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SOME IDEALS OF OPERATORS BETWEEN

SPACES OF OPERATORS

DUMITRU POPA

For A ∈ L(X, Y ), B ∈ L(Z , T ) we consider the operator h : L(Y, Z ) →

L(X, T ), h(U ) = BU A. We prove that in some hypotheses about A and
B the operator h is in some ideal of operators. As a consequence we obtain
that the ideals of Dunford-Pettis dual operator and weak∗ -norm sequentially
continuous operators are projective tensor stable, Ncdual ⊗π DPdual ⊂

Ncdual , GPdual ⊗π DPdual ⊂ GPdual .

Let U ∈ L(X, Y ) be. U is called a Dunford-Pettis operator if: xn → 0
weak, implies U (xn) → 0 in norm. U is called an unconditionally converg-

ing operator if: for each weakly unconditionally Cauchy series
∞�

n=1

xn , i.e.

∞�

n=1

|x∗(xn)| < ∞, for each x∗ ∈ X ∗ , it follows that: U (xn) → 0 in norm.

A sequence (xn)n∈N ⊂ X is called limited sequence if for every x∗
n → 0

weak∗ , implies x∗
n (xn) → 0. An operator U ∈ L(X, Y ) is called a Gelfand-

Phillips operator if for each (xn)n∈N ⊂ X limited weakly null sequence it fol-
lows: U (xn) → 0 in norm. U has weak∗-norm sequentially continuous dual
if: x∗

n → 0 weak∗ , implies U ∗(x∗
n ) → 0 in norm. We denote DP , Nc, GP

the ideal of the Dunford-Pettis, unconditionally converging, Gelfand-Phillips
operators.
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Proposition 1. Let A ∈ DPdual(X, Y ) (resp. A ∈ Ncdual (X, Y )), B ∈

DP(Z , T ) and h : L(Y, Z ) → L(X, T ), h(U ) = BU A. Then h is a Dunford-
Pettis operator (resp. an unconditionally converging operator).

Proof. Suppose �rst that A ∈ DPdual (X, Y ). Let (Un)n∈N ⊂ L(Y, Z ) such that:
Un → 0 weak. For n ∈ N let xn ∈ X , �xn� = 1, such that:

(1) �h(Un)� −
1

n
< �h(Un)(xn)� = �(BUn A)(xn )�.

Let z∗ ∈ Z ∗ , y∗∗ ∈ Y ∗∗ and y∗∗ ⊗ z∗ : L(Y, Z ) → R(C) be the functional,
(y∗∗ ⊗ z∗)(S) = y∗∗(S∗(z∗)). Since Un → 0 weak, we obtain �Un, y∗∗ ⊗ z∗� →

0, i.e. �z∗ ◦Un, y∗∗� → 0, or y∗∗ ∈ Y ∗∗ being arbitrary, that: z∗ ◦Un → 0 weak.
But A ∈ DPdual (X, Y ) implies A∗(z∗ ◦ Un) → 0 in norm or, z∗ ◦ Un ◦ A → 0
in norm of X ∗ , hence (z∗ ◦ Un ◦ A)(xn ) → 0, i.e. �(Un ◦ A)(xn ), z∗� → 0
and since z∗ ∈ Z ∗ is arbitrary this shows that: (Un ◦ A)(xn ) → 0 weak.
Now B ∈ DP(Z , T ) and hence: B((Un ◦ A)(xn )) → 0 in norm of T , i.e.
(B ◦ Un ◦ A)(xn ) → 0 in norm of T and the relation (1) implies �h(Un)� → 0,
i.e. h is a Dunford-Pettis operator.

Suppose now A ∈ Ncdual (X, Y ). Let be now
∞�

n=1

Un a weakly uncondition-

ally Cauchy series. For n ∈ N let xn ∈ X, �xn� = 1, such that:

(2) �h(Un)� −
1

n
< �h(Un)(xn)� = �(BUn A)(xn )�.

