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NECESSARY AND SUFFICIENT CONDITIONS

FOR HÖLDER CONTINUITY OF SOLUTIONS

OF DEGENERATE SCHRÖDINGER OPERATORS

CARMELA VITANZA - PIETRO ZAMBONI

In this paper it is studied the Hölder-continuity of solutions of a linear
degenerate elliptic equation of the form

(∗) −

n�

i, j=1

(ai j uxi )xj + V u = 0.

It is proved that the solutions of (∗) are Hölder-continuous if the coef�cient V
belongs to an appropriate �degenerate� Morrey space. Under some additional
assumptions on the weight giving the degeneracy, the previous condition is
also necessary.

1. Introduction.

In recent years many Authors studied local regularity of solutions of the
linear elliptic equation

(1.1) Lu := −

n�

i, j=1

(ai j uxi
)xj

= −V u
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assuming on the potential V more general hypotheses than the �classical� L p

ones (see [1], [2], [11], [4] and, in the quasilinear case, [10], [9] and [12]).
All these papers do not deal with degenerate equations. For the degenerate
equations the only result known is given by C. Gutierrez in his paper [8].
There he studies the degenerate elliptic equation (1.1), with the weight w

giving the degeneracy belonging to A2, assuming
V
w

belonging to the class
S (see De�nition 2.8), that is the natural extension to the degenerate case of
the Stummel-Kato class (see [1], [2] and [11]). In [8] Gutierrez, following
very closely the technique developed in [2], proves a Harnack�s inequality for
the positive solutions of the degenerate equation (1.1). We notice that in [8]
Gutierrez also claims that, under the same assumptions on V

w
, the continuity of

the solutions can be obtained. We give a proof of that in Theorem 3.1 of Section
3.

Our purpose in this note is to extend to the degenerate case some of
the results of the papers [4] and [11], where hölder continuity of solutions of
(1.1) is proved under the assumption that V belongs to the Morrey space L1,λ ,
λ > n − 2.

We consider the equation (1.1) where the coef�cients ai j (x ) are measurable
functions such that

(1.2) ai j (x ) = aji (x ), i, j = 1, 2, . . . , n ,

and

∃ν > 0 : ν−1w(x )|ξ |2 ≤

n�

i, j=1

ai j (x )ξiξj ≤(1.3)

≤ νw(x )|ξ |2 a.e. x ∈ R
n, ∀ξ ∈ R

n,

with the weight w belonging to the A2 class.
The �rst problem one has to face is to understand what a �degenerate�

Morrey space is. We introduce two such notions of degenerate Morrey space,
Mσ (w) and L1,ε(w) (see De�nition 2.9 and De�nition 2.10). Both give back,
in the nondegenerate case, the �classical� Morrey space L1,λ; in particular for
ε = σ > 0 we have L1,ε(1) = Mε(1) = L1,n−2+ε , as we prove in Remark 2.15.

In Theorem 3.2, assuming V
w

∈ Mσ (w), we prove hölder-continuity of
solutions of the degenerate elliptic equation (1.1), extending the results in [4]
and [11]. The space L1,ε(w) in turn gives some interesting necessary conditions
for hölder-continuity of solutions of (1.1), as we show in Section 4. We know
that in general these two spaces are different even if they are the same in many
non trivial situations (see Proposition 2.13 and Example 2.15).
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2. Function spaces and preliminary results.

Let p > 1, a function w : R
n →]0, +∞[, such that w(x ) and [w(x )]−

1
p−1

belong to L1
loc(R

n), is said an Ap weight if and only if

(2.1) sup
Br

�
1

|Br |

�

Br

w(x ) dx

��
1

|Br |

�

Br

[w(x )]−
1

p−1 dx

�p−1

= C0 < +∞,

where Br (
1) is a ball in R

n ; C0 is said the Ap constant of w.
We now recall some results about Ap weights (see [3] and [7] for the

proof).

Lemma 2.1. Let w(x ) be an Ap weight, p ∈ ]1, +∞[, set w(Br ) =
�

Br
w(x )dx ,

then

a) there exists a constant Cd > 1 such that

w(B(x , 2r)) ≤ Cd w(B(x , r));

b) there exists a positive constant K < 1 such that

w(B(x , r)) ≤ K w(B(x , 2r));

c) for any bounded subset � of R
n there exists a positive constant C =

C(w, �) such that

|Br |
p ≤ Cw(Br ) ,

for any ball Br contained in �.

