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DECOMPOSITION OF THE BESSEL FUNCTIONS
WITH RESPECT TO THE CYCLIC GROUP OF ORDER r

YOUSSEF BEN CHEIKH

Let n be an arbitrary positive integer. We decompose the functions

. _ .
L+ D" h@ ifz#0 -1
1 ifz=0

Jv(2) =

where J, is the Bessel function of the first kind of order v, as the sum of n
functions (jy)[2n,2¢), Kk =0, 1, ..., n — 1, defined by

. 1t dimkt . it
(Uwzn,2i(2) = p Zexp(_T)Jl)(Z exp(T)), zeC.
=0

In this paper, we establish the close relation between these components
and the hyper-Bessel functions introduced by Delerue [3]. The use of a
technique described in an earlier work [1] leads us to derive, from the basic
identities and relations for j,, other analogous for the components (jy)[2x,2k]
that turn out to be some integral representations of Sonine, Mehler and
Poisson type, an operational representation and a differential equation of
order 2n. Thereafter, two identities for j, are expressed by the use of the
components (j,)[24,24] -
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1. Introduction.

All the notations and conventions begun in [1] will be continued in this
paper. We recall in particular that Q(/) = 2 denotes the space of complex
functions admitting a Laurent expansion in an annulus / with center in the origin
and for an arbitrary positive integer p, every function f in €2 can be written as
the sum of p functions f;, ;7 =0, 1,..., p — 1; defined by (cf. Ricci [14],
p. 44, Eq.(3.3)):

Jipn(2) = Zw “fha), zel

Z 0

with w, = exp(%) the complex p-root of unity.
Let n be an arbitrary positive integer, in view of (1.2) and (1.3) in [1], we have

._‘

pn—1 p—1 n—

p—1
Q=P,n= @ Qpn,e) = Qpn, ph+r1

r=0 =0 r=0 k

Il
=}

from which we deduce that a function f in €2 can be written as the sum of
pn functions f,, q; £ = 0,1,..., pn — 1; and if moreover, f € Q, -, this
decomposition coincides with the decomposition of f with respect to the cyclic
group of order n. We have in fact,

n—1

(1.1) =" fipnpien
k=0
with
pn—1
(1.2) ion pitr1 (2) = Z 0 P f(),2)

or, equivalently,

n—1
1 -5 r S
(1.3) fionpiein @ = — D @ " f(@],2).
s=0

This paper deals with the decomposition with respect to the cyclic group of
order n of one of the most important special functions, the function j, defined
by

Zy—v . _q
(1.4) Jn(@) = { P+ DG A ifz#0 —1

ifz=0" -2
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where J, is the Bessel function of the first kind of order v.
Notice that j_%(z) = Cos Z.
The function j, belongs to €2, ¢} since we have

o0

. Fw+1) -2\"
(1.5) J“(Z):Z;)F(m+v+1).m!'< 4 ) o el <0

it follows then that we can write it as the sum of n functions (j,)izn.2415
k=0,1,...,n— 1;defined by

(1.6) (j)ian2(z) = Zw £ ju(@5,2).

With the two additional parameters n and k the functions (j,)j2n,2¢) can
be viewed as generalizations of the function j, since; for n = 1; we have
(w01 = Jjv- Then we begin by situating the components (j,)[2,2¢; among
the generalizations in the literature of the function j,, more precisely, we shall
state the relation between these components and the hyper-Bessel functions in-
troduced by Delerue [3]. Thereafter, the use of the technique described in [1]
leads us to derive, from the basic identities and relations for j,, other analogous
for the components (j,)j2n.24] that turn out to be a hypergeometric serie repre-
sentation, some integral representations of Sonine, Mehler and Poisson type, an
operational representation and a differential equation of order 2n. A Parseval
formula and a nth-order circulant determinant will be also stated for the function

Jv-

2. Representation as a hypergeometric function.

We recall that the generalized hypergeometric function is defined by (see,
for instance, Luke [12], p. 136, Eq. (1)):

ap, ,Cl[, m

Q1) F@) = ,F )y @
. kg rlq b . b, ; = (b)y (b m!

where

e (a), is the Pochlammer symbol defined by

_F(a+m) L .
(a)m——l_,(a) s 61750, 1, 2,...,
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e p and ¢ are positive integers or zero (interpreting an empty product as 1);

e 7z the complex variable;

o the numerator parameters a;, i = 1, ..., p, and the denominator param-
eters b;, j = 1,...,q, take on complex values, providing that b; #
0,-1,-2,....,j=1,...,q.