Let z∗ ∈ Z ∗ , y∗∗ ∈ Y ∗∗ and y∗∗ ⊗ z∗ : L(Y, Z ) → R(C) be the functional,

(y∗∗ ⊗ z∗)(S) = y∗∗(S∗(z∗)). Since
∞�

n=1

Un is a weakly unconditionally Cauchy

series we obtain:
∞�

n=1

|�Un, y∗∗ ⊗ z∗�| < ∞, i.e.
∞�

n=1

|�z∗ ◦ Un, y∗∗�| < ∞. But

y∗∗ ∈ Y ∗∗ being arbitrary this means that:
∞�

n=1

z∗◦Un is a weakly unconditionally

Cauchy series. But A ∈ Ncdual (X, Y ) implies A∗(z∗ ◦ Un) → 0 in norm or,
z∗ ◦ Un ◦ A → 0 in norm of X ∗ , from where: (z∗ ◦ Un ◦ A)(xn) → 0,
i.e. �(Un ◦ A)(xn ), z∗� → 0 and since z∗ ∈ Z ∗ is arbitrary this shows that;
(Un ◦ A)(xn ) → 0 weak. Now B ∈ DP(Z , T ) and hence: B((Un ◦ A)(xn )) → 0
in norm of T , i.e. (B ◦ Un ◦ A)(xn) → 0 in norm of T and the relation (2)
implies �h(Un)� → 0, i.e. h is an unconditionally converging operator.

Let us observe that the same proof is still true if h : K (Y, Z ) → K (X, T ),
h(U ) = BU A, where K (X, Y ) is the space of all compact operators from X
into the Y equipped with the operatorial norm.
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Corollary 2. a) The ideal of all Dunford-Pettis dual operators is projective
tensor stable, i.e. DPdual ⊗π DPdual ⊂ DPdual .
b) Ncdual ⊗π DPdual ⊂ Ncdual .

Proof. Let U ∈ L(X, X1), V ∈ L(Y, Y1) and U ⊗π V : X ⊗π Y → X1 ⊗π Y1

the projective tensor product. Then: h = (U ⊗π V )∗ : L(X1, Y ∗
1 ) → L(X, Y ∗)

has the action h(ψ) = V ∗ ◦ ψ ◦ U , i.e. is the operator h from Proposition 1
corresponding to A = U , B = V ∗ . The corollary follows from Proposition 1.

A naturally question is: the ideal of all dual unconditionally converging
operators is projective tensor stable, i.e. Ncdual ⊗π Ncdual ⊂ Ncdual ? The
answer is no. Take the identity operator i : l2 → l2 which has the dual
unconditionally converging, since l2 does not contain a copy of c0 and use the
well-known result of Pelczynski, but the dual of i ⊗π i : l2 ⊗π l2 → l2 ⊗π l2
is the identity operator on L(l2, l2) which contains copy of c0 and hence is not
unconditionally convergent. (The application ϕ : c0 → L(l2, l2), x → ϕ(x )
where ϕ(x ) : l2 → l2 , ϕ(x )(y) = (xn yn)n∈N , x = (xn)n∈N , y = (yn)n∈N ∈ l2 is
an isometry). The point a) extend a result of [4].

Also in [3] is proved that if X has the Schur property, then ls1(X ), the

space of all unconditionally convergent series
∞�

n=1

xn , equipped with the norm

ε((xn)n∈N) = sup
�x∗�≤1

∞�

n=1

|x∗(xn)|, has the Schur property. Since as is well-known

ls1(X ) = K (c0, X ) and the identity operator correspond to h : K (c0, X ) →

K (c0, X ), h(U ) = iU I , i : c0 → c0, I : X → X being the identity operator,
then using the remark from the Proposition 1, we obtain that h is a Dunford-
Pettis operator, i.e. ls1(X ) = K (c0, X ) has the Schur property.

Proposition 3. The ideal of all dual weak∗-norm sequentially continuous oper-
ators is projective tensor stable.