Let � be an open bounded set in R
n . Because of the local character of our

results it is suf�cient to assume � ≡ B(0, R).
Let w(x ) be an A2 weight. We give the de�nitions of the spaces L p(�, w),

H 1,p(�, w), H
1,p
loc (�, w), H

1,p
0 (�, w), H −1,p(�, w), p ∈ [1, +∞[ (see also

[5]).
L p(�, w) is the space of measurable u in �, such that

�u�L p(�,w) =

��

�

|u(x )|pw(x ) dx

� 1
p

< +∞.

(1) In this paper we will write B(x, r) to denote the ball centered at x with radius r .
Whenever x is not relevant we will write Br .
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Lip (�) denotes the class of Lipschitz functions in �. Lip0 (�) denotes
the class of functions φ ∈ Lip (�) with compact support contained in �. If φ

belongs to Lip (�) we can de�ne the norm

(2.2) �φ�H 1, p(�,w) := �φ�L p(�,w) +

n�

i=1

�φxi
�L p(�,w).

H 1,p(�, w) denotes the closure of Lip (�) under the norm (2.2). We say

that u ∈ H
1,p
loc (�, w) if u ∈ H 1,p(��, w) for every �� ⊂⊂ �.

H
1,p
0 (�, w) denotes the closure of Lip0 (�) under the norm (2.2).

H −1,p�

(�, w) is the dual space of H
1,p
0 (�, w), where

1

p
+

1

p�
= 1.

We have T ∈ H −1,p�

(�, w) if ∃ fi :
fi

w
∈ L p�

(�, w), i = 1, 2, . . . , n, with

T =
n�

i=1

( fi )xi
.

Let T ∈ H −1,2(�, w). We say that u ∈ H 1,2
loc (�, w) is a local weak solution

of the equation
Lu = T

if

(2.3)

n�

i, j=1

�

�

ai j uxi
ψxj

dx =< T , ψ > ∀ψ ∈ C∞
0 (�).

We now recall some results which we will use in the following.

Theorem 2.2 (see [6], Theorem 2.3.12). Let u be a local solution of Lu = 0 in
�. Then u is locally Hölder continuous in �. More precisely, there exist M > 0
and 0 < α < 1, depending only on the A2 constant, such that if x0 ∈ � and
B(x0, r) ⊂⊂ �, then

(2.4) sup
|x−x0 |<ρ

|u(x )− u(x0)| ≤ M

�
1

w(B(x0, r))

�

B(xo ,r)

u2w dx

� 1
2 �ρ

r

�α

,

for ρ < r .

Theorem 2.3 (see [6], Theorem 2.3.8). Let u be a positive local solution of
Lu = 0 in �. Then there exists a constant M > 1 such that

(2.5) max
B

u ≤ M min
B

u ,

for each ball B ≡ B(x , r) such that B(x , 2r) ⊂ �.
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We now de�ne a different class of solutions. Let µ be a bounded variation
measure in �. We say that u ∈ L1(�, w) is a very weak solution vanishing on
∂� of the equation

(2.6) Lu = µ

if �

�

u(x )Lψ(x ) dx =

�

�

ψ(x ) dµ

for every ψ ∈ H 1,2
0 (�, w) ∩ C0(�) such that Lψ ∈ C0(�). We observe that the

class of test functions is not empty by Theorem 2.3.15 in [6].

Remark 2.4. For any bounded variation measure µ in �, there exists a unique
very weak solution u of Lu = µ in � such that u = 0 on ∂� (see [5],
Proposition 2.1). Moreover it is no dif�cult to show that if u ∈ H 1,2

0 (�, w)
is a weak solution of the equation Lu = µ, i.e.

n�

i, j=1

�

�

ai j uxi
ψxj

dx =

�

�

ψ(x ) dµ ∀ψ ∈ C∞
0 (�)

then u is a very weak solution of the same equation.

Let y ∈ �. Denote by g�(x , y) the very weak solution vanishing on ∂� of
the equation

Lu = δy,

where δy is the Dirac mass at y . We call it the Green�s function relative to the
operator L in �.

We now recall some results, concerning the Green�s function, proved in
[5].

Theorem 2.5 (see [5], Proposition 2.4). Let Br ⊆ � be a ball and gBr
(x , y) be

the Green�s function of L in Br , then gBr (., y) ∈ H 1,2(Br \ B(y, ε), w) for any
ε > 0.

