\frac{3}{2}, \\
\\
= \\
\\
=\frac{1}{2}\left(2 z^{\frac{1}{4}}\right)^{-2 c}\left[I_{2 c-2}\left(4 z^{\frac{1}{4}}\right)-J_{2 c-2}\left(4 z^{\frac{1}{4}}\right)\right]
\end{array}\right. \tag{2.10}
\end{align*}
$$

3. Hyper-Bessel functions.

P. Delerue [3] generalized the Bessel functions J_{v} by replacing the index v by n parameters $v_{1}, v_{2}, \ldots, v_{n}$ that is:

$$
J_{v_{1}, v_{2}, \ldots, v_{n}}^{(n)}(z)=\frac{\left(\frac{1}{n+1} z\right)^{\sum v_{i}}}{\prod \Gamma\left(v_{i}+1\right)} 0 F_{n}\left(\begin{array}{c}
- \tag{3.1}\\
\left(v_{i}+1\right)
\end{array} \quad ;-\left(\frac{z}{n+1}\right)^{n+1}\right)
$$

which he called hyper-Bessel functions of order n and of index $v_{1}, v_{2}, \ldots \ldots v_{n}$. The same generalization was obtained thirty years after by Klyuchantsev [10] where the functions (3.1) were called Bessel functions of vector index and designated by $J_{\left(\nu_{1}, v_{2}, \ldots, v_{n}\right)}$.
For convenience, we set

$$
\begin{align*}
j_{\left(v_{1}, v_{2}, \ldots, v_{r-1}\right)}(z) & =\prod \Gamma\left(v_{i}+1\right)\left(\frac{z}{r}\right)^{-\sum v_{i}} J_{\left(v_{1}, v_{2}, \ldots, v_{r-1}\right)}(z)= \tag{3.2}\\
& ={ }_{0} F_{r-1}\left(\begin{array}{c}
- \\
\left(v_{i}+1\right)
\end{array} ;-\left(\frac{z}{r}\right)^{r}\right), \quad r \in \mathbb{N}^{*},
\end{align*}
$$

where the summation $\sum \nu_{j}$ and the multiplication $\Pi \Gamma\left(v_{j}+1\right)$ are carried out over all j from 1 to $r-1$ and for the sake of brevity $\left(a_{j}\right)$ stands for the sequence of $(r-1)$ parameters $a_{1}, a_{2}, \ldots, a_{r-1}$.

Next, we purpose to express $\left(j_{v}\right)_{[2 n, 2 k]}$ through the functions designated by (3.2).

From the three parameters v, n and k, one defines a vector $\boldsymbol{v} \in \mathbb{R}^{2 n-1}$ as follows:

$$
\boldsymbol{v}(n, k, v) \equiv \boldsymbol{v}\left(v_{i}(n, k, v)\right)_{1 \leq i \leq 2 n-1}
$$

where the $(n-1)$ first components ν_{i} are given by $\Delta^{*}(n, k+1)$ and the n other by the set $\Delta(n, v+k)$.
Here, we introduce, for notational convenience, the vector $\mathbf{1}_{2 n-1}$ in $\mathbb{R}^{2 n-1}$ having all components equal to unity.
From (2.3) and (3.2) we deduce:

$$
\begin{equation*}
\left(j_{v}\right)_{[2 n, 2 k]}(z)=\frac{(-1)^{k}}{k!(v)_{k}}\left(\frac{z}{2}\right)^{2 k} j_{\boldsymbol{v}_{(n, k, v)-1} \mathbf{1}_{2 n-1}}\left(i z e^{i \frac{i \pi}{2 n}}\right) . \tag{3.3}
\end{equation*}
$$