Proof. Let A ∈ L(X, Y ), B ∈ L(Z , T ) be two operators with dual weak∗-norm
sequentially continuous, A ⊗π B : X ⊗π Z → Y ⊗π T the projective tensor
product and h = (U ⊗π V )∗ : L(Y, T ∗) → L(X, Z ∗) the dual of U ⊗π V , which
has the action h(ψ) = B∗ ◦ ψ ◦ A. Let ψn → 0 weak∗ . For n ∈ N, let xn ∈ X ,
zn ∈ Z , �xn� = �zn� = 1, such that:

(3) �h(ψn)� −
1

n
< �[h(ψn)(xn)](zn )� = �[(B∗ ◦ ψn ◦ A)(xn )](zn )�.

Then for each y ∈ Y and t ∈ T , �t, ψn(y)� = �y ⊗ t, ψn� → 0, i.e. ψn(y) → 0
weak∗ . Since B∗ : T ∗ → Z ∗ is weak∗-norm sequentially continuous we have:
B∗(ψn(y)) → 0 in norm of Z ∗ , and thus [(B∗ ◦ ψn)(y)](zn ) → 0. Denoting
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for z ∈ Z by ẑ ∈ Z ∗∗ the canonical mapping associated to z into the bidual the
above relation shows that: ( �zn ◦ B∗ ◦ψn)(y) → 0, i.e. �zn ◦ B∗ ◦ψn → 0 weak∗ .
Now since A∗ : Y ∗ → X ∗ is weak∗-norm sequentially continuous, we have:
A∗( �zn ◦ B∗ ◦ψn) → 0 in norm of X ∗ and hence: [A∗( �zn ◦ B∗ ◦ψn)](xn) → 0 in
norm of X , [ �zn ◦ B∗ ◦ ψn](Axn ) = [(B∗ ◦ ψn ◦ A)(xn )](zn ) → 0, in norm of X .
The relation (3) implies that: �h(ψn)� → 0, i.e. h is weak∗-norm sequentially
continuous and the proposition is proved.

Proposition 4. a) Let A ∈ GPdual (X, Y ), B ∈ GP(Z , T ) and h : K (Y, Z ) →

K (X, T ), h(U ) = BU A. Then h is a Gelfand-Phillips operator.
b) Let A ∈ GPdual(X, Y ), B ∈ DP(Z , T ) and h : L(Y, Z ) → L(X, T ),

h(U ) = BU A. Then h is a Gelfand-Phillips operator.

Proof. a) Let (Un)n∈N ⊂ K (Y, Z ) such that: Un → 0 weak and (Un)n∈N is a
limited sequence. For n ∈ N, let xn ∈ X , �xn� = 1, such that:

(4) �h(Un)� −
1

n
< �h(Un)(xn)� = �(BUn A)(xn )�.

Let z∗ ∈ Z ∗ , y∗∗ ∈ Y ∗∗ and y∗∗ ⊗ z∗ : K (Y, Z ) → R(C) be the functional,
(y∗∗⊗z∗ )(S) = y∗∗(S∗(z∗)). Since Un → 0 weak we obtain �Un, y∗∗⊗z∗ � → 0,
i.e. �z∗ ◦ Un, y∗∗� → 0, or y∗∗ ∈ Y ∗∗ being arbitrary that: z∗ ◦ Un → 0
weak. Also (z∗ ◦ Un)n∈N ⊂ Y ∗ is a limited sequence. Indeed, if y∗∗

n → 0
weak∗ , then (y∗∗

n ⊗ z∗)n∈N ⊂ (K (Y, Z ))∗ de�ned as above is clearly weak∗

converging to 0, and since (Un)n∈N is a limited sequence �U, y∗∗
n ⊗ z∗� → 0,

y∗∗
n (U ∗(z∗)) → 0. But A ∈ GPdual (X, Y ) implies A∗(z∗ ◦ Un) → 0 in

norm or, z∗ ◦ Un ◦ A → 0 in norm of X ∗ , hence (z∗ ◦ Un ◦ A)(xn ) → 0,
i.e. �(Un ◦ A)(xn ), z∗� → 0 and since z∗ ∈ Z ∗ is arbitrary this shows that:
(Un ◦ A)(xn ) → 0 weak. Also ((Un ◦ A)(xn ))n∈N ⊂ Z is a limited sequence.
Indeed, for z∗

n → 0 weak∗ , let αn : K (Y, Z ) → R(C) be the functional
αn(S) = z∗

n ((S ◦ A)(xn )) = [S∗(z∗
n )](Axn ). Since S ∈ K (Y, Z ), S∗ is compact

and hence weak∗-norm sequentially continuous, i.e. S∗(z∗
n ) → 0 in norm and

in particular, αn(S) = [S∗(z∗
n )](Axn ) → 0. Thus αn → 0 weak∗ , hence

(Un)n∈N being a limited sequence αn(Un) → 0, z∗
n ((Un ◦ A)(xn )) → 0, i.e.