Theorem 2.6 (see [5], Lemma 2.7). Let Br ⊆ � be a ball and gBr
(x , y) be the

Green�s function of L in Br , then

u(x ) =

�

Br

gBr
(x , y) dµ(y)

is the very weak solution vanishing on ∂ Br of (2.6) in Br .
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Denoting by gB(0,4R) the Green�s function in B(0, 4R) we have the follow-
ing result

Theorem 2.7. Let x , y ∈ B(x0, r) ⊆ �. Then there exist two positive constants
C1 and C2 , independent of x and y, such that

(2.7) C1 <
gB(x0 ,4r)(x , y)

� 4r

|x−y|
s2

w(B(x,s))
ds
s

< C2.

Moreover

(2.8) g��� ≤ g�� ≤ gB(0,4R)

for any ��� ⊆ �� ⊆ B(0, 4R).

Proof. For (2.7) see Theorem 3.3 in [5]. (2.8) follows by maximum principle.
�

Remark 2.8. There is C1 > 0, independent from x , ρ1 and ρ2, with 0 < ρ1 <

ρ2, such that

(2.9)

� ρ2

ρ1

s2

w(B(x , s))

ds

s
≥ C1

ρ1
2

w(B(x , ρ1))
.

Moreover if K <
1

4
, where K is the constant in Lemma 2.1b, there is

C2 > 0, independent from x , ρ1 and ρ2, such that

(2.10)

� ρ2

ρ1

s2

w(B(x , s))

ds

s
≤ C2

ρ1
2

w(B(x , ρ1))
.

Indeed if N be a positive nonnegative integer number such that

2N ρ1 ≤ ρ2 < 2N+1ρ1,

then we have
� ρ2

ρ1

s2

w(B(x , s))

ds

s
≤

� 2ρ1

ρ1

s2

w(B(x , s))

ds

s
,

if N = 0, and

N�

k=1

� 2kρ1

2k−1ρ1

s2

w(B(x , s))

ds

s
≤

� ρ2

ρ1

s2

w(B(x , s))

ds

s
≤

N+1�

k=1

� 2kρ1

2k−1ρ1

s2

w(B(x , s))

ds

s
,

if N > 1.
By a) and b) of Lemma 2.1 we have the conclusion.
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We now de�ne some function spaces.

De�nition 2.9 (see [8]). Let η(r) be a nondecreasing function de�ned in
]0, +∞[ such that lim

r→0
η(r) = 0. We set

S(�, w) = {V ∈ L1(�, w) :

sup
x∈�

�

{y∈� : |x−y|<r}

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
w(y) dy ≤ η(r)}.

De�nition 2.10 (see [11]). Let σ > 0, C > 0 and 0 < r < 2R. We set

Mσ (�, w) = {V ∈ L1(�, w) :

sup
x∈�

�

{y∈� : |x−y|<r}

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
w(y) dy ≤ Crσ }.

De�nition 2.11. Let ε ∈ R. We set

L1,ε(�, w) = {V ∈ L1(�, w) :

�V �1,ε = sup
x∈�

0<r<2R

r2−ε

w(B(x , r))

�

{y∈� : |x−y|<r}

|V (y)|w(y) dy < +∞}.

Remark 2.12. We note that in the nondegenerate case, i.e. w = 1, S(�, w) is
the Kato-Stummel class (see [1] and [2]), Mσ (�, w) and L1,ε(�, w) coincide
with the classical Morrey space L1,λ for some opportune λ (see [4] and [12]);
in particular for σ = ε > 0 we obtain L1,λ with λ = n − 2 + ε (see Remark
2.15).

Remark 2.13. If 2 < ε then L1,ε(�, w) = {0}, indeed

1

w(B(x , r))

�

{y∈� : |x−y|<r}

|V (y)|w(y) dy ≤ �V�1,εr
ε−2.

If ε < 2− 2n then L1,ε(�, w) = L1(�, w), indeed by Lemma 2.1c

r2−ε

w(B(x , r))

�

{y∈� : |x−y|<r}

|V (y)|w(y) dy ≤

≤ Cr2−2n−ε

�

{y∈�:|x−y|<r}

|V (y)|w(y) dy.
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We wish now to compare the spaces introduced above.