For $v=\frac{1}{2}$, we have

$$
\begin{equation*}
g_{2 n, 2 k}(z)=\frac{z^{2 k}}{(2 k)!} j_{\boldsymbol{v}\left(n, k, \frac{1}{2}\right)-\mathbf{1}_{2 n-1}}(z) \tag{3.4}
\end{equation*}
$$

which reduces, for $n=1$, to the well known identity:

$$
\cos z=j_{-\frac{1}{2}}(z)
$$

4. Integral representations.

We recall that the Bessel functions have the following integral representation known as Sonine integral (see, for instance, [15], p. 373, Eq. (1) or [6], Vol.II, p. 194, Eq. (63))

$$
\begin{gather*}
J_{v+\mu}(a y)=\frac{a^{\mu} y^{-\mu-v}}{2^{\mu-1} \Gamma(\mu)} \int_{0}^{y}\left(y^{2}-x^{2}\right)^{\mu-1} x^{\nu+1} J_{v}(a x) d x, \tag{4.1}\\
\operatorname{Re} v>-1 \text { and } \operatorname{Re} \mu>0
\end{gather*}
$$

which reduces, for $v=-\frac{1}{2}$, to so-called Mehler representation (see, for example, [11], p. 114, Eq. (5.10.3) or [6], Vol.II, p. 190, Eq. (34)):

$$
\begin{equation*}
J_{\mu-\frac{1}{2}}(a y)=\frac{a^{\mu-\frac{1}{2}} y^{\frac{1}{2}-\mu}}{2^{\mu-\frac{3}{2}} \Gamma(\pi) \Gamma(\mu)} \int_{0}^{y}\left(y^{2}-x^{2}\right)^{\mu-1} \cos (a x) d x, \operatorname{Re} \mu>0 . \tag{4.2}
\end{equation*}
$$

Using (1.4) and a change of variable, one obtains :

$$
\begin{gather*}
j_{v+\mu}(a x)=\frac{2 \Gamma(\mu+v+1)}{\Gamma(\mu) \Gamma(v+1)} \int_{0}^{1}\left(1-t^{2}\right)^{\mu-1} t^{2 v+1} j_{v}(a t x) d t \tag{4.3}\\
\operatorname{Re} v>-1 \text { and } \operatorname{Re} \mu>0
\end{gather*}
$$

$$
\begin{equation*}
j_{v}(a x)=\frac{2 \Gamma(v+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{v-\frac{1}{2}} \cos (a t x) d t, \operatorname{Re} v>-\frac{1}{2} \tag{4.4}
\end{equation*}
$$

If we apply the projection operator $\Pi_{[2 n, 2 k]}$ to each member of these two formulas considered as functions of the variable x and we use the integral representation (IV-2) in [1], we obtain the following proposition:

Proposition. The functions $\left(j_{v}\right)_{[2 n, 2 k]}$ have:
i) a Mehler type integral representation

$$
\begin{gather*}
\left(j_{v}\right)_{[2 n, 2 k]}\left(x e^{\frac{(1-n) i \pi}{2 n}}\right)= \tag{4.5}\\
=\frac{2 \Gamma(v+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{v-\frac{1}{2}} g_{2 n, 2 k}(x t) d t, \quad \operatorname{Re} v>-\frac{1}{2}
\end{gather*}
$$

ii) a Sonine type integral representation:

$$
\begin{gather*}
\left(j_{v+\mu}\right)_{[2 n, 2 k]}(a x)= \tag{4.6}\\
=\frac{2 \Gamma(\mu+v+1)}{\Gamma(\mu) \Gamma(v+1)} \int_{0}^{1}\left(1-t^{2}\right)^{\mu-1} t^{2 v+1}\left(j_{v}\right)_{[2 n, 2 k]}(a t x) d t
\end{gather*}
$$

$$
\operatorname{Re} v>-1 \text { and } \operatorname{Re} \mu>0
$$

iii) a Poisson type integral representation:

$$
\begin{gather*}
\left(j_{v}\right)_{[2 n, 2 k]}\left(r e^{i \theta}\right)= \tag{4.7}\\
=\int_{0}^{2 \pi} P_{n, k}(R, r, \phi-\theta) j_{v}\left(R e^{i \phi}\right) d \phi, r<R, 0 \leq \theta \leq 2 \pi
\end{gather*}
$$

or, equivalently,

$$
\begin{gather*}
\left(j_{v}\right)_{[2 n, 2 k]}\left(r e^{i \theta}\right)= \tag{4.8}\\
=\int_{0}^{2 \pi} P_{n, k}(R, r, \phi-\theta)\left(j_{v}\right)_{[2 n, 2 k]}\left(R e^{i \phi}\right) d \phi, r<R, 0 \leq \theta \leq 2 \pi
\end{gather*}
$$