The , F, series in (2.1) converges for [z| < o0 if p < gq.
Now, to express ( jv) by a generalized hypergeometric function, we start
from:

[2n,2k]

(2.2) 7@ = oF ( ; ‘7)
v+1

which we deduce from (1.5) and (2.1). We write this expression under the form:
Ju@ =S (¥ 0g))

where

e S,, a €C, is the scaling operator on €2 defined by S,(f)(z) = f(az), for
all f € Q and forall z € C;
e 1 and g the two functions given by

g(x)=2" and Y (2) = oF ( : z) :
v+1
The use of Corollary I1.3 and the identity (I-9) in [1] yield

1 1z
K + Dy )

0Fan—1 ( ; (%)zn)
A k+1), A, v+1)

where, for convenience, A(n, @) (resp. A*(n, k + 1)) stands for the set of n
(resp. n — 1) parameters <, &=L <=L (resp. A(n, k + 1)\ {£)).

n

Then an equivalent express1on as an infinite series is deduced:

(2.3) () g @ =

00 nm-+k
1 -2z
2.4) (Jv 2nzk](Z Z W+ Dymak - (nm + k)! < 4 ) P ll=o0
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or, equivalently,

| | iz 2k
(-]V)[2n,2k](z) - m <5) '

e ¢]

B e, )

Jj=0 n Jj=0 n
Notice that the function ( j—l)[zn 2 Can be expressed by the trigonometric

functions of order 2n and 2kth kind defined by (cf. Erdélyi et al. [7], p. 215,
Eq. (18)):

2.5 i@

00
—1m
Z#-Z'mﬁ_k;nEN*, k=0,1,....n—1,
n

or, equivalently,

(—2)f B Cn
(2.6) 8nk(@) = — —oFum ; (52)
) A*(n,k+1)
we have in fact,
. ik in(n—1)
2.7) (J—%)[Q,,’Zk] (z) = (co8) 2,01 (2) = €7 - Gon 2k (6 » Z)

which we can be deduced from (2.3) and (2.6) since
1
A*(n, k + 1)U A(n, 5) = A*(2n,2k+1).

Also, among the consequences of the identity (2.3), we mention the possibility
of stating a relation between ( F»,_; and Bessel functions that generalizes the
Carlson ones [2]. Indeed, if we combine (2.3) and (1.6) we obtain

(2.8) oFau-1 ( : Z) =
A*(n,k+1) Am,v+1+k)

n—1 .
T+ ’11+ k)k! (g)_v_zk Zexp |:171h(vn—|- 2k):| Jv(ge%),

= (1) ;

h=0
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where & = 2niz.

Two special cases of this identity are worthy of note here:

Ifwesetn =2,k =0and c = % (orn=2,k=1andc = “T”)in(2.8)and
we use the well known identity (cf. [15], p. 203):

@) = e 37, (ze'F)

we derive the following relations stated by Carlson (cf. [2], p. 233, Eq. (7)):

. _
(2.9) mo@( o Z) =

1
5’ C, C+§

1, 1.1-2¢

= 5(28)" e (42) + S (424))

. _
(2.10) 0F3< ; Z) =

3. Hyper-Bessel functions.

P. Delerue [3] generalized the Bessel functions J,, by replacing the index v

by n parameters vy, vy, ..., v, that is:
G I @ s bl ( . ()" )
. V1V, 0, &) = TT 10, L 1208 5 N1
Mro+0""\(, 41
which he called hyper-Bessel functions of order n and of index vy, vy, ... ... V.

The same generalization was obtained thirty years after by Klyuchantsev [10]
where the functions (3.1) were called Bessel functions of vector index and
designated by Ji,, v, 0,)-

For convenience, we set

. T\ — Vi
B2 o 0@ = [T+ DE) T S () =

r

=oFr—1 ( ; —(f)r> , reN,
(vi +1)
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where the summation ) v; and the multiplication [ [ T'(v; + 1) are carried out
over all j from 1 to r — 1 and for the sake of brevity (a;) stands for the sequence
of (r — 1) parameters aj, az, ..., dr_1.

Next, we purpose to express ()
(3.2).
From the three parameters v, n and k, one defines a vector v € R?*~! as follows:

[2n.24] through the functions designated by

v(n, k,v) = v(v;(n, k, v))

1<i<2n—1

where the (n — 1) first components v; are given by A*(n, k + 1) and the n other
by the set A(n, v + k).

Here, we introduce, for notational convenience, the vector 15, ; in R?**!
having all components equal to unity.

From (2.3) and (3.2) we deduce:

. (-1 : .
(3.3) (JV)[Zn,2k](Z) = ,—(_) Jowmin-1,,., (ize).
k.(l))k 2
Forv = % we have
22k
(34) g2n,2k(Z) = m‘jv("ska%)—lhq (Z)

which reduces, for n = 1, to the well known identity:

cosz = j_%(z).