Proposition 2.14. We have

i) Mσ (�, w)⊆S(�, w);
ii) Mσ (�, w)⊆L1,σ (�, w), σ > 0;

iii) L1,ε(�, w)⊆Mε(�, w), ε > 0, i f K <
1

4
, where K is the constant in

Lemma 2.1b.

Proof. i) is trivial; we prove ii) and iii). Let V ∈ Mσ (�, w), 0 < r < 2R
using (2.9), we have

�

{y∈� : |x−y|<r}

|V (y)|w(y) dy≤

≤

�� 4R

r

s2

w(B(x , s))

ds

s

�−1�

{y∈� : |x−y|<r}

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
w(y) dy ≤

≤ C

�� 4R

r

s2

w(B(x , s))

ds

s

�−1

rσ≤Cw(B(x , r))rσ−2,

and that proves ii).
Let V ∈ L1,ε(�, w), 0 < r < 2R, we have

�

{y∈� : |x−y|<r}

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
w(y) dy =

=

+∞�

k=0

�

{y∈� : r

2k+1 ≤|x−y|< r

2k }

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
w(y) dy ≤

≤

+∞�

k=0

� 4R

r

2k+1

s2

w(B(x , s))

ds

s

�

{y∈� : |x−y|< r

2k }

|V (y)|w(y) dy ≤

≤

+∞�

k=0

� 4R

r

2k+1

s2

w(B(x , s))

ds

s
w(B(x ,

r

2k
))(

r

2k
)ε−2�V�1,ε.

By (2.10) we have

+∞�

k=0

� 4R

r

2k+1

s2

w(B(x , s))

ds

s
w(B(x ,

r

2k
))(

r

2k
)ε−2≤Cr ε ,

and the conclusion is obtained. �
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Remark 2.15. It is trivial that, if n > 2, Mε(�, 1) = L1,ε(�, 1) =

L1,n−2+ε(�), showing that both Mε(�, w) and L1,ε(�, w) are generalizations
of L1,n−2+ε(�).

The following example shows that for some weight w ∈ A2 there exists
ε > 0 such that Mε(�, w) /∈ L1,ε(�, w).

Example 2.16. Let � = B(0, 1), 0 < σ < ε < 2, w(y) = |y|σ−n and
V (y) = χ�(y), where χ�(y) is the characteristic function of �. We claim
that V (y) /∈ Mε(�, w) while V (y)∈ L1,ε(�, w).

We have

r−ε

�

|y|<r

V (y)

� 4

|y|

s2

w(B(0, s))

ds

s
w(y) dy =

=
σ

(2 − σ )ωn
r−ε

�

|y|<r

[42−σ − |y|2−σ ]|y|σ−n dy =

=
σ

2− σ
r−ε

�
42−σrσ

σ
−

r2

2

�

.

Since the last term is unbounded in ]0, 1[, we conclude that V (y) /∈ Mε(�, w).
Consider the function

ψ(r, x ) =
r2−ε

w(B(x , r))

�

|x−y|<r

|V (y)|w(y) dy =

= r2−ε

�
|x−y|<r

χ�(y)|y|σ−n dy
�
|x−y|<r |y|σ−n dy

with x ∈ � and r ∈ ]0, 2[. It is trivial that there exists M > 0 such that
ψ(r, x ) ≤ M for every (x , r)∈ �×]0, 2[, that is V (y)∈ L1,ε(�, w).

3. Continuity and Hölder-continuity of local solutions.

We begin this section proving the continuity of solutions of the elliptic
equation

(3.1) Lu + V u = 0

such that (1.2) and (1.3) hold and V
w

∈ S(�, w).
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We will say that u ∈ H 1,2
loc (�, w) is a local weak solution of the equation

(3.1) if

(3.2)

n�

i, j=1

�

�

ai j uxi
ψxj

dx +

�

�

V uψ dx = 0 ∀ψ ∈ C∞
0 (�).

(3.2) is meaningful by Lemma 3.3 in [8].
The continuity result is only stated in [8]. We give a proof much in the line

of the analogous theorem in [2], because a slight modi�cation of the proof will
give our main result: Theorem 3.2.

Theorem 3.1. Let u be a local weak solution of (3.1) in �. If V
w

∈ S(�, w),
then there exist positive numbers α, r0 and C, independent of u, such that for

any ball B(x0, r), with B(x0, 16r) ⊆ �, 0 < r ≤
r0

8
and any x ∈ B(x0, r) we

have

|u(x )− u(x0)| ≤ C

�

sup
B(x0 ,4r)

|u|

�
�
|x − x0|

α
2 r− α

2 η(2r)+(3.3)

+ |x − x0|
αr−α + η(r

1
2 |x − x0|

1
2 + |x − x0|)

�
.

