SOME EXTREMAL PROPERTIES OF GENERALIZED TCHEBYSHEV POLYNOMIALS

J.M. ALMIRA - F. PÉREZ ACOSTA

In this note we prove several extremal properties of the Generalized Tchebychev Polynomials $\{T_{n,K}(z)\}$ respect to the minimax serie $S^K(f) = \sum_{s=0}^{\infty} E_s(f)_K$, where $K \subset \mathbb{C}$ is compact and $E_s(f)_K = \min_{P \in \Pi_n} \|f - P\|_{\infty,K}$.

1. Introduction.

Let $K \subset \mathbb{C}$ be a compact set containing infinitely many points and suppose that $\overline{\mathbb{C}} - K$ is connected. Then Mergelyan's theorem implies that $\lim_{s\to\infty} E_s(f)_K = 0$ for all f holomorphic in the interior of K and continuous in K. We consider the space of functions for which the minimax serie $S^K(f) = \sum_{s=0}^{\infty} E_s(f)_K$ is finite. We must be careful with interpretations of this serie as a measure of the kindness of f to be approximated by polynomials. For example, setting K = [0, 2], we have $S^{[0,2]}(ax) = |a|$ and $S^{[0,2]}(x^n) \geq 2^{n-1}$ although it is clear that polynomials are the best functions to be approximated by polynomials. In this note, we are interested in bounds of $S^K(P_n)$ for certain sequences of polynomials $\{P_n = a_{0n}z^n + \ldots + a_{00}\}$. Our bounds will depend on n and a_{0n} . In particular, the generalized Tchebychev polynomials will be extremal respect to the minimax serie S^K as they are respect to the Tchebychev's norm $\|\cdot\|_{\infty,K}$.

The first author was supported by Gobierno Autónomo de Canarias.

Entrato in Redazione il 9 ottobre 1997.

The minimax serie $S(f) = \sum_{n=0}^{\infty} E_n(f)_{[-1,1]}$ appears in the theory of equivalent norms on the Besov spaces $B_{p,q}^{\alpha}[-1,1]$ for the case $p=\infty, q=1=\alpha$ (cf. [3]). It is fairly possible to consider several classes of function spaces defined via variations of minimax series, such as $S_{p,q,(b_n)}^K(f) = \{\sum_{n=0}^{\infty} b_n E_{n,p}(f)_K^q\}^{\frac{1}{q}}$ (where $E_{n,p}(f)_K$ denotes the error of approximation to f by algebraic polynomials in L_p norm). We call all these spaces "Generalized Besov spaces" (see [1] for a reference).

2. Main results.

The generalized Tchebychev polynomials over K are defined as the monic polynomials $\widetilde{T}_{n,K}$ which satisfy the formula $\|\widetilde{T}_{n,K}\|_{\infty,K} = E_{n-1}(z^n)_K$. We will also use the formula $T_{n,K} = \frac{\widetilde{T}_{n,K}}{\|\widetilde{T}_{n,K}\|}$.

Theorem 2.1. 1) $S^K(\widetilde{T}_{n,K}) = n \|\widetilde{T}_{n,K}\|_{\infty,K} \le S^K(\widetilde{P})$ for all \widetilde{P} monic of degree n.

2)
$$S^K(T_{n,K}) = n \ge S^k(P)$$
 for all $P \in \Pi_n$ such that $||P||_{\infty,K} = 1$.

Proof. Let s < n - 1. Then

$$\|\widetilde{T}_{n,K}\|_{\infty,K} \ge E_s(\widetilde{T}_{n,K})_K \ge E_{n-1}(\widetilde{T}_{n,K})_K = E_{n-1}(z^n)_K = \|\widetilde{T}_{n,K}\|_{\infty,K}$$

so that $S^K(\widetilde{T}_{n,K}) = n \|\widetilde{T}_{n,K}\|$. Let \widetilde{P} be monic of degree n. Then $nE_{n-1}(\widetilde{P})_K \leq S^K(\widetilde{P})$. But $E_{n-1}(\widetilde{P})_K = E_{n-1}(z^n)_K = \|\widetilde{T}_{n,K}\|_{\infty,K}$ and the first assertion follows.

