SOME EXTREMAL PROPERTIES OF GENERALIZED TCHEBYSHEV POLYNOMIALS

J.M. ALMIRA - F. PÉREZ ACOSTA

> In this note we prove several extremal properties of the Generalized Tchebychev Polynomials $\left\{T_{n, K}(z)\right\}$ respect to the minimax serie $S^{K}(f)=$ $\sum_{s=0}^{\infty} E_{S}(f)_{K}$, where $K \subset \mathbb{C}$ is compact and $E_{S}(f)_{K}=\min _{P \in \Pi_{n}}\|f-P\|_{\infty, K}$.

1. Introduction.

Let $K \subseteq \mathbb{C}$ be a compact set containing infinitely many points and suppose that $\overline{\mathbb{C}}-K$ is connected. Then Mergelyan's theorem implies that $\lim _{s \rightarrow \infty} E_{S}(f)_{K}=0$ for all f holomorphic in the interior of K and continuous in K. We consider the space of functions for which the minimax serie $S^{K}(f)=$ $\sum_{s=0}^{\infty} E_{s}(f)_{K}$ is finite. We must be careful with interpretations of this serie as a measure of the kindness of f to be approximated by polynomials. For example, setting $K=[0,2]$, we have $S^{[0,2]}(a x)=|a|$ and $S^{[0,2]}\left(x^{n}\right) \geq 2^{n-1}$ although it is clear that polynomials are the best functions to be approximated by polynomials. In this note, we are interested in bounds of $S^{K}\left(P_{n}\right)$ for certain sequences of polynomials $\left\{P_{n}=a_{0 n} z^{n}+\ldots+a_{00}\right\}$. Our bounds will depend on n and $a_{0 n}$. In particular, the generalized Tchebychev polynomials will be extremal respect to the minimax serie S^{K} as they are respect to the Tchebychev's norm $\left\|\|_{\infty, K}\right.$.

Entrato in Redazione il 9 ottobre 1997.
The first author was supported by Gobierno Autónomo de Canarias.

The minimax serie $S(f)=\sum_{n=0}^{\infty} E_{n}(f)_{[-1,1]}$ appears in the theory of equivalent norms on the Besov spaces $B_{p, q}^{\alpha}[-1,1]$ for the case $p=\infty, q=1=\alpha$ (cf. [3]). It is fairly possible to consider several classes of function spaces defined via variations of minimax series, such as $S_{p, q,\left(b_{n}\right)}^{K}(f)=\left\{\sum_{n=0}^{\infty} b_{n} E_{n, p}(f)_{K}^{q}\right\}^{\frac{1}{q}}$ (where $E_{n, p}(f)_{K}$ denotes the error of approximation to f by algebraic polynomials in L_{p} norm). We call all these spaces "Generalized Besov spaces" (see [1] for a reference).

2. Main results.

The generalized Tchebychev polynomials over K are defined as the monic polynomials $\widetilde{T}_{n, K}$ which satisfy the formula $\left\|\widetilde{T}_{n, K}\right\|_{\infty, K}=E_{n-1}\left(z^{n}\right)_{K}$. We will also use the formula $T_{n, K}=\frac{\widetilde{T}_{n, K}}{\left\|\widetilde{T}_{n, K}\right\|}$.

Theorem 2.1. 1) $S^{K}\left(\widetilde{T}_{n, K}\right)=n\left\|\widetilde{T}_{n, K}\right\|_{\infty, K} \leq S^{K}(\widetilde{P})$ for all \widetilde{P} monic of degree n.
2) $S^{K}\left(T_{n, K}\right)=n \geq S^{k}(P)$ for all $P \in \Pi_{n}$ such that $\|P\|_{\infty, K}=1$.

Proof. Let $s \leq n-1$. Then

$$
\left\|\widetilde{T}_{n, K}\right\|_{\infty, K} \geq E_{s}\left(\widetilde{T}_{n, K}\right)_{K} \geq E_{n-1}\left(\widetilde{T}_{n, K}\right)_{K}=E_{n-1}\left(z^{n}\right)_{K}=\left\|\widetilde{T}_{n, K}\right\|_{\infty, K}
$$

so that $S^{K}\left(\widetilde{T}_{n, K}\right)=n\left\|\widetilde{T}_{n, K}\right\|$. Let \widetilde{P} be monic of degree n.
Then $n E_{n-1}(\widetilde{P})_{K} \leq S^{K}(\widetilde{P})$. But $E_{n-1}(\widetilde{P})_{K}=E_{n-1}\left(z^{n}\right)_{K}=\left\|\widetilde{T}_{n, K}\right\|_{\infty, K}$ and the first assertion follows.

