SEMILINEAR EQUATIONS WITH STRONGLY MONOTONE NONLINEARITY

CRISTINEL MORTICI

It presented a method to solve semilinear equations in real Hilbert spaces. Some applications to differential equations are given.

1. Introduction.

In [1] it is studied semilinear equations of the form

$$
\begin{equation*}
A u=F(u) \tag{1}
\end{equation*}
$$

in a real Hilbert space H, where $A: D(A) \subset H \rightarrow H$ is a self-adjoint linear operator with the resolvent set $\rho(A)$ and $F: H \rightarrow H$ is a Gateaux differentiable gradient operator. In particular it is known that equation (1) possesses multiple solutions if the nonlinearity F interacts suitably with the spectrum of A. In [2] it is presented the following existence and uniqueness theorem, as a corollary to some general considerations on saddle points:

Theorem 1 (Amann). Suppose that there exist real numbers $v<\mu$ such that $[v, \mu] \subset \rho(A)$ and

$$
\begin{equation*}
v \leq \frac{<F(u)-F(v), u-v>}{|u-v|^{2}} \leq \mu, \quad \forall u, v \in H, u \neq v . \tag{2}
\end{equation*}
$$

Then the equation $A u=F(u)$ possesses exactly one solution.

Entrato in Redazione il 9 ottobre 1997.

In this paper we consider the equation (1) of the form

$$
\begin{equation*}
A u+F(u)=0 \tag{3}
\end{equation*}
$$

We establish an existence and uniqueness result for (3) asking a condition of type (2) for F and maximal monotony for A, but giving up from selfadjointness of A and Gateaux differentiability of F. The condition of maximal monotony for A is not very restrictive because the most known differential equations have this property.

2. The main result.

We give the following
Theorem 2. Assume that $A: D(A) \subset H \rightarrow H$ is maximal monotone and there exist $m, M>0$ such that
(i) $<F(u)-F(v), u-v>\geq m \cdot|u-v|^{2}, \forall u, v \in H$;
(ii) $|F(u)-F(v)| \leq M \cdot|u-v|, \forall u, v \in H$.

Then equation (3) has an unique solution.
Proof. We shall use the following known result
Lemma. Suppose that $F: H \rightarrow H$ satisfy (i) and (ii). Then there exists $\lambda>0$ such that $S_{\lambda}: H \rightarrow H, S_{\lambda}(u):=u-\lambda F(u)$ is a contraction.

Proof. Indeed,

$$
\begin{gathered}
\left|S_{\lambda}(u)-S_{\lambda}(v)\right|^{2}=|u-v|^{2}-2 \lambda\langle F(u)-F(v), u-v\rangle+\lambda^{2}|F(u)-F(v)|^{2} \leq \\
\leq\left(1-2 \lambda m+\lambda^{2} M^{2}\right)|u-v|^{2},
\end{gathered}
$$

thus

$$
\begin{equation*}
\left|S_{\lambda}(u)-S_{\lambda}(v)\right| \leq c \cdot|u-v| \tag{4}
\end{equation*}
$$

with $c:=\sqrt{1-2 \lambda m+\lambda^{2} M^{2}}<1$, if $\lambda \in\left(0, \frac{2 m}{M^{2}}\right)$.
Now equation (3) can be written as

$$
\begin{equation*}
(I+\lambda A) u-(u-\lambda F(u))=0 \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
(I+\lambda A) u=S_{\lambda}(u) \tag{6}
\end{equation*}
$$

where $\lambda>0$ is taken from the lemma. Using the fact that $(I+\lambda A)$ is inversable and $\left|(I+\lambda A)^{-1}\right| \leq 1$ for each $\lambda>0$ (because A is maximal monotone, e.g. [3], p 101) the equation (6) is equivalent with

$$
\begin{equation*}
u=(I+\lambda A)^{-1} S_{\lambda}(u) \tag{7}
\end{equation*}
$$

We have

$$
\begin{gathered}
\left|(I+\lambda A)^{-1} S_{\lambda}(u)-(I+\lambda A)^{-1} S_{\lambda}(v)\right|=\left|(I+\lambda A)^{-1}\left(S_{\lambda}(u)-S_{\lambda}(v)\right)\right| \leq \\
\leq\left|(I+\lambda A)^{-1}\right| \cdot\left|S_{\lambda}(u)-S_{\lambda}(v)\right| \leq c \cdot|u-v|, \quad \forall u, v \in H
\end{gathered}
$$

Therefore, $u \mapsto(I+\lambda A)^{-1} S_{\lambda}(u)$ is a contraction having an unique fixed point, thus (7) and consequently (3) has an unique solution.