where the kernel $P_{n, k}(R, r, \phi-\theta)$ is defined by

$$
\begin{gathered}
P_{n, k}(R, r, \phi-\theta)= \\
=\frac{\left(R^{2(n-k)}-r^{2(n-k)}\right) R^{k} r^{k} e^{-i k(\phi-\theta)}+\left(R^{2 k}-r^{2 k}\right) R^{n-k} r^{n-k} e^{i(n-k)(\phi-\theta)}}{2 \pi\left(R^{2 n}+r^{2 n}-2 R^{n} r^{n} \cos n(\phi-\theta)\right)} .
\end{gathered}
$$

A particular case of (4.5) corresponding to $k=0$ can be written using (3.3) as follows:

$$
\begin{align*}
& j_{\left(-\frac{1}{n},-\frac{2}{n}, \ldots,-\frac{(n-1)}{n}, \frac{v}{n}, \frac{v-1}{n}, \ldots, \frac{v-(n-1)}{n}\right)}(x)= \tag{4.9}\\
& =\frac{2 \Gamma(v+1)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(v+\frac{1}{2}\right)} \int_{0}^{1}\left(1-t^{2}\right)^{v-\frac{1}{2}} g_{2 n, 0}(x t) d t, \quad \operatorname{Re} v>-\frac{1}{2} .
\end{align*}
$$

This identity is also a particular case of an interesting integral representation given by Dimovski and Kiryakova (cf.[4], p. 32, Eq. (15) or [9], p. 34, Eq. (8)):

$$
\begin{align*}
& j_{\left(v_{1}, \ldots, v_{q}\right)}(x)=\sqrt{\frac{q+1}{(2 \pi)^{q}}} \prod_{\ell=1}^{q} \Gamma\left(v_{\ell}+1\right) \tag{4.10}\\
& \cdot \int_{0}^{1} G_{q q}^{q 0}\left(t \left\lvert\, \begin{array}{c}
\left(v_{k}\right) \\
\left(\frac{k}{q+1}-1\right)
\end{array}\right.\right) g_{q+1,0}\left(x t^{\frac{1}{q+1}}\right) d t
\end{align*}
$$

where $G_{p q}^{m n}\left(z \left\lvert\, \begin{array}{c}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q}\end{array}\right.\right)$ designates the Meijer's G-function (see, for instance, [5], Vol.I, p. 207, [12], p. 143 or [13], p. 2 for the definition).
To verify that (4.9) is a special case of (4.10), one can use the identities (2), (4) and (5), p. 150 in the book [12] and the formula

$$
G_{11}^{10}\binom{\alpha+\beta+1}{\alpha}=\frac{x^{\alpha}(1-x)^{\beta}}{\Gamma(\beta+1)}, \quad 0<x<1 \quad \text { (cf. [13], p. 37) }
$$

5. An operational representation.

We recall that the Bessel functions J_{v} satisfy the following identity (cf. [15], p. 46, Eq. (6)):

$$
(-1)^{m} z^{-v-m} J_{v+m}(z)=\left(\frac{d}{z d z}\right)^{m}\left(z^{-v} J_{v}(z)\right), \quad m \in \mathbb{N}
$$

so, for j_{v}, we have
(5.1) $\quad j_{v+m}(z)=(-2)^{m} \frac{\Gamma(v+m+1)}{\Gamma(v+1)}\left(\frac{d}{z d z}\right)^{m}\left(j_{v}(z)\right), \quad m \in \mathbb{N}$.