On the other hand,
$$S^K(T_{n,K}) = \frac{S^K(\widetilde{T}_{n,K})}{\|\widetilde{T}_{n,K}\|_{\infty,K}} = n$$
 and, if $P \in \Pi_n$ satisfy $\|P\|_{\infty,K} = 1$, then $S^K(P) \le nE_0(P)_K \le n\|P\|_{\infty,K} = n$.

Let $G \subset \mathbb{C}$ be a bounded domain and set $K = \overline{G}$. Let $w : G \to \mathbb{R}^+$ be a weight function and set $L^2_w(G) = \left\{ f \in H(G) : \iint_G |f(z)|^2 w(z) \, dz < \infty \right\}$. We denote by $\overline{P}_n(w) = \gamma_n(w) z^n + \cdots$ the n-th orthonormal polynomial respect to w with $\gamma_n(w) > 0$, by $P_n(w) = \alpha_n(w) z^n + \ldots$ the n-th orthogonal polynomial respect to w normalized by $\|P_n(w)\|_{\infty,K} = 1$, $\alpha_n(w) > 0$ and by $\mu_0(w) = \iint_G w(z) \, dz$ the 0-moment respect to w. For several choices of K the Tchebychev polynomials $T_{n,K}$ are orthogonal which respect to some measure on K or in its boundary ∂K so that in this context the above theorem can be seen as a result on extremality of Tchebychev polynomials between the

systems of orthogonal monic polynomials (orthogonal polynomials normalized by $||P||_{\infty,K} = 1$, respectively). But then it is natural to ask if orthonormal Tchebychev polynomials are also extremal respect to the minimax serie.

Theorem 2.2. With the notation above introduced, let $w_1, w_2 : G \to \mathbb{R}^+$ be two weight functions. Then the following bounds holds:

1)
$$n \frac{\alpha_n(w_1)}{\gamma_n(w_2)} \mu_0^{-\frac{1}{2}}(w_2) \le S^K(P_n(w_1)),$$

2)
$$n \frac{\gamma_n(w_1)}{\gamma_n(w_2)} \mu_0^{-\frac{1}{2}}(w_2) \le S^K(\overline{P}_n(w_1)) \le n \frac{\gamma_n(w_1)}{\alpha_n(w_1)}$$
.

Proof. Let $w_2: G \to \mathbb{R}^+$ be a weight function and denote by $E_s^{(2)}(w, f)$ the best approximation error of f by polynomials of degree at most s in $L_w^2(G)$ (i.e.

$$E_s^{(2)}(w, f) = \min_{p \in \Pi_s} \left\{ \iint_G |f(z) - p(z)|^2 w(z) dz \right\}^{\frac{1}{2}}$$
. Then

$$E_s^{(2)}(w, f) \leq E_s(f)_K \mu_0^{\frac{1}{2}}(w)$$

so that, setting $w = w_2$ and $f = P_n(w_1)$, we have

$$n\mu_0^{-\frac{1}{2}}(w_2)E_{n-1}^{(2)}(w_2, P_n(w_1)) \le nE_{n-1}(P_n(w_1))_K \le S^K(P_n(w_1)).$$

An algebraic manipulation proves that

$$E_{n-1}^{(2)}(w_2, P_n(w_1)) = \alpha_n(w_1)E_{n-1}^{(2)}(w_2, z^n) = \frac{\alpha_n(w_1)}{\gamma_n(w_2)}$$

and the first assertion follows. The same argument proves

$$n \frac{\gamma_n(w_1)}{\gamma_n(w_2)} \mu_0^{-\frac{1}{2}}(w_2) \le S^K(\overline{P}_n(w_1)).$$

On the other hand, using Theorem 2.1 it is clear that

$$S^{K}(\overline{P}_{n}(w_{1})) = \frac{\gamma_{n}(w_{1})}{\alpha_{n}(w_{1})} S^{K}(P_{n}(w_{1})) \leq n \frac{\gamma_{n}(w_{1})}{\alpha_{n}(w_{1})}. \qquad \Box$$

Corollary 2.3. Set K = [-1, 1] and let w be a weight function on [-1, 1]. Then

$$S^{[-1,1]}(\overline{P}_n(w)) \ge n\mu_0^{-\frac{1}{2}}(w) = O(n).$$

Furthermore,

$$S^{[-1,1]}(\overline{T}_n) = \frac{2}{\pi}n = O(n).$$

Proof. Take $w_1=w_2=w$ in Theorem 2.2. For the second claim it is enough to observe that $\overline{T}_n=\frac{2}{\pi}T_n$.

