SOME IDEALS OF OPERATORS BETWEEN SPACES OF OPERATORS

DUMITRU POPA

For $A \in L(X, Y)$, $B \in L(Z, T)$ we consider the operator $h : L(Y, Z) \rightarrow L(X, T)$, h(U) = BUA. We prove that in some hypotheses about A and B the operator h is in some ideal of operators. As a consequence we obtain that the ideals of Dunford-Pettis dual operator and weak*-norm sequentially continuous operators are projective tensor stable, $Nc^{dual} \otimes_{\pi} DP^{dual} \subset Nc^{dual}$, $GP^{dual} \otimes_{\pi} DP^{dual} \subset GP^{dual}$.

Let $U \in L(X, Y)$ be. U is called a Dunford-Pettis operator if: $x_n \to 0$ weak, implies $U(x_n) \to 0$ in norm. U is called an unconditionally converging operator if: for each weakly unconditionally Cauchy series $\sum_{n=1}^{\infty} x_n$, i.e. $\sum_{n=1}^{\infty} |x^*(x_n)| < \infty$, for each $x^* \in X^*$, it follows that: $U(x_n) \to 0$ in norm. A sequence $(x_n)_{n \in N} \subset X$ is called limited sequence if for every $x_n^* \to 0$ weak^{*}, implies $x_n^*(x_n) \to 0$. An operator $U \in L(X, Y)$ is called a Gelfand-Phillips operator if for each $(x_n)_{n \in N} \subset X$ limited weakly null sequence it follows: $U(x_n) \to 0$ in norm. U has weak^{*}-norm sequentially continuous dual if: $x_n^* \to 0$ weak^{*}, implies $U^*(x_n^*) \to 0$ in norm. We denote DP, Nc, GPthe ideal of the Dunford-Pettis, unconditionally converging, Gelfand-Phillips operators.

Entrato in Redazione il 10 novembre 1997.

Proposition 1. Let $A \in DP^{dual}(X, Y)$ (resp. $A \in Nc^{dual}(X, Y)$), $B \in DP(Z, T)$ and $h : L(Y, Z) \rightarrow L(X, T)$, h(U) = BUA. Then h is a Dunford-Pettis operator (resp. an unconditionally converging operator).

Proof. Suppose first that $A \in DP^{dual}(X, Y)$. Let $(U_n)_{n \in N} \subset L(Y, Z)$ such that: $U_n \to 0$ weak. For $n \in \mathbb{N}$ let $x_n \in X$, $||x_n|| = 1$, such that:

(1)
$$||h(U_n)|| - \frac{1}{n} < ||h(U_n)(x_n)|| = ||(BU_n A)(x_n)||.$$

Let $z^* \in Z^*$, $y^{**} \in Y^{**}$ and $y^{**} \otimes z^*$: $L(Y, Z) \to R(C)$ be the functional, $(y^{**} \otimes z^*)(S) = y^{**}(S^*(z^*))$. Since $U_n \to 0$ weak, we obtain $\langle U_n, y^{**} \otimes z^* \rangle \to 0$, i.e. $\langle z^* \circ U_n, y^{**} \rangle \to 0$, or $y^{**} \in Y^{**}$ being arbitrary, that: $z^* \circ U_n \to 0$ weak. But $A \in DP^{dual}(X, Y)$ implies $A^*(z^* \circ U_n) \to 0$ in norm or, $z^* \circ U_n \circ A \to 0$ in norm of X^* , hence $(z^* \circ U_n \circ A)(x_n) \to 0$, i.e. $\langle (U_n \circ A)(x_n), z^* \rangle \to 0$ and since $z^* \in Z^*$ is arbitrary this shows that: $(U_n \circ A)(x_n) \to 0$ weak. Now $B \in DP(Z, T)$ and hence: $B((U_n \circ A)(x_n)) \to 0$ in norm of T, i.e. $(B \circ U_n \circ A)(x_n) \to 0$ in norm of T and the relation (1) implies $||h(U_n)|| \to 0$, i.e. h is a Dunford-Pettis operator.