A similar result can be proved in the next case.
Theorem 3. Suppose that F satisfy (i), (ii) and $A: D(A) \subset H \rightarrow H$ is linear, compact and monotone. Then equation (3) has an unique solution.

Proof. Equation (3) can be equivalently written as

$$
\begin{equation*}
(\lambda I+A) u=T_{\lambda}(u) \tag{8}
\end{equation*}
$$

where $T_{\lambda}(u):=\lambda u-F(u), \lambda>0$. We have

$$
\begin{aligned}
\mid T_{\lambda}(u) & -\left.T_{\lambda}(v)\right|^{2}=\lambda^{2}|u-v|^{2}-2 \lambda\langle F(u)-F(v), u-v\rangle+ \\
& +|F(u)-F(v)|^{2} \leq\left(\lambda^{2}-2 \lambda m+M^{2}\right)|u-v|^{2}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\left|T_{\lambda}(u)-T_{\lambda}(v)\right| \leq \sqrt{\lambda^{2}-2 \lambda m+M^{2}} \cdot|u-v| \tag{9}
\end{equation*}
$$

Let us choose $\lambda>\max \left\{\|A\|, \frac{M^{2}}{2 m}\right\}$. In particular, $\lambda>\|A\|$ imply that $\lambda I+A$ is inversable because $\sigma(A) \subset[-\|A\|,\|A\|]$. Moreover,

$$
\begin{equation*}
|(\lambda I+A) u|^{2}=\lambda^{2}|u|^{2}+2 \lambda(A u, u)+|A u|^{2} \geq \lambda^{2}|u|^{2} \tag{10}
\end{equation*}
$$

(because A is monotone), or

$$
|(\lambda I+A) u| \geq \lambda|u|,
$$

hence $\left|(\lambda I+A)^{-1}\right| \leq \frac{1}{\lambda}$. Equation (8) is equivalent with

$$
\begin{equation*}
u=(\lambda I+A)^{-1} T_{\lambda}(u) \tag{11}
\end{equation*}
$$

We have

$$
\begin{gathered}
\left|(\lambda I+A)^{-1} T_{\lambda}(u)-(\lambda I+A)^{-1} T_{\lambda}(v)\right|= \\
=\left|(\lambda I+A)^{-1}\left(T_{\lambda}(u)-T_{\lambda}(v)\right)\right| \leq\left|(\lambda I+A)^{-1}\right| \cdot\left|T_{\lambda}(u)-T_{\lambda}(v)\right| \leq \\
\leq \frac{1}{\lambda} \sqrt{\lambda^{2}-2 \lambda m+M^{2}} \cdot|u-v|, \quad \forall u, v \in H
\end{gathered}
$$

Because $\lambda>\frac{M^{2}}{2 m}$, it results that $\gamma:=\frac{1}{\lambda} \sqrt{\lambda^{2}-2 \lambda m+M^{2}}<1$, therefore $u \longmapsto(\lambda I+A)^{-1} T_{\lambda}(u)$ is a contraction. Now equation (11) and consequently (3) has an unique solution.

Remark. Compactness and boundedness of A was used to choose a number $\lambda>0$ such that $\lambda I+A$ is inversable. This is possible in weaker hypothesis. Indeed, the condition A compact and bounded can be replaced with spectrum of A is bounded.

We can state the more general result
Theorem 4. Let $F: H \rightarrow H$ satisfy (i), (ii) and $A: D(A) \subset H \rightarrow H$ be monotone and the spectrum $\sigma(A)$ is bounded from below. Then equation (3) has an unique solution.

Indeed, it can be repeated the proof from Theorem 3 taking $\lambda>\frac{M^{2}}{2 m}$ such that $-\lambda \in \rho(A)$.