According to the decomposition

$$
\Omega=\bigoplus_{\ell=0}^{2 n-1} \Omega_{[2 n, \ell]}
$$

the differential operator $\left(\frac{d}{z d z}\right)^{m}$ is homogeneous of degree $2 n-2 m$. So, by virtue of Theorem III-1 in [1], we have

$$
\Pi_{[2 n, 2 k]} \circ\left(\frac{d}{z d z}\right)^{m}=\left(\frac{d}{z d z}\right)^{m} \circ \Pi_{[2 n, 2 k+2 m]} \overbrace{2}
$$

which leads us, if we apply the projection operator $\Pi_{[2 n, 2 k]}$ to the two members of (5.1), to obtain

$$
\left(j_{v+m}\right)_{[2 n, 2 k]}(z)=(-2)^{m} \frac{\Gamma(v+m+1)}{\Gamma(v+1)}\left(\frac{d}{z d z}\right)^{m}\left(\left(j_{v}\right)_{[2 n, 2 k+2 m]}(z)\right), m \in \mathbb{N} .
$$

In particular, if m is a multiple of n, that is $m=n r$, we have:

$$
\left(j_{v+n r}\right)_{[2 n, 2 k]}(z)=(-2)^{n r} \frac{\Gamma(v+n r+1)}{\Gamma(v+1)}\left(\frac{d}{z d z}\right)^{n r}\left(\left(j_{v}\right)_{[2 n, 2 k]}(z)\right)
$$

6. A differential equation.

We purpose in this section to establish a differential equation satisfied by the components $\left(j_{\nu}\right)_{[2 n, 2 k]}$.

We recall that the functions $z \rightarrow j_{v}(\lambda z)$ are solutions of the differential equation:

$$
\begin{equation*}
B_{2} u=-\lambda^{2} u \tag{6.1}
\end{equation*}
$$

where $B_{2}=B_{2}(v)=D_{z}^{2}+\frac{2 v+1}{z} D_{z}, D_{z}=\frac{d}{d z}$ is the classical Bessel differential operator, with the initial conditions:

$$
u(0)=1, \quad u^{\prime}(0)=0
$$

The action of B_{2} on both sides of (6.1) and the use of (6.1) to eliminate B_{2} in the right side yield a differential equation of order four satisfied by the functions $z \rightarrow j_{v}(\lambda z)$. The reiteration of this process $(r-1)$ times gives rise to the following differential equation:

$$
\begin{equation*}
B_{2}^{r}\left(j_{\nu}(\lambda z)\right)=\left(-\lambda^{2}\right)^{r} j_{\nu}(\lambda z) \tag{6.2}
\end{equation*}
$$

The action of the projection operators $\prod_{[2 n, 2 k]}$ on both sides of (6.2), with $n=r$, gives us, in view of Theorem III-1 in [1] since B_{2}^{n} is homogeneous of degree zero, the following system satisfied by the functions $z \rightarrow\left(j_{\nu}\right)_{[2 n, 2 k]}(\lambda z)$:
$\left(\sum_{n, k}(v)\right)$

$$
\begin{cases}B_{2}^{n} u(z)=\left(-\lambda^{2}\right)^{n} u(z), & \lambda \in \mathbb{C} \\ \frac{d^{\ell} u}{d z^{\ell}}(0)=\delta_{2 k \ell} c_{k} \cdot \lambda^{\ell}, & \ell \in\{0,1, \ldots, 2 n-1\}\end{cases}
$$

where $\delta_{i j}$ is the Kronocker symbol and the constants c_{k} are given by

$$
c_{k}=\frac{(-1)^{k}(2 k)!}{2^{2 k} k!(v+1)_{k}}
$$

which we can be deduced from (2.4).
We observe that
i) For $k=0$ and $z \in] 0,+\infty\left[\right.$ the system $\left(\sum_{n, k}(v)\right)$ coincides with a class of the initial value problem for singular differential equation containing an operator of the form

$$
B_{r}=\frac{d^{r}}{d z^{r}}+\frac{b_{1}}{z} \frac{d^{r-1}}{d z^{r-1}}+\cdots+\frac{b_{r-1}}{z^{r-1}} \frac{d}{d z}
$$

with coefficients $b_{i}=b_{i}\left(v_{1}, \ldots, v_{r-1}\right)$ depending on parameters v_{1}, \ldots, v_{r-1} considered by many authors, we quote, for instance, Delerue [3], DimovskiKiryakova [4], Kiryakova [9] and Klyuchantsev [10].
ii) For $v=-\frac{1}{2}$, the solutions of $\left(\sum_{n, k}(v)\right)$ reduce to trigonometric functions of order $2 n$ and $2 k$ th kind $z \rightarrow g_{2 n, 2 k}(\lambda z)$ defined by (2.5) (See for instance Erdélyi et al. [7], p. 215, Eqs. (19) and (20)).
iii) For $n=2$ and $k=0$, we have

