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SEMILINEAR EQUATIONS WITH

STRONGLY MONOTONE NONLINEARITY

CRISTINEL MORTICI

It is presented a method to solve semilinear equations in real Hilbert
spaces. Some applications to differential equations are given.

1. Introduction.

In [1] it is studied semilinear equations of the form

(1) Au = F(u)

in a real Hilbert space H , where A : D(A) ⊂ H → H is a self-adjoint linear
operator with the resolvent set ρ(A) and F : H → H is a Gateaux differentiable
gradient operator. In particular it is known that equation (1) possesses multiple
solutions if the nonlinearity F interacts suitably with the spectrum of A. In [2]
it is presented the following existence and uniqueness theorem, as a corollary to
some general considerations on saddle points:

Theorem 1 (Amann). Suppose that there exist real numbers ν < µ such that
[ν, µ] ⊂ ρ(A) and

(2) ν ≤
< F(u) − F(v), u − v >

|u − v|2
≤ µ, ∀u, v ∈ H, u �= v.

Then the equation Au = F(u) possesses exactly one solution.
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In this paper we consider the equation (1) of the form

(3) Au + F(u) = 0.

We establish an existence and uniqueness result for (3) asking a condition
of type (2) for F and maximal monotony for A, but giving up from self-
adjointness of A and Gateaux differentiability of F . The condition of maximal
monotony for A is not very restrictive because the most known differential
equations have this property.

2. The main result.

We give the following

Theorem 2. Assume that A : D(A) ⊂ H → H is maximal monotone and there
exist m, M > 0 such that

(i) < F(u) − F(v), u − v >≥ m · |u − v|2 , ∀u, v ∈ H ;
(ii) |F(u) − F(v)| ≤ M · |u − v| , ∀u, v ∈ H .

Then equation (3) has an unique solution.

Proof. We shall use the following known result

Lemma. Suppose that F : H → H satisfy (i) and (ii). Then there exists λ > 0
such that Sλ : H → H , Sλ(u) := u − λF(u) is a contraction.

Proof. Indeed,

|Sλ(u) − Sλ(v)|2 = |u − v|2 − 2λ�F(u) − F(v), u − v� + λ2 |F(u) − F(v)|2 ≤

≤ (1 − 2λm + λ2M2) |u − v|2 ,

thus

(4) |Sλ(u) − Sλ(v)| ≤ c · |u − v| ,

with c :=
√

1 − 2λm + λ2M2 < 1, if λ ∈ (0, 2m
M 2 ).

Now equation (3) can be written as

(5) (I + λA)u − (u − λF(u)) = 0,

or

(6) (I + λA)u = Sλ(u),
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where λ > 0 is taken from the lemma. Using the fact that (I +λA) is inversable
and

�
�(I + λA)−1

�
� ≤ 1 for each λ > 0 (because A is maximal monotone, e.g.

[3], p 101) the equation (6) is equivalent with

(7) u = (I + λA)−1Sλ(u).

We have

�
�(I + λA)−1Sλ(u) − (I + λA)−1Sλ(v)

�
� =

�
�(I + λA)−1(Sλ(u) − Sλ(v))

�
� ≤

≤
�
�(I + λA)−1

�
� · |Sλ(u) − Sλ(v)| ≤ c · |u − v| , ∀u, v ∈ H.

Therefore, u �→ (I + λA)−1Sλ(u) is a contraction having an unique �xed point,
thus (7) and consequently (3) has an unique solution. �

A similar result can be proved in the next case.

Theorem 3. Suppose that F satisfy (i), (ii) and A : D(A) ⊂ H → H is linear,
compact and monotone. Then equation (3) has an unique solution.

Proof. Equation (3) can be equivalently written as

(8) (λI + A)u = Tλ(u),

where Tλ(u) := λu − F(u), λ > 0. We have

|Tλ(u) − Tλ(v)|2 = λ2|u − v|2 − 2λ�F(u) − F(v), u − v� +

+ |F(u) − F(v)|2 ≤ (λ2 − 2λm + M2)|u − v|2,

therefore

(9) |Tλ(u) − Tλ(v)| ≤
�

λ2 − 2λm + M2 · |u − v|.

Let us choose λ > max{�A� , M 2

2m
}. In particular, λ > �A� imply that λI + A

is inversable because σ (A) ⊂ [−�A� , �A�]. Moreover,

(10) |(λI + A)u|2 = λ2|u|2 + 2λ(Au, u) + |Au|2 ≥ λ2|u|2,

(because A is monotone), or

|(λI + A)u| ≥ λ|u|,
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hence |(λI + A)−1| ≤ 1
λ
. Equation (8) is equivalent with

(11) u = (λI + A)−1Tλ(u).