Suppose now $A \in Nc^{dual}(X, Y)$. Let be now $\sum_{n=1}^{\infty} U_n$ a weakly unconditionally Cauchy series. For $n \in \mathbb{N}$ let $x_n \in X$, $||x_n|| = 1$, such that:

(2)
$$||h(U_n)|| - \frac{1}{n} < ||h(U_n)(x_n)|| = ||(BU_n A)(x_n)||.$$

Let $z^* \in Z^*$, $y^{**} \in Y^{**}$ and $y^{**} \otimes z^*$: $L(Y, Z) \to R(C)$ be the functional, $(y^{**} \otimes z^*)(S) = y^{**}(S^*(z^*))$. Since $\sum_{n=1}^{\infty} U_n$ is a weakly unconditionally Cauchy series we obtain: $\sum_{n=1}^{\infty} |\langle U_n, y^{**} \otimes z^* \rangle| < \infty$, i.e. $\sum_{n=1}^{\infty} |\langle z^* \circ U_n, y^{**} \rangle| < \infty$. But $y^{**} \in Y^{**}$ being arbitrary this means that: $\sum_{n=1}^{\infty} z^* \circ U_n$ is a weakly unconditionally Cauchy series. But $A \in Nc^{dual}(X, Y)$ implies $A^*(z^* \circ U_n) \to 0$ in norm or, $z^* \circ U_n \circ A \to 0$ in norm of X^* , from where: $(z^* \circ U_n \circ A)(x_n) \to 0$, i.e. $\langle (U_n \circ A)(x_n), z^* \rangle \to 0$ and since $z^* \in Z^*$ is arbitrary this shows that; $(U_n \circ A)(x_n) \to 0$ weak. Now $B \in DP(Z, T)$ and hence: $B((U_n \circ A)(x_n)) \to 0$ in norm of T, i.e. $(B \circ U_n \circ A)(x_n) \to 0$ in norm of T and the relation (2)

implies $||h(U_n)|| \to 0$, i.e. *h* is an unconditionally converging operator. Let us observe that the same proof is still true if $h : K(Y, Z) \to K(X, T)$, h(U) = BUA, where K(X, Y) is the space of all compact operators from X into the Y equipped with the operatorial norm. **Corollary 2.** a) The ideal of all Dunford-Pettis dual operators is projective tensor stable, i.e. $DP^{dual} \otimes_{\pi} DP^{dual} \subset DP^{dual}$. b) $Nc^{dual} \otimes_{\pi} DP^{dual} \subset Nc^{dual}$.

Proof. Let $U \in L(X, X_1)$, $V \in L(Y, Y_1)$ and $U \otimes_{\pi} V : X \otimes_{\pi} Y \to X_1 \otimes_{\pi} Y_1$ the projective tensor product. Then: $h = (U \otimes_{\pi} V)^* : L(X_1, Y_1^*) \to L(X, Y^*)$ has the action $h(\psi) = V^* \circ \psi \circ U$, i.e. is the operator h from Proposition 1 corresponding to A = U, $B = V^*$. The corollary follows from Proposition 1.

A naturally question is: the ideal of all dual unconditionally converging operators is projective tensor stable, i.e. $Nc^{dual} \otimes_{\pi} Nc^{dual} \subset Nc^{dual}$? The answer is no. Take the identity operator $i : l_2 \rightarrow l_2$ which has the dual unconditionally converging, since l_2 does not contain a copy of c_0 and use the well-known result of Pelczynski, but the dual of $i \otimes_{\pi} i : l_2 \otimes_{\pi} l_2 \rightarrow l_2 \otimes_{\pi} l_2$ is the identity operator on $L(l_2, l_2)$ which contains copy of c_0 and hence is not unconditionally convergent. (The application $\varphi : c_0 \rightarrow L(l_2, l_2), x \rightarrow \varphi(x)$ where $\varphi(x) : l_2 \rightarrow l_2, \varphi(x)(y) = (x_n y_n)_{n \in \mathbb{N}}, x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}} \in l_2$ is an isometry). The point a) extend a result of [4].