Corollary 2.4.

$$\frac{\alpha_n(w_1)}{\gamma_n(w_2)}\mu_0^{-\frac{1}{2}}(w_2) \le 1.$$

Proof. By Theorems 2.1, 2.2 it is clear that

$$n \frac{\alpha_n(w_1)}{\gamma_n(w_2)} \mu_0^{-\frac{1}{2}}(w_2) \le S^K(P_n(w_1)) \le n.$$

Corollary 2.5.

$$S^{k}(\overline{P}_{n}(w)) \leq n \frac{1}{\sqrt{\min_{\substack{\|P\|_{\infty,K}=1\\ \partial P=n}} \iint_{G} |P(z)|^{2} w(z) dz}}.$$

Proof. Orthonormality of $\{\overline{P}_n(w_1)\}_{n=0}^{\infty}$ implies

$$1 = \iint_G |\overline{P}_n(w_1)(z)|^2 w_1(z) dz = \left[\frac{\gamma_n(w_1)}{\alpha_n(w_1)}\right]^2 \iint_G |P_n(w_1)(z)|^2 w_1(z) dz.$$

Hence

$$\left[\frac{\alpha_n(w_1)}{\gamma_n(w_1)}\right]^2 \ge \left[\min_{\|P\|_{\infty,K}=1 \atop \partial P=n} \iint_G |P(z)|^2 w(z) \, dz\right]$$

and the proof follows.

In the case K = [-1, 1], the Christoffel functions

$$\lambda_n(w, x) = \left[\sum_{k=0}^{n-1} |\overline{P}(w, x)|^2\right]^{-1}$$

satisfy the formula

(2.1)
$$\lambda_n(w,x) = \min_{P(x)=1, \partial P=n} \int_{[-1,1]} |P(z)|^2 w(z) dz.$$

We may use this formula to prove the following corollary

Corollary 2.6. *Set* K = [-1, 1]*. Then*

$$S^{[-1,1]}(\overline{P}_n(w)) \le n \|\lambda_{n+1}(w,x)\|_{\infty}^{\frac{1}{2}}.$$

Proof. The Christoffel functions satisfy the formula

$$\lambda_n(w, x) = \min_{P(x)=1, \partial P=n} \int_{[-1, 1]} |P(z)|^2 w(z) \, dz \le$$

$$\leq \min_{\|P\|_{\infty, [-1, 1]}=1 \atop \partial P=n} \int_{[-1, 1]} |P(z)|^2 w(z) \, dz.$$

The corollary follows applying the Corollary 2.5. \Box

The class of weight functions w(x) for which $[n\lambda_{n+1}(w,x)]^{-1} = O(1)$ uniformly in [-1,1] is of particular interest in Approximation Theory because of a theorem of G. Freud which states that for all these weights the Fourier expansions in orthogonal polynomials converge uniformly in [-1,1] to all continuous functions, and it has been studied by many authors (see [8] for a survey on this and other related subjects). For this class we obtain the following corollary

Corollary 2.7. Set K = [-1, 1] and suppose that $[n\lambda_{n+1}(w, x)]^{-1} = O(1)$ uniformly in [-1, 1]. Then $O(n) \leq S^{[-1, 1]}(\overline{P}_n(w)) \leq O(n^{\frac{3}{2}})$.

Proof. It follows from Corollary 2.6.