((Un ◦ A)(xn ))n∈N ⊂ Z is a limited sequence. Now B ∈ GP(Z , T ) and hence:
B((Un ◦ A)(xn )) → 0 in norm of T , i.e. (B ◦ Un ◦ A)(xn ) → 0 in norm of T
and the relation (4) implies: �h(Un)� → 0, i.e. h is a Gelfand-Phillips operator.

b) Let (Un)n∈N ⊂ L(Y, Z ) such that: Un → 0 weak and (Un)n∈N is a
limited sequence. For n ∈ N, let xn ∈ X , �xn� = 1, such that:

(5) �h(Un)� −
1

n
< �h(Un)(xn)� = �(BUn A)(xn )�.
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Let z∗ ∈ Z ∗ , y∗∗ ∈ Y ∗∗ and y∗∗ ⊗ z∗ : L(Y, Z ) → R(C) be the functional,
(y∗∗ ⊗ z∗)(S) = y∗∗(S∗(z∗)). Since Un → 0 weak, we obtain �Un, y∗∗ ⊗ z∗� →

0, i.e. �z∗ ◦ Un, y∗∗� → 0 or y∗∗ ∈ Y ∗∗ being arbitrary that: z∗ ◦ Un → 0 weak.
Also (z∗ ◦ Un)n∈N ⊂ Y ∗ is a limited sequence. Indeed, if y∗∗

n → 0 weak∗ , then
(y∗∗

n ⊗ z∗)n∈N ⊂ (K (Y, Z ))∗ de�ned as above is clearly weak∗ converging to 0,
and since (Un)n∈N is a limited sequence �U, y∗∗

n ⊗ z∗� → 0, y∗∗
n (U ∗(z∗)) → 0.

But A ∈ GPdual(X, Y ) implies A∗(z∗ ◦ Un) → 0 in norm or, z∗ ◦ Un ◦ A → 0
in norm of X ∗ , hence (z∗ ◦ Un ◦ A)(xn ) → 0, i.e. �(Un ◦ A)(xn), z∗� → 0
and since z∗ ∈ Z ∗ is arbitrary this shows that: (Un ◦ A)(xn ) → 0 weak.
Now B ∈ DP(Z , T ) and hence: B((Un ◦ A)(xn )) → 0 in norm of T , i.e.
(B ◦Un ◦ A)(xn) → 0 in norm of T and the relation (5) implies: �h(Un)� → 0,
i.e. h is a Gelfand-Phillips operator.

The point a) is an extension of Corollary 2.3 from [1] and the point b) is an
extension of Theorem 2 from [2].

Corollary 5. GPdual ⊗π DPdual ⊂ GPdual .

Proof. Let U ∈ L(X, X1), V ∈ L(Y, Y1) and U ⊗π V : X ⊗π Y → X1 ⊗π Y1

the projective tensor product. Then: h = (U ⊗π V )∗ : L(X1, Y ∗
1 ) → L(X, Y ∗)

has the action h(ψ) = V ∗ ◦ ψ ◦ U , i.e. is the operator h from Proposition 4
corresponding to A = U , B = V ∗ . The corollary follows from Proposition 4.

The same example as above, i.e. the identity operator on L(l2, l2), which
is the dual of i ⊗π i : l2 ⊗π l2 → l2 ⊗π l2 (i : l2 → l2 is a Gelfand-Phillips
operator, l2 is separable) shows that the dual of Gelfand-Phillips operators is
not projective tensor stable, since L(l2, l2) contains a copy of l∞ and l∞ is not a
Gelfand-Phillips space.
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