$$
j_{\left(-\frac{1}{2}, \frac{v}{2}, \frac{v-1}{2}\right)}(\lambda z)={ }_{0} F_{3}\left(\begin{array}{cccc}
& - & & ;-\left(\frac{\lambda z}{4}\right)^{4} \\
-\frac{1}{2}, & \frac{v}{2}, & \frac{v-1}{2} &
\end{array}\right)
$$

is solution of the system:

$$
\left\{\begin{array}{l}
B_{2}^{2} u=D_{z}^{4} u+\frac{2(2 v+1)}{z} D_{z}^{3} u+\frac{4 v^{2}-1}{z^{2}} D_{z}^{2} u+\frac{1-4 v^{2}}{z^{3}} D_{z} u=-\lambda^{4} u \\
u(0)=1, u^{(\ell)}(0)=0 ; \quad \ell \in\{1,2,3\}
\end{array}\right.
$$

which we can verify from the identities (1.40), (1.41) and (1.42), when $r=4$, p. 359 in Klyuchantsev's paper [10].

Remark. The integral representation (4.5) can be used to define a transmutation operator between $\frac{d^{2 n}}{d z^{2 n}}$ and $B_{2}^{n}(v)$ just as (4.6) can be used to define a transmutation operator between $B_{2}^{n}(v)$ and $B_{2}^{n}(v+\mu)$.

7. A Parseval formula.

A similar proof of Proposition V-1 in [1] can be used here to state the following
Proposition 7.1. Let $(f, g) \in\left(\Omega_{[p, 0]}\right)^{2}$ and $(x, y) \in I^{2}$ we have:

$$
\sum_{k=0}^{n-1} f_{[p n, p k]}(x) \cdot \overline{g_{[p n, p k]}}(y)=\frac{1}{n} \sum_{\ell=0}^{n-1} f\left(\omega_{p n}^{\ell} x\right) \cdot \bar{g}\left(\omega_{p n}^{\ell} y\right)
$$

The special case, where $f=g$ and $x=y$, amounts to the following Parseval formula:

$$
\sum_{k=0}^{n-1}\left|f_{[p n, p k]}(x)\right|^{2}=\frac{1}{n} \sum_{\ell=0}^{n-1}\left|f\left(\omega_{p n}^{\ell} x\right)\right|^{2}
$$

From which we deduce a Parseval formula for the function j_{v} :

$$
\sum_{k=0}^{n-1}\left|\left(j_{\nu}\right)_{[2 n, 2 k]}(z)\right|^{2}=\frac{1}{n} \sum_{\ell=0}^{n-1}\left|j_{v}\left(\omega_{2 n}^{\ell} z\right)\right|^{2}
$$

8. A \boldsymbol{n} th-order circulant determinant.

We recall that the n th-order circulant determinant is (cf.[8], p. 1112)

$$
\left|\begin{array}{cccc}
x_{0} & x_{n-1} & \cdots & x_{1} \\
x_{1} & x_{0} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1} & x_{n-2} & \cdots & x_{0}
\end{array}\right|=\prod_{\ell=0}^{n-1}\left(\sum_{k=0}^{n-1} \omega_{n}^{k \ell} x_{k}\right)
$$

from which we deduce that any function $f \in \Omega_{[2,0]}$ satisfies the following identity:

$$
\prod_{\ell=0}^{n-1} f\left(\omega_{2 n}^{\ell} z\right)=\left|\begin{array}{cccc}
f_{[2 n, 0]}(z) & f_{[2 n, 2 n-2]}(z) & \cdots & f_{[2 n, 2]}(z) \tag{8.1}\\
f_{[2 n, 2]}(z) & f_{[2 n, 0]}(z) & \cdots & f_{[2 n, 4]}(z) \\
\vdots & \vdots & \ddots & \vdots \\
f_{[2 n, 2 n-2]}(z) & f_{[2 n, 2 n-4]}(z) & \cdots & f_{[2 n, 0]}(z)
\end{array}\right|
$$

since we have

$$
f\left(\omega_{2 n}^{\ell} z\right)=\sum_{k=0}^{n-1} f_{[2 n, 2 k]}\left(\omega_{2 n}^{\ell} z\right)=\sum_{k=0}^{n-1} \omega_{n}^{k \ell} f_{[2 n, 2 k]}(z)
$$