On the other hand, $S^{K}\left(T_{n, K}\right)=\frac{S^{K}\left(\widetilde{T}_{n, K}\right)}{\left\|\widetilde{T}_{n, K}\right\|_{\infty, K}}=n$ and, if $P \in \Pi_{n}$ satisfy $\|P\|_{\infty, K}=1$, then $S^{K}(P) \leq n E_{0}(P)_{K} \leq n\|P\|_{\infty, K}=n$.

Let $G \subset \mathbb{C}$ be a bounded domain and set $K=\bar{G}$. Let $w: G \rightarrow \mathbb{R}^{+}$be a weight function and set $L_{w}^{2}(G)=\left\{f \in H(G): \iint_{G}|f(z)|^{2} w(z) d z<\infty\right\}$. We denote by $\bar{P}_{n}(w)=\gamma_{n}(w) z^{n}+\cdots$ the n-th orthonormal polynomial respect to w with $\gamma_{n}(w)>0$, by $P_{n}(w)=\alpha_{n}(w) z^{n}+\ldots$ the n-th orthogonal polynomial respect to w normalized by $\left\|P_{n}(w)\right\|_{\infty, K}=1, \alpha_{n}(w)>0$ and by $\mu_{0}(w)=\iint_{G} w(z) d z$ the 0 -moment respect to w. For several choices of K the Tchebychev polynomials $T_{n, K}$ are orthogonal which respect to some measure on K or in its boundary ∂K so that in this context the above theorem can be seen as a result on extremality of Tchebychev polynomials between the
systems of orthogonal monic polynomials (orthogonal polynomials normalized by $\|P\|_{\infty, K}=1$, respectively). But then it is natural to ask if orthonormal Tchebychev polynomials are also extremal respect to the minimax serie.

Theorem 2.2. With the notation above introduced, let $w_{1}, w_{2}: G \rightarrow \mathbb{R}^{+}$be two weight functions. Then the following bounds holds:

1) $n \frac{\alpha_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)} \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) \leq S^{K}\left(P_{n}\left(w_{1}\right)\right)$,
2) $n \frac{\gamma_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)} \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) \leq S^{K}\left(\bar{P}_{n}\left(w_{1}\right)\right) \leq n \frac{\gamma_{n}\left(w_{1}\right)}{\alpha_{n}\left(w_{1}\right)}$.

Proof. Let $w_{2}: G \rightarrow \mathbb{R}^{+}$be a weight function and denote by $E_{s}^{(2)}(w, f)$ the best approximation error of f by polynomials of degree at most s in $L_{w}^{2}(G)$ (i.e.
$\left.E_{s}^{(2)}(w, f)=\min _{p \in \Pi_{s}}\left\{\iint_{G}|f(z)-p(z)|^{2} w(z) d z\right\}^{\frac{1}{2}}\right)$. Then

$$
E_{s}^{(2)}(w, f) \leq E_{S}(f)_{K} \mu_{0}^{\frac{1}{2}}(w)
$$

so that, setting $w=w_{2}$ and $f=P_{n}\left(w_{1}\right)$, we have

$$
n \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) E_{n-1}^{(2)}\left(w_{2}, P_{n}\left(w_{1}\right)\right) \leq n E_{n-1}\left(P_{n}\left(w_{1}\right)\right)_{K} \leq S^{K}\left(P_{n}\left(w_{1}\right)\right)
$$

An algebraic manipulation proves that

$$
E_{n-1}^{(2)}\left(w_{2}, P_{n}\left(w_{1}\right)\right)=\alpha_{n}\left(w_{1}\right) E_{n-1}^{(2)}\left(w_{2}, z^{n}\right)=\frac{\alpha_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)}
$$

and the first assertion follows. The same argument proves

$$
n \frac{\gamma_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)} \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) \leq S^{K}\left(\bar{P}_{n}\left(w_{1}\right)\right)
$$

On the other hand, using Theorem 2.1 it is clear that

$$
S^{K}\left(\bar{P}_{n}\left(w_{1}\right)\right)=\frac{\gamma_{n}\left(w_{1}\right)}{\alpha_{n}\left(w_{1}\right)} S^{K}\left(P_{n}\left(w_{1}\right)\right) \leq n \frac{\gamma_{n}\left(w_{1}\right)}{\alpha_{n}\left(w_{1}\right)}
$$

Corollary 2.3. Set $K=[-1,1]$ and let w be a weight function on $[-1,1]$.
Then

$$
S^{[-1,1]}\left(\bar{P}_{n}(w)\right) \geq n \mu_{0}^{-\frac{1}{2}}(w)=O(n)
$$

Furthermore,

$$
S^{[-1,1]}\left(\bar{T}_{n}\right)=\frac{2}{\pi} n=O(n)
$$

Proof. Take $w_{1}=w_{2}=w$ in Theorem 2.2. For the second claim it is enough to observe that $\bar{T}_{n}=\frac{2}{\pi} T_{n}$.