4. Integral representations.

We recall that the Bessel functions have the following integral represen-
tation known as Sonine integral (see, for instance, [15], p. 373, Eq. (1) or [6],
Vol.IL, p. 194, Eq. (63))

Wy—H=V Y
_ y 2 2 pu—1 v+l
4.1) Jopulay) = m/o " —xH" X" Jy(ax) dx,
Rev > —1 and Repu >0
which reduces, for v = —%, to so-called Mehler representation (see, for

example, [11], p. 114, Eq. (5.10.3) or [6], Vol.IL, p. 190, Eq. (34)):

a” 2)” s 2vp—1
@42 J, i1(ay) = ——— /(y x ) cos(ax)dx, Reu > 0.
’ 24730 ()0 ()
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Using (1.4) and a change of variable, one obtains :

2w +v+1)

@43 @) = ST

1
/ (1 — 212+ (arx) dt,
0

Rev > —1 and Repu >0

@4 o) = 0+ D /1(1 £2)"~1 cos(atx)dt. Re !
. Jax) = —————— — 3 atx)dt, V> ——.
/ rre+ 5 Jo >

If we apply the projection operator Iy, 24 to each member of these two
formulas considered as functions of the variable x and we use the integral
representation (IV-2) in [1], we obtain the following proposition:

Proposition. The functions ( jV)[zn 2 have:

i) a Mehler type integral representation

(1—n)in

(4.5) (jv) (2020 (¥€ 2

_2rv+1
- r(Hre +

) =

1
/ 11—t )”"gz,, w(xt)dt, Rev > —=
D 2

ii) a Sonine type integral representation:

(4.6) (J-+10) o 2pg (@%) =

_2(p+v+1)

1
2\pu—1,2v+1/
r)r+1) fo (L= (JV)[zn,zk](atx)dt,

Rev > —1 and Reu >0

iii) a Poisson type integral representation:

@.7) () o 2 7€) =

2
=/ Pui(R, 7, ¢ —0)j(Re'?)Ydp, r <R, 0 <60 <2m
0
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or, equivalently,

(4.8) () o s €)=

2
:/ P, (R, 7, ¢ — 9)(jv)[2n Zk](Rei"’)d¢, r<R,0<6<2x7
0 .
where the kernel P, (R, r, ¢ — 0) is defined by

Pyi(R,r, ¢ —0) =
(R2=0) _ 2=k Rk pk p=ik9=0) 4 (R2k _ 1.2k pi—k pn—k oin—k)$=6)

27 (R + r2 —2R"r" cos n(¢p—6))

A particular case of (4.5) corresponding to £ = 0 can be written using (3.3)
as follows:

(4.9) Jet 2w e (x) =
2 1 1
= (v +1 / (1—1¢ )”_'gz,,o(xt)dt Rev > ——.
F( (v + 2) 2

This identity is also a particular case of an interesting integral representation
given by Dimovski and Kiryakova (cf.[4], p. 32, Eq. (15) or [9], p. 34, Eq. (8)):

(4.10) Jorep () = (2 | H Fe + 1)-
1 ) 1
/ Giolt " gg+1.0(xt7) dt,
0 q+1
where G7//'( z Zl’ Y Z” designates the Meijer’s G-function (see, for in-
| ERC q

stance, [5], Vol.I, p. 207, [12], p. 143 or [13], p. 2 for the definition).
To verify that (4.9) is a special case of (4.10), one can use the identities (2), (4)
and (5), p. 150 in the book [12] and the formula

G}?(x

0<x<l1 (cf. [13], p. 37).

a+p+1\_ x*(1-x)
o T+’
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5. An operational representation.

We recall that the Bessel functions J, satisfy the following identity (cf.
[15], p. 46, Eq. (6)):

d \m, _
(—l)mz_”_mem(z):(%) (z7V (), meN

so, for j,, we have

F(v—i—m—l—l)(i

(5.1) Jom(2) = (=2) rbov+1) zdz

)m<jv(z)), meN.

According to the decomposition

d
the differential operator (—)m is homogeneous of degree 2n — 2m. So, by

virtue of Theorem I1I-1 in [1], we have

)= () e

{202k 0(
(2241 zdz

r——’;\
[2n,2k+2m]

which leads us, if we apply the projection operator I, 2 to the two members
of (5.1), to obtain

2mF(v—I—m—l—l)( d

(s @) = 2" == ()" () @) mel.

In particular, if m is a multiple of n, thatis m = nr, we have:

F(v—l—nr—i—l)(i
Cv+1)

)" ((jV)[zn,zk] (Z)) :

(jV'i""’)[zn,zk](Z) = (_2)nr zdz
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6. A differential equation.