Now, if we set $f=j_{v}$ in (8.1), we obtain the n th-order circulant determinant:

$$
\prod_{\ell=0}^{n-1} j_{v}\left(\omega_{2 n}^{\ell} z\right)=\left|\begin{array}{cccc}
\left(j_{v}\right)_{[2 n, 0]}(z) & \left(j_{v}\right)_{[2 n, 2 n-2]}(z) & \cdots & \left(j_{v}\right)_{[2 n, 2]}(z) \\
\left(j_{v}\right)_{[2 n, 2]}(z) & \left(j_{v}\right)_{[2 n, 0]}(z) & \cdots & \left(j_{v}\right)_{[2 n, 4]}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\left(j_{v}\right)_{[2 n, 2 n-2]}(z) & \left(j_{v}\right)_{[2 n, 2 n-4]}(z) & \cdots & \left(j_{v}\right)_{[2 n, 0]}(z)
\end{array}\right|
$$

which reduces, for $n=2$, to

$$
j_{v}(z) j_{v}(i z)=\left(j_{v}\right)_{[4,0]}^{2}(z)-\left(j_{v}\right)_{[4,2]}^{2}(z)
$$

REFERENCES

[1] Y. Ben Cheikh, Decomposition of some complex functions with respect to the cyclic group of order n, to appear in Appl. Math. Inf., Vol. 2.
[2] B.C. Carlson, Some extensions of Lardner's relations between ${ }_{0} F_{3}$ and Bessel functions, SIAM. J. Math. Anal., 1 (1970), pp. 232-242.
[3] P. Delerue, Sur le calcul symbolique n variables et les fonctions hyperbesséliennes, Ann. Soc. Sci. Bruxelles, 67-3 (1953), pp. 229-274.
[4] I.H. Dimovski - V.S. Kiryakova, Generalized Poisson Transmutations and corresponding representations of hyper-Bessel functions, Compt. Rend. Acad. Bulg. Sci., 39-10 (1986), pp. 29-32.
[5] A. Erdélyi - W. Magnus - F. Oberhettinger - F.G. Tricomi, Higher transcendal functions, Vols.I and II, Mc Graw-Hill, New York, 1953.
[6] A. Erdélyi - W. Magnus - F. Oberhettinger - F.G. Tricomi, Tables of Integrals Transforms, Vols. I and II, Mc Graw-Hill, New York, 1954.
[7] A. Erdélyi - W. Magnus - F. Oberhettinger - F.G. Tricomi, Higher transcendal functions, Vol.III, Mc Graw-Hill, New York, 1955.
[8] I.S. Gradshteyn - I.M. Ryzhik, Table of integrals,series and products, Academic Press, New York, 1980.
[9] V.S.Kiryakova, New integral representations of generalized hypergeometric functions, Compt. Rend. Acad. Bulg. Sci., 39-12 (1986), pp. 33-36.
[10] M.I. Klyuchantsev, Singular Differential Operators with $r-1$ parameters and Bessel functions of vector index, Siberian Math. J., 24 (1983), pp. 353-367.
[11] N.N. Lebedev, Special Functions and their Applications, Translated from the Russian and edited by R.A.Silverman, Dover, New York, 1972.
[12] Y.L. Luke, The Special Functions and their Approximations Vol.I, Academic Press, New York, 1969.
[13] A.M. Mathai - R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Math. 348, Springer Verlag, Berlin, 1973.
[14] P.E. Ricci, Le funzioni pseudo-iperboliche e pseudo-trigonometriche, Publ. Istit. Mat. Appl. Fac. Ing. Univ. Roma, 12 (1978), pp. 27-49.
[15] G.N. Watson, A treatise on the theory of Bessel functions, second ed., Cambridge Univ. Press, Cambridge, 1944.

Département de Mathématique,
Faculté des Sciences, 5019 Monastir (TUNISIA)

[^0]: Entrato in Redazione il 9 ottobre 1997.