Also in [3] is proved that if X has the Schur property, then $l_1^s(X)$, the space of all unconditionally convergent series $\sum_{n=1}^{\infty} x_n$, equipped with the norm

 $\varepsilon((x_n)_{n\in\mathbb{N}}) = \sup_{\|x^*\| \le 1} \sum_{n=1}^{\infty} |x^*(x_n)|, \text{ has the Schur property. Since as is well-known}$

 $l_1^s(X) = K(c_0, X)$ and the identity operator correspond to $h : K(c_0, X) \rightarrow K(c_0, X), h(U) = iUI, i : c_0 \rightarrow c_0, I : X \rightarrow X$ being the identity operator, then using the remark from the Proposition 1, we obtain that h is a Dunford-Pettis operator, i.e. $l_1^s(X) = K(c_0, X)$ has the Schur property.

Proposition 3. *The ideal of all dual weak*^{*}*-norm sequentially continuous operators is projective tensor stable.*

Proof. Let $A \in L(X, Y)$, $B \in L(Z, T)$ be two operators with dual weak*-norm sequentially continuous, $A \otimes_{\pi} B : X \otimes_{\pi} Z \to Y \otimes_{\pi} T$ the projective tensor product and $h = (U \otimes_{\pi} V)^* : L(Y, T^*) \to L(X, Z^*)$ the dual of $U \otimes_{\pi} V$, which has the action $h(\psi) = B^* \circ \psi \circ A$. Let $\psi_n \to 0$ weak*. For $n \in \mathbb{N}$, let $x_n \in X$, $z_n \in Z$, $||x_n|| = ||z_n|| = 1$, such that:

(3)
$$||h(\psi_n)|| - \frac{1}{n} < ||[h(\psi_n)(x_n)](z_n)|| = ||[(B^* \circ \psi_n \circ A)(x_n)](z_n)||.$$

Then for each $y \in Y$ and $t \in T$, $\langle t, \psi_n(y) \rangle = \langle y \otimes t, \psi_n \rangle \to 0$, i.e. $\psi_n(y) \to 0$ weak*. Since $B^* : T^* \to Z^*$ is weak*-norm sequentially continuous we have: $B^*(\psi_n(y)) \to 0$ in norm of Z^* , and thus $[(B^* \circ \psi_n)(y)](z_n) \to 0$. Denoting for $z \in Z$ by $\hat{z} \in Z^{**}$ the canonical mapping associated to z into the bidual the above relation shows that: $(\hat{z_n} \circ B^* \circ \psi_n)(y) \to 0$, i.e. $\hat{z_n} \circ B^* \circ \psi_n \to 0$ weak^{*}. Now since $A^* : Y^* \to X^*$ is weak^{*}-norm sequentially continuous, we have: $A^*(\hat{z_n} \circ B^* \circ \psi_n) \to 0$ in norm of X^* and hence: $[A^*(\hat{z_n} \circ B^* \circ \psi_n)](x_n) \to 0$ in norm of X, $[\hat{z_n} \circ B^* \circ \psi_n](Ax_n) = [(B^* \circ \psi_n \circ A)(x_n)](z_n) \to 0$, in norm of X. The relation (3) implies that: $||h(\psi_n)|| \to 0$, i.e. h is weak^{*}-norm sequentially continuous and the proposition is proved.

Proposition 4. a) Let $A \in GP^{dual}(X, Y)$, $B \in GP(Z, T)$ and $h : K(Y, Z) \rightarrow K(X, T)$, h(U) = BUA. Then h is a Gelfand-Phillips operator.

b) Let $A \in GP^{dual}(X, Y)$, $B \in DP(Z, T)$ and $h : L(Y, Z) \rightarrow L(X, T)$, h(U) = BUA. Then h is a Gelfand-Phillips operator.