We purpose in this section to establish a differential equation satisfied by
the components () P

We recall that the functions z — j,(Az) are solutions of the differential
equation:

6.1) Bou = —A’u

where B, = By(v) = D? + %DZ, D, = dd—z is the classical Bessel differential
operator, with the initial conditions:

u@ =1, u'(0)=0.

The action of B, on both sides of (6.1) and the use of (6.1) to eliminate
B, in the right side yield a differential equation of order four satisfied by the
functions z — j,(Az). The reiteration of this process (r — 1) times gives rise to
the following differential equation:

(6.2) B, (ju(A2) = (—2%) ju(2).

The action of the projection operators [],, »; on both sides of (6.2), with
n = r, gives us, in view of Theorem III-1 in [1] since B} is homogeneous of
degree zero, the following system satisfied by the functions z — ( j”)[zn 2qA2):

Biu(z) = (—A\)"u(z), reC
(Zn,k(v)) d‘u

W(O):Szkwk A5 £e{0,1,...,2n— 1}

where §;; is the Kronocker symbol and the constants ¢; are given by

(—DK@k)!

T k1w + 1,

which we can be deduced from (2.4).
We observe that

i) For k =0 and z € ]0, +-o0[ the system (Zn k(v)) coincides with a class of
the initial value problem for singular differential equation containing an operator
of the form

B — d +b1 d—! " +br_1 d
r— d7 z er—l Zr—l dz
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with coefficients b; = b;(vy, ..., v,_1) depending on parameters vy, ..., V,_q
considered by many authors, we quote, for instance, Delerue [3], Dimovski-
Kiryakova [4], Kiryakova [9] and Klyuchantsev [10].

ii) For v = —1, the solutions of (}_, ,(v)) reduce to trigonometric functions
of order 2n and 2kth kind z — g2,.2¢(Az) defined by (2.5) (See for instance
Erdélyi et al. [7], p. 215, Egs. (19) and (20)).

1) For n = 2 and kK = 0, we have

Jy3.5H(2) = oF3 L (%)

Ly
2°2°

is solution of the system:

Biu = D}u+ @Dgu + 4”2—2_1D12u + 1_;3‘”2 D.u = —\*u
u©0)=1,u®0)=0; ¢€{1,2,3}
which we can verify from the identities (1.40), (1.41) and (1.42), when r = 4,
p- 359 in Klyuchantsev’s paper [10].

Remark. The integral representation (4.5) can be used to define a transmuta-
2n

tion operator between and Bj(v) just as (4.6) can be used to define a

d 2n
transmutation operator between B} (v) and By (v + ).

7. A Parseval formula.

A similar proof of Proposition V-1 in [1] can be used here to state the
following

Proposition 7.1. Let (f, g) € (Q[,,,O])z and (x, y) € I* we have:

n—1 n—1

1 _
Z Jipn, pi1 (%) - Blpn,pk1(¥) = " Z f(wfmx) : g(wfmy).
£=0

k=0

The special case, where f = g and x =y, amounts to the following Parseval
formula:

n—1 1 n—1
Y im0 = 2 31 ()]
k=0 £=0
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From which we deduce a Parseval formula for the function j,:

n—1

. 1A
Z‘(-]V)[Zn,Zk](Z)‘Z = Z‘]v(wgnz)‘z.
=0

k=0

8. A nth-order circulant determinant.

We recall that the nth-order circulant determinant is (cf.[8], p. 1112)

X0 Xn—1 - X1
X Xo ce Xy n—1 (n—l y )
. . . S| = 1_[ an Xk
: : R =0 \k=0
Xn—1 Xp—2 -+ Xo

from which we deduce that any function f € Q) satisfies the following
identity:

Joonm (@) Jonoan-2@) - fian21(2)

(8.1) ﬁ f(wﬁ,,z) _ f[2n,2]'(z) f[2n,0]'(Z) . ]0[2"7'4] ()
=0

Jonon—21)  fonowm-4@) - fionn (@)

since we have

n—1 n—1
F(@5,2) = D fianan (05,2) = D~ o) fronon @
k=0 k=0
Now, if we set f = j, in (8.1), we obtain the nth-order circulant
determinant:
gjv; 20,010 gjv; onann(@ Ejv)[zn’Z](Z)
n_l . . .
)1y @) Wona@ o () i@
l_[jv(wﬁ,,Z) _ [2 ,'2] [2 ,f)] [2' 4]
=0 . . . .
(j V)[zn,zn—z] (2) (j V)[zn,zn—4] @ - (j V)[Zn,O](Z)

which reduces, for n = 2, to

@Jui2) = (1) 1y 1@ — () 2 @-
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