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SOME IDEALS OF OPERATORS BETWEEN
SPACES OF OPERATORS

DUMITRU POPA

For Ae L(X,Y), Be L(Z, T) we consider the operator 4 : L(Y, Z) —
L(X,T), h(U) = BUA. We prove that in some hypotheses about A and
B the operator £ is in some ideal of operators. As a consequence we obtain
that the ideals of Dunford-Pettis dual operator and weak™*-norm sequentially
continuous operators are projective tensor stable, Nc?4 @, ppdual
chual , GPdual ®x DPdual C GPd“al.

Let U € L(X,Y) be. U is called a Dunford-Pettis operator if: x, — 0
weak, implies U(x,) — O in norm. U is called an unconditionally converg-
oo

ing operator if: for each weakly unconditionally Cauchy series Y x,, i.e.

n=1

o

> |x*(x,)| < oo, for each x* € X*, it follows that: U(x,) — O in norm.
n=1

A sequence (x,),ey C X 1is called limited sequence if for every x; — 0
weak™, implies x;(x,) — 0. An operator U € L(X,Y) is called a Gelfand-
Phillips operator if for each (x,),ey C X limited weakly null sequence it fol-
lows: U(x,) — 0 in norm. U has weak*-norm sequentially continuous dual
if: x; — 0 weak™, implies U*(x;) — 0 in norm. We denote DP, Nc, GP
the ideal of the Dunford-Pettis, unconditionally converging, Gelfand-Phillips
operators.
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Proposition 1. Let A € DP™(X Y) (resp. A € Nc(X,Y)), B
DP(Z,Tyand h : L(Y,Z) - L(X,T), h(U) = BUA. Then h is a Dunford-
Pettis operator (resp. an unconditionally converging operator).

Proof. Suppose first that A € D P4 (X, Y). Let (U,)pen C L(Y, Z) such that:
U, — 0 weak. Forn e Nlet x, € X, ||x,|| = 1, such that:

1
M AU — i AU = I(BU, A)(xa)Il-

Let z¥ € Z*, y* € Y** and y** ® z": L(Y,Z) — R(C) be the functional,
™ ® z")(S) = y*™*(§*(z*)). Since U, — 0 weak, we obtain (U,, y** ® z*) —
0,ie. (z*oU,, y**) — 0, or y** € Y** being arbitrary, that: z* o U,, — 0 weak.
But A € DP9 (X, Y) implies A*(z* o U,) — O innormor, z* o U, 0 A — 0
in norm of X*, hence (z* o U, o A)(x,) — 0, ie. (U, o A)(x,), 7*) — 0O
and since z* € Z* is arbitrary this shows that: (U, o A)(x,) — 0 weak.
Now B € DP(Z,T) and hence: B((U, o A)(x,)) — 0 in norm of T, i.e.
(BoU, o A)x,) — 0innorm of T and the relation (1) implies ||A(U,)| — O,
i.e. h is a Dunford-Pettis operator.

oo
Suppose now A € Nc?a (X, Y). Letbe now Y U, a weakly uncondition-

n=1
ally Cauchy series. For n € N let x, € X, ||x,|| = 1, such that:
1
(2) AU — o< AU = I(BU, A)(xn)Il

Let z* € Z*, y* € Y* and y** ® 7*: L(Y,Z) — R(C) be the functional,
o
™ ® 2)(S) = y™(S*(z*)). Since Y _ U, is a weakly unconditionally Cauchy

n=1

o o
series we obtain: Y [(U,, y** ® z*)| < oo, i.e. Y [(z" o U,, y™)| < co. But

n=1 n=1
oo
y** € Y** being arbitrary this means that: ) z*oU, is a weakly unconditionally
n=1
Cauchy series. But A € Nc?4 (X, Y) implies A*(z* o U,) — 0 in norm or,
7o U, o A — 0 in norm of X*, from where: (z* o U, o A)(x,) — O,
ie. {((U, o A)(x,),z") — 0 and since z* € Z* is arbitrary this shows that;
(U, 0o A)(x,) = 0 weak. Now B € DP(Z, T) and hence: B((U, o A)(x,)) = 0
in norm of T, ie. (B o U, o A)(x,) — 0 in norm of T and the relation (2)
implies ||A(U,)|| — 0, i.e. k is an unconditionally converging operator.
Let us observe that the same proof is still true if 2 : K(Y, Z) - K(X, T),
h(U) = BUA, where K(X,Y) is the space of all compact operators from X
into the Y equipped with the operatorial norm.
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Corollary 2. a) The ideal of all Dunford-Pettis dual operators is projective
tensor stable, i.e. DP9 @ D Pt c ppdual
b) chual R Dpdual C chual‘