3. Final remarks.

One other possibility to define "generalized Besov spaces" is as follows (see [7] for a reference). Let $(X, \| \|)$ be a Banach space, let $\{X_n\}_{n=0}^{\infty}$ be a sequence of subspaces of X satisfying $0 = X_0 \subset X_1 \subset \ldots$ and let $\beta = \{b_n\}_{n=0}^{\infty}$ be a sequence of positive numbers. Let $f \in X$ and denote by $E_n^X(f)$ the best approximation error of f approximating with elements of X_n . Then the corresponding generalized Besov spaces are defined by

$$X_q^{\beta} = \{ f \in X : \|f\|_{X_q^{\beta}} = \|\{b_n E_n^X(f)\}_{n=0}^{\infty} \|_q < \infty \}, \ 1 \le q \le \infty.$$

In what follows we assume that $\Pi \subset X$ and $X_n = \Pi_n$ for all n. Generalized Tchebychev polynomials also admits another definition. We say that $\widetilde{T}_n^X(z) \in \Pi_n$ is a generalized Tchebychev polynomial of degree n if $\partial \widetilde{T}_n^X(z) = n$, $\widetilde{T}_n^X(z)$ is monic and $\|\widetilde{T}_n^X(z)\| = E_{n-1}^X(z^n)$. With all these notations, Theorem 2.1 can be generalized as follows.

Theorem 3.1.

$$\widetilde{T}_n^{X_q^{\beta}}(z) = \widetilde{T}_n^X(z).$$

Proof. Let $s \le n - 1$. Then

$$\|\widetilde{T}_{n}^{X}(z)\| \ge E_{s}^{X}(\widetilde{T}_{n}^{X}(z)) \ge E_{n-1}^{X}(\widetilde{T}_{n}^{X}(z)) = E_{n-1}^{X}(z^{n}) = \|\widetilde{T}_{n}^{X}(z)\|.$$

Hence $\|\widetilde{T}_n^X(z)\| = E_s^X(\widetilde{T}_n^X(z))$ for all $s \le n-1$ and

$$\|\widetilde{T}_{n}^{X}(z)\|_{X_{q}^{\beta}} = \left[\sum_{s=0}^{n-1} b_{s}^{q}\right]^{\frac{1}{q}} \|\widetilde{T}_{n}^{X}(z)\|.$$

Let $\widetilde{P}(z)$ be monic of degree n. Then $E_s^X \big(\widetilde{P}(z)\big) \geq E_{n-1}^X \big(\widetilde{P}(z)\big) = E_{n-1}^X(z^n) = \|\widetilde{T}_n^X(z)\|$ for all $s \leq n-1$. Hence

$$\|\widetilde{P}(z)\|_{X_q^{\beta}} = \left\{ \sum_{s=0}^{n-1} b_s^q E_s^X \big(\widetilde{P}(z)\big)^q \right\}^{\frac{1}{q}} \ge \left[\sum_{s=0}^{n-1} b_s^q \right]^{\frac{1}{q}} \|\widetilde{T}_n^X(z)\| = \|\widetilde{T}_n^X(z)\|_{X_q^{\beta}}.$$

REFERENCES

- [1] J.M. Almira Picazo F. Pérez Acosta, Convergence of Fourier Expansions in Generalized Besov Spaces, Preprint.
- [2] E.W. Cheney, Introduction to Approximation Theory, Mc Graw-Hill, 1966.
- [3] Z. Ditzian V. Totik, *Remarks on Besov Spaces and Best Polynomial Approximation*, Proc. Amer. Math. Soc., 104 (1988), pp. 1059–1066.
- [4] N. Hayek F. Pérez Acosta, *Boundedness of the minimax series of some special functions*, Rev. Acad. Canaria Ciencias, 6 1 (1994).
- [5] F. Pérez Acosta, *Boundedness of the minimax series from values of the function and its derivative*, Jour. Comp. Appl. Math., 81 (1997), pp. 101–106.
- [6] F. Pérez Acosta, On certain Banach spaces in connection with interpolation theory, Jour. Comp. Appl. Math., 83 (1997), pp. 55–69.

- [7] U. Luther, Generalized Besov Spaces and Cauchy singular integral equations, Preprint.
- [8] P. Nevai, *Géza Freud, Orthogonal Polynomials and Christoffel functions. A Case Study,* J. Approx. Theory, 48 (1986), pp. 3–167.

Department of Mathematical Analysis, La Laguna University, 38271 La Laguna, Tenerife (SPAIN)