Proof. Let u be a local weak solution of (3.1), i.e. u ∈ H 1,2
loc (�, w) such that

(3.2) holds.
From Theorem 3.8 in [8] u is locally bounded in �. More precisely there

exist two positive constant r0 and C , independent of u such that if r ≤
r0

8
then

sup
B(x0 ,4r)

|u| ≤ C

�
1

w(B(x0, 8r))

�

B(x0 ,8r)

|u(x )|2w(x ) dx

� 1
2

.

Let φ ∈ C∞
0 (�) be such that 0 ≤ φ ≤ 1 in �, φ = 1 in B(x0,

3
2
r), φ = 0

outside B(x0, 2r), |∇φ| ≤ 4
r
, where 0 < r ≤

r0

8
.

By (3.2) we have

n�

i, j=1

�

B(x0 ,2r)

ai j (uφ)xi
ψxj

dx = −

�

B(x0 ,2r)

V uψφ dx +

+

n�

i, j=1

�

B(x0 ,2r)

ai j uφxi
ψxj

dx −

n�

i, j=1

�

B(x0 ,2r)

ai j uxi
φxj

ψ dx ,
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i.e. uφ is a weak solution (hence a very weak solution) of

Lv = −V uφ −

n�

i, j=1

ai j uxi
φxj

−

n�

i, j=1

(ai j uφxi
)xj

in B(x0, 2r).
Hence by Theorem 2.5 we have

u(x )φ(x ) = −

�

B(x0 ,2r)

g0(x , y)V (y)u(y)φ(y) dy −

−

n�

i, j=1

�

B(x0 ,2r)

g0(x , y)ai j(y)uyi
(y)φyj

(y) dy −

−

n�

i, j=1

�

B(x0 ,2r)

g0(x , y)[ai j(y)u(y)φyi
(y)]yj

dy,

where g0(x , y) is the Green�s function of L in B(x0, 2r).
Then for every x ∈ B(x0, r) we have

u(x )− u(x0) = −

�

B(x0 ,2r)

V (y)u(y)φ(y)[g0(x , y)− g0(x0, y)] dy −

−

n�

i, j=1

�

B(x0 ,2r)

[g0(x , y)− g0(x0, y)]ai j (y)uyi
(y)φyj

(y) dy +

+

n�

i, j=1

�

B(x0 ,2r)

{[g0(x , y)]yj
− [g0(x0, y)]yj

}ai j (y)u(y)φyi
(y) dy =

= −I − I I + I I I.

We begin by estimating I I . From (2.4), (2.5), (2.7) and (2.8) we have that
if y ∈ B(x0, 2r)\B(x0,

3
2
r)

|g0(x , y)− g0(x0, y)| ≤ C|x − x0|
αr−α

� 4r

|x0−y|

s2

w(B(x0, s))

ds

s

and then by Lemma 3.2 in [8] and our Lemma 2.1 - a) we obtain

|I I | ≤ Cr−1|x − x0|
αr−α

� 4r

r

s2

w(B(x0, s))

ds

s

�

B(x0 ,2r)

|∇u|w(y) dy ≤(3.4)
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≤ C|x − x0|
αr−α+1

�
1

w(B(x0, r))

�

B(x0 ,2r)

|∇u|2w(y) dy

� 1
2

≤

≤ C|x − x0|
αr−α sup

B(x0 ,4r)

|u|.

We now estimate I I I . From the Caccioppoli inequality we have

|I I I | ≤
C

r

��

B(x0 ,2r)

|u|2w(y) dy

� 1
2

·

·

��

B(x0 ,2r)\B(x0 ,
3
2 r)

n�

i=1

|[g0(x , y)]yi
− [g0(x0, y)]yi

|2w(y) dy

� 1
2

≤

≤
C

r2

��

B(x0 ,2r)

|u|2w(y) dy

� 1
2

·

·

��

B(x0 ,3r)\B(x0 ,
5
4 r)

|[g0(x , y)]− [g0(x0, y)]|2w(y) dy

� 1
2

.