Proof. LetUeL(X,X1),VeLY,Y)andU ®,V :XQ®,Y - X; ®; Y]
the projective tensor product. Then: h = (U ®, V)* : L(Xy, Y{) — L(X,Y¥)
has the action h(yy) = V* o ¢/ o U, i.e. is the operator 4 from Proposition 1
correspondingto A = U, B = V*. The corollary follows from Proposition 1.

A naturally question is: the ideal of all dual unconditionally converging
operators is projective tensor stable, i.e. Nc®¥ ®, Nc®d c Nc?a9 The
answer is no. Take the identity operator i : I, — [, which has the dual
unconditionally converging, since /, does not contain a copy of ¢y and use the
well-known result of Pelczynski, but the dualof i @, i : [, @ Ir = [, ®, I»
is the identity operator on L(/;, [;) which contains copy of ¢y and hence is not
unconditionally convergent. (The application ¢ : ¢c¢ — L(l, 1), x — ¢(x)
where ¢(x) : L — b, Px)(Y) = XnYnneN> X = (Xp)nen> Y = (Vnlnen € [, is
an isometry). The point a) extend a result of [4].

Also in [3] is proved that if X has the Schur property, then /{(X), the

oo

space of all unconditionally convergent series ) x,, equipped with the norm
n=1
oo

e((Xp)nen) = sup Y [x*(x,)|, has the Schur property. Since as is well-known

<1 n=1

[{(X) = K(co, X) and the identity operator correspond to & : K(co, X) —
K(co, X), h(U) =iUl,i:cy — cp, I : X — X being the identity operator,
then using the remark from the Proposition 1, we obtain that 4 is a Dunford-
Pettis operator, i.e. [{(X) = K(co, X) has the Schur property.

Proposition 3. The ideal of all dual weak* -norm sequentially continuous oper-
ators is projective tensor stable.

Proof. Let Ae L(X,Y), Be L(Z, T) be two operators with dual weak*-norm
sequentially continuous, A ®,; B : X ®,; Z — Y ®, T the projective tensor
productand h = (U®, V)" : L(Y, T*) — L(X, Z*) the dual of U ®, V, which
has the action A(yy) = B* o ¢ o A. Let ¢, — 0 weak™. ForneN, let x,, € X,
Zn € Z, |x,|l = llzx]l = 1, such that:

1
() L] P 1AW x)@)IE = I(B™ o ¥, 0 A)(x)I(za)l-

Then foreach yeY andt €T, (t, V,(¥)) = (y ® ¢, ¥,) — 0,ie. ¥,(y) — 0
weak*. Since B* : T* — Z* is weak™-norm sequentially continuous we have:
B*(Y,(y)) — 0 in norm of Z*, and thus [(B* o ¥,,)(¥)](z,) — 0. Denoting
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for z € Z by z € Z** the canonical mapping associated to z into the bidual the
above relation shows that: (Z, o B¥oy,)(y) — 0, i.e. Z, o B* oy, — 0 weak*.
Now since A* : Y* — X™* is weak*-norm sequentially continuous, we have:
A*(Z, 0 B*o,) — 0innorm of X* and hence: [A*(Z, o B*oy,)](x,) — 0 in
norm of X, [Z, o B* o ¥, 1(Ax,) = [(B* 0 ¥, 0 A)(x,)](z,) — 0, in norm of X.
The relation (3) implies that: ||h(y,)|| — O, i.e. h is weak*-norm sequentially
continuous and the proposition is proved.

Proposition 4. a) Let A€ GP™¥(X,Y), Be GP(Z,T)and h : K(Y, Z) —
K(X,T), h(U) = BUA. Then h is a Gelfand-Phillips operator.
b) Let A € GP™(X,Y), Be DP(Z,T) and h : L(Y,Z) — L(X,T),
h(U) = BUA. Then h is a Gelfand-Phillips operator.