Corollary 2.4.

$$
\frac{\alpha_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)} \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) \leq 1
$$

Proof. By Theorems 2.1, 2.2 it is clear that

$$
n \frac{\alpha_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{2}\right)} \mu_{0}^{-\frac{1}{2}}\left(w_{2}\right) \leq S^{K}\left(P_{n}\left(w_{1}\right)\right) \leq n
$$

Corollary 2.5.

$$
S^{k}\left(\bar{P}_{n}(w)\right) \leq n \frac{1}{\sqrt{\min _{\substack{\|P\|_{\infty}, K=1 \\ \partial P=n}} \iint_{G}|P(z)|^{2} w(z) d z}}
$$

Proof. Orthonormality of $\left\{\bar{P}_{n}\left(w_{1}\right)\right\}_{n=0}^{\infty}$ implies

$$
1=\iint_{G}\left|\bar{P}_{n}\left(w_{1}\right)(z)\right|^{2} w_{1}(z) d z=\left[\frac{\gamma_{n}\left(w_{1}\right)}{\alpha_{n}\left(w_{1}\right)}\right]^{2} \iint_{G}\left|P_{n}\left(w_{1}\right)(z)\right|^{2} w_{1}(z) d z
$$

Hence

$$
\left[\frac{\alpha_{n}\left(w_{1}\right)}{\gamma_{n}\left(w_{1}\right)}\right]^{2} \geq\left[\min _{\substack{\|P\|_{\infty, K}=1 \\ \partial P=n}} \iint_{G}|P(z)|^{2} w(z) d z\right]
$$

and the proof follows.
In the case $K=[-1,1]$, the Christoffel functions

$$
\lambda_{n}(w, x)=\left[\sum_{k=0}^{n-1}|\bar{P}(w, x)|^{2}\right]^{-1}
$$

satisfy the formula

$$
\begin{equation*}
\lambda_{n}(w, x)=\min _{P(x)=1, \partial P=n} \int_{[-1,1]}|P(z)|^{2} w(z) d z \tag{2.1}
\end{equation*}
$$

We may use this formula to prove the following corollary

Corollary 2.6. Set $K=[-1,1]$. Then

$$
S^{[-1,1]}\left(\bar{P}_{n}(w)\right) \leq n\left\|\lambda_{n+1}(w, x)\right\|_{\infty}^{\frac{1}{2}}
$$

Proof. The Christoffel functions satisfy the formula

$$
\begin{aligned}
\lambda_{n}(w, x)=\min _{P(x)=1, \partial P=n} & \int_{[-1,1]}|P(z)|^{2} w(z) d z \leq \\
& \leq \min _{\substack{\|P\|_{\infty},[-1,1]=1 \\
\partial P=n}} \int_{[-1,1]}|P(z)|^{2} w(z) d z
\end{aligned}
$$

The corollary follows applying the Corollary 2.5.
The class of weight functions $w(x)$ for which $\left[n \lambda_{n+1}(w, x)\right]^{-1}=O(1)$ uniformly in $[-1,1]$ is of particular interest in Approximation Theory because of a theorem of G. Freud which states that for all these weights the Fourier expansions in orthogonal polynomials converge uniformly in $[-1,1]$ to all continuous functions, and it has been studied by many authors (see [8] for a survey on this and other related subjects). For this class we obtain the following corollary

Corollary 2.7. Set $K=[-1,1]$ and suppose that $\left[n \lambda_{n+1}(w, x)\right]^{-1}=O(1)$ uniformly in $[-1,1]$. Then $O(n) \leq S^{[-1,1]}\left(\bar{P}_{n}(w)\right) \leq O\left(n^{\frac{3}{2}}\right)$.
Proof. It follows from Corollary 2.6.