We have
�
�(λI + A)−1Tλ(u) − (λI + A)−1Tλ(v)

�
� =

=
�
�(λI + A)−1(Tλ(u) − Tλ(v))

�
� ≤

�
�(λI + A)−1

�
� · |Tλ(u) − Tλ(v)| ≤

≤
1

λ

�
λ2 − 2λm + M2 · |u − v| , ∀u, v ∈ H.

Because λ > M 2

2m
, it results that γ := 1

λ

√
λ2 − 2λm + M2 < 1, therefore

u �−→ (λI + A)−1Tλ(u) is a contraction. Now equation (11) and consequently
(3) has an unique solution. �

Remark. Compactness and boundedness of A was used to choose a number
λ > 0 such that λI + A is inversable. This is possible in weaker hypothesis.
Indeed, the condition A compact and bounded can be replaced with spectrum
of A is bounded.

We can state the more general result

Theorem 4. Let F : H → H satisfy (i), (ii) and A : D(A) ⊂ H → H be
monotone and the spectrum σ (A) is bounded from below. Then equation (3)
has an unique solution.

Indeed, it can be repeated the proof from Theorem 3 taking λ > M 2

2m
such

that −λ ∈ ρ(A).

3. Applications.

(A1). SEMILINEAR ELLIPTIC BOUNDARY PROBLEMS

Let � ⊂ R
N be a bounded domain and ai j ∈ C1(�), 1 ≤ i, j ≤ N , having the

ellipticity property

N�

i, j=1

ai j (x )ξiξj ≥ α |ξ |2 , ∀ξ ∈ R
N ,

for some α > 0. Let us consider the following elliptic problem

(12)






−

N�

i, j=1

∂

∂xj

�

ai j (x )
∂u

∂xi

�

+ g(x , u) = f (x ) in �

u = 0 on ∂�
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where the nonlinearity is given by the real valued function f ∈ L2(�). The
particular case when g(x , u) = a0(x )u, with a0 ∈ C(�), a0 > p > 0 is studied
in [3], p. 177, using Lax-Milgram Theorem and in [1], p. 165, using the above
Theorem 1. Now we suppose that g(x , u) has partial derivative in u of the �rst
order and

(13) m ≤
∂g

∂u
≤ M in �, (m, M > 0).

Under these hypotheses, problem (12) has an unique solution in weak sense, for
every f ∈ L2(�). Indeed, we can apply Theorem 2 for the following functional
background:

H = L2(�), Au := −

N�

i, j=1

∂

∂xj

�

ai j
∂u

∂xi

�

, D(A) := H 2(�) ∩ H 1
0 (�),

F(u) := g(·, u) − f . A is monotone:

(Au, u) =

�

�

N�

i, j=1

ai j
∂u

∂xj

∂u

∂xi
≥ 0

and I + A is surjective ([3], p. 177), thus A is maximal monotone. The
conditions (i) and (ii) follows from (13).

(A2). In [5] is studied the perturbed Laplace problem

(14)

�
−�u + Pu = f in �

u = 0 on ∂�

using the variational theorem of Langenbach. We can apply theorem, asking
that P : L2(�) → L2(�) satisfy (i) and (ii). In particular, if P is Gateaux
differentiable with

m · |h|2 ≤ �(DP)(u)h, h� ≤ M · |h|2 , (m, M > 0)

then (14) has an unique solution, because Au := −�u, D(A) := H 2(�) ∩
H 1

0 (�) is maximal monotone.

(A3). PERIODIC SOLUTIONS OF SEMILINEAR WAVE EQUATION

Let V be a Hilbert space. Suppose that L : D(L) ⊂ V → V is maximal
monotone and F ∈ C(R × V , V ) such that, for some T > 0,

F(t + T , ·) = F(t, ·), ∀ t ∈ R.
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Then we are interested in the existence of T−periodic solutions for the semilin-
ear abstract equation:

(15)

�
−u�� + Lu + F(t, u) = 0, t ∈ R

u(0) = u(T ), u�(0) = u�(T ).

Let now

H := L2((0, T ); V ), A : D(A) ⊂ H → H, Au := −u�� + Lu,

with D(A) :=
�
u ∈ C2([0, T ]; V ) ∩ L2((0, T ), D(L)) | u(0) = u(T ), u�(0) =

u�(T )
�
. A is maximal monotone and if F satisfy (i) and (ii), in particular, a

condition of type (13), then problem (15) has exactly one periodic solution.
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