Proof. a) Let (U,)ueny C K(Y, Z) such that: U, — 0 weak and (U,),en 1S a
limited sequence. For n € N, let x,, € X, ||x,|| = 1, such that:

1
“) AU — P AU = 1(BU, A)(x)Il-

Let z" e Z*, y* e Y™ and y** ® z* : K(Y,Z) — R(C) be the functional,
" ®z7*)(S) = y**(S*(z*)). Since U, — 0 weak we obtain (U, y"*®z") — 0,
ie. (8o U,, y*™*) — 0, or y** € Y** being arbitrary that: z* o U, — 0
weak. Also (2" o Up)pen C Y™ is a limited sequence. Indeed, if y;* — 0
weak*, then (y;* ® 7*),en C (K(Y, Z))* defined as above is clearly weak®
converging to 0, and since (U,),en is a limited sequence (U, y* ® z*) — 0,
y*(U*(z*)) — 0. But A € GP™!(X,Y) implies A*(z* o U,) — 0 in
norm or, z* o U, o A — 0 in norm of X*, hence (z* o U, o A)(x,) — O,
ie. (U, o A)(x,), ) — 0 and since z* € Z* is arbitrary this shows that:
(U, o A)(x,) — 0 weak. Also (U, o A)(x,))nen C Z is a limited sequence.
Indeed, for z; — 0 weak®, let @, : K(Y,Z) — R(C) be the functional
a,(S) = 2 ((S o A)(x,)) = [S*(2))](Ax,). Since S € K(Y, Z), S* is compact
and hence weak*-norm sequentially continuous, i.e. $*(z}) — 0 in norm and
in particular, «,(S) = [S*(z})I(Ax,) — 0. Thus o, — 0 weak®, hence
(Up)nen being a limited sequence «,(U,) — 0, z:((U, o A)(x,)) — O, ie.
(U, 0 A)(xp))neny C Z is a limited sequence. Now B € G P(Z, T) and hence:
B((U, o A)(x,)) > O innorm of T, i.e. (B o U, o A)(x,) — 0 in norm of T
and the relation (4) implies: ||hA(U,)|| — 0, i.e. & is a Gelfand-Phillips operator.

b) Let (U,),en C L(Y, Z) such that: U, — 0 weak and (U,),en 1S a
limited sequence. For n e N, let x,, € X, ||x,|| = 1, such that:

1
®) AU — P AU = 1(BU, A)(x)Il-
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Let z* € Z*, y*™* € Y™ and y** ® z*: L(Y,Z) — R(C) be the functional,
O ® °)(S) = y*(§*(z*)). Since U, — 0 weak, we obtain (U,, y** ® z*) —
0,i.e. ("o U,, y**) — 0 or y** € Y™ being arbitrary that: z* o U, — 0 weak.
Also (z* o Up)neny C Y™ is a limited sequence. Indeed, if y;* — 0 weak*, then
7 @ 2¥)men C (K (Y, Z))* defined as above is clearly weak™ converging to O,
and since (U, ),en 1s a limited sequence (U, y;* ® z*) — 0, y:*(U*(z*)) — 0.
But A € GP9(X,Y) implies A*(z* o U,) — 0 innormor, z* o U, 0 A — 0
in norm of X*, hence (z* o U, o A)(x,) — 0, i.e. (U, o A)(x,),z") — 0O
and since z* € Z* is arbitrary this shows that: (U, o A)(x,) — 0 weak.
Now B € DP(Z,T) and hence: B((U, o A)(x,)) — 0 in norm of T, i.e.
(BoU, o A)(x,) — 0innorm of T and the relation (5) implies: ||2(U,)| — O,
i.e. h is a Gelfand-Phillips operator.

The point a) is an extension of Corollary 2.3 from [1] and the point b) is an
extension of Theorem 2 from [2].

Corollary 5. G P4 g, D Pl c Gpdnal,

Proof. LetU e L(X,X,),VelLY, Y1))andU ®,V : X, Y — X| ®, Y
the projective tensor product. Then: 7 = (U ®; V)* : L(Xy, Y{) — L(X,Y¥)
has the action h(yy) = V* o ¢ o U, i.e. is the operator & from Proposition 4
correspondingto A = U, B = V*. The corollary follows from Proposition 4.

The same example as above, i.e. the identity operator on L(l», l;), which
isthedualof i R, i : b ®; lh > L ®; L, (i : [, — [, is a Gelfand-Phillips
operator, /, is separable) shows that the dual of Gelfand-Phillips operators is
not projective tensor stable, since L(/, [;) contains a copy of [, and [, is not a
Gelfand-Phillips space.
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