Proof. a) Let $(U_n)_{n \in \mathbb{N}} \subset K(Y, Z)$ such that: $U_n \to 0$ weak and $(U_n)_{n \in \mathbb{N}}$ is a limited sequence. For $n \in \mathbb{N}$, let $x_n \in X$, $||x_n|| = 1$, such that:

(4)
$$||h(U_n)|| - \frac{1}{n} < ||h(U_n)(x_n)|| = ||(BU_n A)(x_n)||.$$

Let $z^* \in Z^*$, $y^{**} \in Y^{**}$ and $y^{**} \otimes z^* : K(Y, Z) \to R(C)$ be the functional, $(y^{**}\otimes z^{*})(S) = y^{**}(S^{*}(z^{*}))$. Since $U_n \to 0$ weak we obtain $\langle U_n, y^{**}\otimes z^{*} \rangle \to 0$, i.e. $\langle z^* \circ U_n, y^{**} \rangle \rightarrow 0$, or $y^{**} \in Y^{**}$ being arbitrary that: $z^* \circ U_n \rightarrow 0$ weak. Also $(z^* \circ U_n)_{n \in \mathbb{N}} \subset Y^*$ is a limited sequence. Indeed, if $y_n^{**} \to 0$ weak^{*}, then $(y_n^{**} \otimes z^*)_{n \in \mathbb{N}} \subset (K(Y, Z))^*$ defined as above is clearly weak^{*} converging to 0, and since $(U_n)_{n\in\mathbb{N}}$ is a limited sequence $\langle U, y_n^{**} \otimes z^* \rangle \to 0$, $y_n^{**}(U^*(z^*)) \rightarrow 0$. But $A \in GP^{dual}(X, Y)$ implies $A^*(z^* \circ U_n) \rightarrow 0$ in norm or, $z^* \circ U_n \circ A \to 0$ in norm of X^* , hence $(z^* \circ U_n \circ A)(x_n) \to 0$, i.e. $\langle (U_n \circ A)(x_n), z^* \rangle \to 0$ and since $z^* \in Z^*$ is arbitrary this shows that: $(U_n \circ A)(x_n) \to 0$ weak. Also $((U_n \circ A)(x_n))_{n \in \mathbb{N}} \subset Z$ is a limited sequence. Indeed, for $z_n^* \to 0$ weak^{*}, let $\alpha_n : K(Y, Z) \to R(C)$ be the functional $\alpha_n(S) = z_n^*((S \circ A)(x_n)) = [S^*(z_n^*)](Ax_n)$. Since $S \in K(Y, Z)$, S^* is compact and hence weak*-norm sequentially continuous, i.e. $S^*(z_n^*) \to 0$ in norm and in particular, $\alpha_n(S) = [S^*(z_n^*)](Ax_n) \rightarrow 0$. Thus $\alpha_n \rightarrow 0$ weak^{*}, hence $(U_n)_{n\in\mathbb{N}}$ being a limited sequence $\alpha_n(U_n) \to 0$, $z_n^*((U_n \circ A)(x_n)) \to 0$, i.e. $((U_n \circ A)(x_n))_{n \in \mathbb{N}} \subset Z$ is a limited sequence. Now $B \in GP(Z, T)$ and hence: $B((U_n \circ A)(x_n)) \to 0$ in norm of T, i.e. $(B \circ U_n \circ A)(x_n) \to 0$ in norm of T and the relation (4) implies: $||h(U_n)|| \rightarrow 0$, i.e. h is a Gelfand-Phillips operator.

b) Let $(U_n)_{n\in\mathbb{N}} \subset L(Y, Z)$ such that: $U_n \to 0$ weak and $(U_n)_{n\in\mathbb{N}}$ is a limited sequence. For $n \in \mathbb{N}$, let $x_n \in X$, $||x_n|| = 1$, such that:

(5)
$$||h(U_n)|| - \frac{1}{n} < ||h(U_n)(x_n)|| = ||(BU_n A)(x_n)||.$$

Let $z^* \in Z^*$, $y^{**} \in Y^{**}$ and $y^{**} \otimes z^*$: $L(Y, Z) \to R(C)$ be the functional, $(y^{**} \otimes z^*)(S) = y^{**}(S^*(z^*))$. Since $U_n \to 0$ weak, we obtain $\langle U_n, y^{**} \otimes z^* \rangle \to 0$, i.e. $\langle z^* \circ U_n, y^{**} \rangle \to 0$ or $y^{**} \in Y^{**}$ being arbitrary that: $z^* \circ U_n \to 0$ weak. Also $(z^* \circ U_n)_{n \in \mathbb{N}} \subset Y^*$ is a limited sequence. Indeed, if $y_n^{**} \to 0$ weak*, then $(y_n^{**} \otimes z^*)_{n \in \mathbb{N}} \subset (K(Y, Z))^*$ defined as above is clearly weak* converging to 0, and since $(U_n)_{n \in \mathbb{N}}$ is a limited sequence $\langle U, y_n^{**} \otimes z^* \rangle \to 0$, $y_n^{**}(U^*(z^*)) \to 0$. But $A \in GP^{dual}(X, Y)$ implies $A^*(z^* \circ U_n) \to 0$ in norm or, $z^* \circ U_n \circ A \to 0$ in norm of X^* , hence $(z^* \circ U_n \circ A)(x_n) \to 0$, i.e. $\langle (U_n \circ A)(x_n), z^* \rangle \to 0$ and since $z^* \in Z^*$ is arbitrary this shows that: $(U_n \circ A)(x_n) \to 0$ weak. Now $B \in DP(Z, T)$ and hence: $B((U_n \circ A)(x_n)) \to 0$ in norm of T, i.e. $(B \circ U_n \circ A)(x_n) \to 0$ in norm of T and the relation (5) implies: $||h(U_n)|| \to 0$, i.e. h is a Gelfand-Phillips operator.

The point a) is an extension of Corollary 2.3 from [1] and the point b) is an extension of Theorem 2 from [2].

Corollary 5. $GP^{dual} \otimes_{\pi} DP^{dual} \subset GP^{dual}$.

Proof. Let $U \in L(X, X_1)$, $V \in L(Y, Y_1)$ and $U \otimes_{\pi} V : X \otimes_{\pi} Y \to X_1 \otimes_{\pi} Y_1$ the projective tensor product. Then: $h = (U \otimes_{\pi} V)^* : L(X_1, Y_1^*) \to L(X, Y^*)$ has the action $h(\psi) = V^* \circ \psi \circ U$, i.e. is the operator h from Proposition 4 corresponding to A = U, $B = V^*$. The corollary follows from Proposition 4.

The same example as above, i.e. the identity operator on $L(l_2, l_2)$, which is the dual of $i \otimes_{\pi} i : l_2 \otimes_{\pi} l_2 \rightarrow l_2 \otimes_{\pi} l_2$ ($i : l_2 \rightarrow l_2$ is a Gelfand-Phillips operator, l_2 is separable) shows that the dual of Gelfand-Phillips operators is not projective tensor stable, since $L(l_2, l_2)$ contains a copy of l_{∞} and l_{∞} is not a Gelfand-Phillips space.

DUMITRU POPA

REFERENCES

- [1] L. Drewnowski G. Emmanuele, *On Banach spaces with the Gelfand-Phillips property, II*, Rend. Circolo Matematico Palermo, (2) 38 (1989), pp. 377–391.
- [2] G. Emmanuele, *On Banach spaces with the Gelfand-Phillips property, III*, J. Math. Pures Appl., 72 (1993), pp. 327–333.
- [3] D. Popa, *On some classical theorems in measure theory*, Bull. Polish. Acad. Sci., 40 4, (1992), pp. 255–263.
- [4] R.A. Ryan, *The Dunford-Pettis property and projective tensor product*, Bull. Polish. Acad. Sci., 35 11/12 (1987), pp. 785–792.

Department of Mathematics, University of Constanta, Bd. Mamaia 124, 8700 Constanta (ROMANIA)