3. Applications.

(A1). SEMILINEAR ELLIPTIC BOUNDARY PROBLEMS

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain and $a_{i j} \in C^{1}(\bar{\Omega}), 1 \leq i, j \leq N$, having the ellipticity property

$$
\sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{N}
$$

for some $\alpha>0$. Let us consider the following elliptic problem

$$
\begin{cases}-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+g(x, u)=f(x) & \text { in } \Omega \tag{12}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where the nonlinearity is given by the real valued function $f \in L^{2}(\Omega)$. The particular case when $g(x, u)=a_{0}(x) u$, with $a_{0} \in C(\bar{\Omega}), a_{0}>p>0$ is studied in [3], p. 177, using Lax-Milgram Theorem and in [1], p. 165, using the above Theorem 1. Now we suppose that $g(x, u)$ has partial derivative in u of the first order and

$$
\begin{equation*}
m \leq \frac{\partial g}{\partial u} \leq M \quad \text { in } \Omega,(m, M>0) . \tag{13}
\end{equation*}
$$

Under these hypotheses, problem (12) has an unique solution in weak sense, for every $f \in L^{2}(\Omega)$. Indeed, we can apply Theorem 2 for the following functional background:

$$
H=L^{2}(\Omega), \quad A u:=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right), \quad D(A):=H^{2}(\Omega) \cap H_{0}^{1}(\Omega),
$$

$F(u):=g(\cdot, u)-f . A$ is monotone:

$$
(A u, u)=\int_{\Omega_{i, j=1}} \sum_{i j}^{N} a_{i j} \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} \geq 0
$$

and $I+A$ is surjective ([3], p. 177), thus A is maximal monotone. The conditions (i) and (ii) follows from (13).
(A2). In [5] is studied the perturbed Laplace problem

$$
\begin{cases}-\Delta u+P u=f & \text { in } \Omega \tag{14}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

using the variational theorem of Langenbach. We can apply theorem, asking that $P: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ satisfy (i) and (ii). In particular, if P is Gateaux differentiable with

$$
m \cdot|h|^{2} \leq\langle(D P)(u) h, h\rangle \leq M \cdot|h|^{2}, \quad(m, M>0)
$$

then (14) has an unique solution, because $A u:=-\Delta u, D(A):=H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$ is maximal monotone.

(A3). PERIODIC SOLUTIONS OF SEMILINEAR WAVE EQUATION

Let V be a Hilbert space. Suppose that $L: D(L) \subset V \rightarrow V$ is maximal monotone and $F \in C(\mathbb{R} \times V, V)$ such that, for some $T>0$,

$$
F(t+T, \cdot)=F(t, \cdot), \quad \forall t \in \mathbb{R} .
$$

Then we are interested in the existence of T-periodic solutions for the semilinear abstract equation:

$$
\left\{\begin{array}{c}
-u^{\prime \prime}+L u+F(t, u)=0, \quad t \in \mathbb{R} \tag{15}\\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

Let now

$$
H:=L^{2}((0, T) ; V), A: D(A) \subset H \rightarrow H, A u:=-u^{\prime \prime}+L u,
$$

with $D(A):=\left\{u \in C^{2}([0, T] ; V) \cap L^{2}((0, T), D(L)) \mid u(0)=u(T), u^{\prime}(0)=\right.$ $\left.u^{\prime}(T)\right\}$. A is maximal monotone and if F satisfy (i) and (ii), in particular, a condition of type (13), then problem (15) has exactly one periodic solution.

Acknowledgements: I want to express my gratitude to the referee for the useful remarks. I also thank to my professor dr. Silviu Sburlan for the indications in writing of this paper.

REFERENCES

[1] H. Amann, On the unique solvability of the semilinear operator equations in Hilbert spaces, J. Math. Pures Appl., 61 (1982), pp. 149-175.
[2] H. Amann, Saddle points and multiple solutions of differential equations, Math. Zeitschr., 169 (1979), pp. 127-166.
[3] H. Brezis, Analyse fonctionnelle - Théorie et applications, Masson Editeur, Paris, 1983.
[4] P. Mazilu - S. Sburlan, Metode functionale in rezolvarea ecuatiilor teoriei elasticitatii, Ed. Acad., Bucuresti, 1973.
[5] C. Mortici, Variational methods for the perturbed Laplace problem, A VI-a Conf. de analiza neliniara, Constantza, 1997.
[6] D. Pascali - S. Sburlan, Nonlinear mappings of monotone type, Sijthoff \& Noordhoff, Intern. Publ., Alphen aan den Rijn, 1978.