Proceeding as before we have

|I I I | ≤
C

r2
|x − x0|

α

rα

� 4r

r

s2

w(B(x0, s))

ds

s
·(3.5)

·

��

B(x0 ,2r)

|u|2w(y) dy

� 1
2

w
1
2 (B(x0, r)) ≤ C

|x − x0|
α

rα
sup

B(x0 ,4r)
|u|.

Finally to bound I we note that

|I | ≤

�

{y∈B(x0,2r) : |x0−y|>N |x−x0 |}

|V (y)||u(y)||φ(y)||g0(x , y)− g0(x0, y)| dy+

+

�

{y∈B(x0,2r) : |x0−y|≤N |x−x0 |}

|V (y)||u(y)||φ(y)||g0(x , y)− g0(x0, y)| dy

where N > 1 will be determined later.
By (2.4), (2.5), (2.7) and (2.8) we have

|I | ≤ CN−α

�

{y∈B(x0,2r) : |x0−y|>N |x−x0 |}

|V (y)||u(y)||φ(y)| ·
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·

� 4r

|x0−y|

s2

w(B(x0, s))

ds

s
dy +

+ C

�

{y∈B(x0 ,2r) : |x0−y|≤N |x−x0 |}

|V (y)||u(y)||φ(y)|
�� 4r

|x−y|

s2

w(B(x , s))

ds

s
+

+

� 4r

|x0−y|

s2

w(B(x0, s))

ds

s

�
dy ≤

≤ CN−α sup
B(x0 ,2r)

|u|

�

B(x0 ,2r)

|V (y)|

� 4R

|x0−y|

s2

w(B(x0, s))

ds

s
dy +

+ C sup
B(x0 ,2r)

|u|
� �

{y∈B(x0,2r) : |x−y|≤(N+1)|x−x0 |}

|V (y)|

� 4R

|x−y|

s2

w(B(x , s))

ds

s
dy +

+

�

{y∈B(x0 ,2r) : |x0−y|≤N |x−x0 |}

|V (y)|

� 4R

|x0−y|

s2

w(B(x0, s))

ds

s
dy

�
.

Choosing N =

�
r

|x − x0|

� 1
2

we obtain

|I | ≤ C sup
B(x0 ,2r)

|u|

� �
|x − x0|

r

� α
2

η(2r)+(3.6)

+η
�

r
1
2 |x − x0|

1
2 + |x − x0|

�
+ η

�
r

1
2 |x − x0|

1
2

� �
.

(3.4), (3.5) and (3.6) give the desired conclusion. �

By the inclusion Mσ (�, w) ⊆ S(�, w) and Theorem 3.1 we obtain the
following Hölder-continuity result for the local solutions of Lu + V u = 0 that
extends to the degenerate case the analogous result contained in [4] and [11].

Theorem 3.2. In the same hypotheses of Theorem 3.1, assuming V
w

∈Mσ (�, w),
u is locally Hölder-continuous in �.

4. Necessary condition for hölder-continuity of solutions.

Let V ∈ L1(�), V ≤ 0, we wish to point out that, in order that positive
local weak solutions of the equation

(4.1) Lu + V u = 0

be Hölder-continuous, it is necessary that V
w

∈ L1,ε(�, w) with ε > 0.
We begin to prove the following lemma
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Lemma 4.1. Let V ∈ L1(�) and let u ∈ C0,α(�), α ∈ ]0, 1[, be a local weak
solution of equation (4.1). Then, for any ball B(x0, r) such that B(x0, 2r) ⊂⊂

�, we have
�

B(x0 ,r)

|∇u|2w dx ≤ C

�

rα

�

B(x0 ,2r)

|V | |u| dx + w(B(x0, r))r2α−2

�

.

Proof. Let η(x ) ∈ C∞
0 (B(x0, 2r)) be such that η(x ) = 1 in B(x0, r), 0 ≤

η(x ) ≤ 1, |∇η| ≤
2

r
. Considering the test function

φ(x ) = η2(x )[u(x )− u2r ],

where u2r =
1

|B(x0, 2r)|

�

B(x0 ,2r)

u dx , we have

n�

i, j=1

�

B(x0 ,2r)

ai j uxi
[2ηηxj

(u−u2r )+η2uxj
] dx +

�

B(x0 ,2r)

V uη2(u−u2r ) dx = 0.