3. Final remarks.

One other possibility to define "generalized Besov spaces" is as follows (see [7] for a reference). Let $(X,\| \|)$ be a Banach space, let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be a sequence of subspaces of X satisfying $0=X_{0} \subset X_{1} \subset \ldots$ and let $\beta=\left\{b_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive numbers. Let $f \in X$ and denote by $E_{n}^{X}(f)$ the best approximation error of f approximating with elements of X_{n}. Then the corresponding generalized Besov spaces are defined by

$$
X_{q}^{\beta}=\left\{f \in X:\|f\|_{X_{q}^{\beta}}=\left\|\left\{b_{n} E_{n}^{X}(f)\right\}_{n=0}^{\infty}\right\|_{q}<\infty\right\}, \quad 1 \leq q \leq \infty
$$

In what follows we assume that $\Pi \subset X$ and $X_{n}=\Pi_{n}$ for all n. Generalized Tchebychev polynomials also admits another definition. We say that $\widetilde{T}_{n}^{X}(z) \in$ Π_{n} is a generalized Tchebychev polynomial of degree n if $\partial \widetilde{T}_{n}^{X}(z)=n, \widetilde{T}_{n}^{X}(z)$ is monic and $\left\|\widetilde{T}_{n}^{X}(z)\right\|=E_{n-1}^{X}\left(z^{n}\right)$. With all these notations, Theorem 2.1 can be generalized as follows.

Theorem 3.1.

$$
\widetilde{T}_{n}^{X_{q}^{\beta}}(z)=\widetilde{T}_{n}^{X}(z) .
$$

Proof. Let $s \leq n-1$. Then

$$
\left\|\widetilde{T}_{n}^{X}(z)\right\| \geq E_{s}^{X}\left(\widetilde{T}_{n}^{X}(z)\right) \geq E_{n-1}^{X}\left(\widetilde{T}_{n}^{X}(z)\right)=E_{n-1}^{X}\left(z^{n}\right)=\left\|\widetilde{T}_{n}^{X}(z)\right\| .
$$

Hence $\left\|\widetilde{T}_{n}^{X}(z)\right\|=E_{s}^{X}\left(\widetilde{T}_{n}^{X}(z)\right)$ for all $s \leq n-1$ and

$$
\left\|\widetilde{T}_{n}^{X}(z)\right\|_{X_{q}^{\beta}}=\left[\sum_{s=0}^{n-1} b_{s}^{q}\right]^{\frac{1}{q}}\left\|\widetilde{T}_{n}^{X}(z)\right\| .
$$

Let $\widetilde{P}(z)$ be monic of degree n. Then $E_{s}^{X}(\widetilde{P}(z)) \geq E_{n-1}^{X}(\widetilde{P}(z))=$ $E_{n-1}^{X}\left(z^{n}\right)=\left\|\widetilde{T}_{n}^{X}(z)\right\|$ for all $s \leq n-1$. Hence

$$
\|\widetilde{P}(z)\|_{X_{q}^{\beta}}=\left\{\sum_{s=0}^{n-1} b_{s}^{q} E_{s}^{X}(\widetilde{P}(z))^{q}\right\}^{\frac{1}{q}} \geq\left[\sum_{s=0}^{n-1} b_{s}^{q}\right]^{\frac{1}{q}}\left\|\widetilde{T}_{n}^{X}(z)\right\|=\left\|\widetilde{T}_{n}^{X}(z)\right\|_{X_{q}^{\beta}} .
$$

REFERENCES

[1] J.M. Almira Picazo - F. Pérez Acosta, Convergence of Fourier Expansions in Generalized Besov Spaces, Preprint.
[2] E.W. Cheney, Introduction to Approximation Theory, Mc Graw-Hill, 1966.
[3] Z. Ditzian - V. Totik, Remarks on Besov Spaces and Best Polynomial Approximation, Proc. Amer. Math. Soc., 104 (1988), pp. 1059-1066.
[4] N. Hayek - F. Pérez Acosta, Boundedness of the minimax series of some special functions, Rev. Acad. Canaria Ciencias, 6-1 (1994).
[5] F. Pérez Acosta, Boundedness of the minimax series from values of the function and its derivative, Jour. Comp. Appl. Math., 81 (1997), pp. 101-106.
[6] F. Pérez Acosta, On certain Banach spaces in connection with interpolation theory, Jour. Comp. Appl. Math., 83 (1997), pp. 55-69.
[7] U. Luther, Generalized Besov Spaces and Cauchy singular integral equations, Preprint.
[8] P. Nevai, Géza Freud, Orthogonal Polynomials and Christoffel functions. A Case Study, J. Approx. Theory, 48 (1986), pp. 3-167.

Department of Mathematical Analysis,
La Laguna University, 38271 La Laguna,
Tenerife (SPAIN)