Using the ellipticity hypothesis we obtain

ν−1

�

B(x0 ,2r)

|∇u|2η2w dx ≤

≤ 2

n�

i, j=1

�

B(x0 ,2r)

|ai j uxi
ηηxj

[u − u2r ]| dx +

�

B(x0 ,2r)

|V uη2[u − u2r ]| dx ≤

≤ 2ν

�

B(x0 ,2r)

|∇u| |∇η| η |u − u2r |w dx +

�

B(x0 ,2r)

|V | |u| η2|u − u2r | dx ≤

≤ εν

�

B(x0 ,2r)

|∇u|2η2w dx +
1

ε
ν

�

B(x0 ,2r)

|∇η|2|u − u2r |
2w dx +

+

�

B(x0 ,2r)

|V | |u| η2|u − u2r | dx ,

for any ε > 0.

Fixing ε =
1

4ν2
we have

�

B(x0 ,2r)

|∇u|2η2w dx ≤

≤ C

��

B(x0 ,2r)

|∇η|2|u − u2r |
2w dx +

�

B(x0 ,2r)

|V | |u| η2|u − u2r | dx

�

and the thesis follows because u was assumed to be in C0,α (�). �

We prove now the desired result
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Theorem 4.2. Let V ≤ 0, V ∈ L1(�) and let u ∈ C0,α(�) be, with α ∈ ]0, 1[,
a local weak solution of equation (4.1), such that l < u, where l is a positive
constant. Then V

w
∈ L1,α(�, w).

Proof. Let B(x0, r) be such that B(x0, 4r) ⊂⊂ � and η(x ) ∈ C∞
0 (�) be such

that η(x ) = 1 in B(x0, r), 0 ≤ η(x ) ≤ 1, |∇η| ≤
2

r
.

We have, using the inequality

0 ≤ 2ab ≤ εr−αa2 + ε−1rαb2, ∀ε > 0 ,

�

B(x0 ,r)

|V |u dx ≤

n�

i, j=1

�

B(x0 ,2r)

ai j uxi
ηxj

dx ≤

≤ C(ν, n)

�

εr−α

�

B(x0 ,2r)

|∇u|2w dx + ε−1rα

�

B(x0 ,2r)

|∇η|2w dx

�

.

By Lemma 4.1 and Lemma 2.1 - a) we obtain

�

B(x0 ,r)

|V |u dx ≤ C(ν, n, Cd )

�

ε

�

B(x0 ,4r)

|V |u dx +

+

�

ε +
1

ε

�

rα−2w(B(x0, r))

�

.

Putting

ω(r) =

�

B(x0 ,r)

|V |u dx , σ = εC(ν, n, Cd ) and H (σ ) = σ +
C2(ν, n, Cd )

σ

we have

(4.2) ω(r) ≤ σω(4r)+ H (σ )rα−2w(B(x0, r)),

for every σ > 0 and r ∈ ]0, ρ[, with ρ =
R

4
.

Let r ∈
�ρ

4
, ρ

�
be and

M = sup
[ ρ

4 ,ρ[

ω(r)

rα−2w(B(x0, r))
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then

(4.3) ω(r) ≤ Mrα−2w(B(x0, r)).

If r ∈
� ρ

42
,
ρ

4

�
, by (4.2) and (4.3) and Lemma 2.1 - a) we have

ω(r) ≤ σω(4r)+ H (σ )rα−2w(B(x0, r)) ≤

≤ σ M(4r)α−2w(B(x0, 4r))+ H (σ )rα−2w(B(x0, r)) ≤

≤ Mσ
�
2α−2Cd

�2
rα−2w(B(x0, r)) + H (σ )rα−2w(B(x0, r)).

Fixing σ =
1

2
�
2α−2Cd

�2 , we obtain

(4.4) ω(r) ≤
M

2
rα−2w(B(x0, r)) + H

�
1

2
�
2α−2Cd

�2

�

rα−2w(B(x0, r)).

Iterating this procedure, if r ∈
� ρ

4i+1
,

ρ

4i

�
, we have

ω(r) ≤

�
M

2i
+ H

�
1

2
�
2α−2Cd

�2

�
i−1�

k=0

1

2k

�

rα−2w(B(x0, r)),

that is
ω(r) ≤ C(ν, n, α, Cd )r

α−2w(B(x0, r))

and, being 0 < l < u, the conclusion is obtained. �
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Università di Messina,
Contrada Papardo, Salita Sperone 31,

98166 Sant�Agata (Me) (ITALY),
e-mail: vitanzac@imeuniv.unime.it

Pietro Zamboni,
Dipartimento di Matematica,
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