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BLOCKING SETS OF SMALL SIZE AND

COLOURINGS IN FINITE AFFINE PLANES

SANDRO RAJOLA - MARIA SCAFATI TALLINI

Let (S,L) be an either linear or semilinear space and X ⊂ S . Starting
from X we de�ne three types of colourings of the points of S . We characterize
the Steiner systems S(2, k, ν) which have a colouring of the �rst type with
X = {P}. By means of such colourings we construct blocking sets of small
size in af�ne planes of order q . In particular, from the second and third type
of colourings we get blocking sets B with |B| ≤ 2q − 2.

1. Three different colourings in a semilinear space.

Let S be a semilinear space, that is a pair (S, L) where S is a non-empty
set of elements called points and L is a family of subsets of S called lines, such
that L is a covering of S , every line has at least two points, through two distinct
points there is at most one line. Let X be a subset of S , we de�ne in (S, L) three
types of colourings of the points starting from X . We denote such colourings
by X1, X2, X3 colouring respectively.

X1 colouring of S:
The points of any external line to X have different colours.

X2 colouring of S:
The points of any tangent to X have different colours.

X3 colouring of S:
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The points of any secant s to X , (|s ∩ X | ≥ 2), have different colours.

2. The X1 colourings of S.

Let Le(X ) �= ∅ be the set of lines of L external to X . Set

ke = max
s∈Le(X )

|s|.

Let C1 be a X1 colouring of S and let N1 be the number of colours of C1 . Let
P1 be the partition of S determined by C1 :

P1 = {Ai }i=1,...,N1
.

Lemma 1. For every line s external to X and for every i = 1, . . . , N1 we have:

|s ∩ Ai | ≤ 1.

Proof. The proof follows since the points of an external line to X have different
colours.

Lemma 2. The following inequality holds:

N1 ≥ ke .

Proof. Let s be a line of S external to X with |s| = ke . Since the points of s
have different colours, the proof follows.

If N1 = ke , we call C1 minimal. Obviously, if C1 is minimal, every
external line to X of size ke is tangent to every class Ai of P1.
A partial Steiner system is a semilinear space such that the lines have the same
size [4]. Now let us consider the minimal X1 colourings in a partial Steiner
system S = (S, L). Let

|S| = v , |s| = k,

for any s ∈ L. Let X be a set of S having some external line and let C1 be a
minimal X1 colouring of S. We have:

N1�

i=1

|Ai | = v.
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Now let
m1 = min

i=1,...,N1

|Ai |.

It follows that

(1) v =

N1�

i=1

|Ai | ≥ N1m1 , v = N1m1 ⇐⇒ |Ai | = m1 , i = 1, . . . , N1.

By (1), since C1 is minimal and N1 = ke = k, it follows that

(2) m1 ≤ v/k , m1 = v/k ⇐⇒ |Ai | = m1 , i = 1, . . . , N1 .

Let A∗
i ∈ P1 with |A∗

i | = m1. The following theorem holds:

Theorem 3. The set I = X ∪ A∗
i of S is an intersection set (i.e. the set meets

every line) such that
|I | ≤ |X | + v/k .

The equality holds, if and only if, X ∩ A∗
i = ∅ and |Ai | = m1, i = 1, . . . , N1 .

Proof. Let s be any line S. If s meets X , then s∩ (X ∪ A∗
i ) �= ∅. If s is external

to X , then s is tangent to A∗
i , since C1 is minimal and |s| = k for every s ∈L.

It follows that s ∩ (X ∪ A∗
i ) �= ∅.

We get

|I | = |X ∪ A∗
i | ≤ |X | + |A∗

i | = |X | +m1 ≤ |X | + v/k.

Moreover, if

|I | = |X | + v/k, then m1 = v/k,

|X ∪ A∗
i | = |X | + |A∗

i |,

and by (2)
|Ai | = m1 , i = 1, . . . , N1 , X ∩ A∗

i = ∅.

Conversely, if the above conditions are satis�ed, by (2) we get

m1 = v/k , X ∩ A∗
i = ∅

and then
|I | = |X | + v/k.

The set I is called intersection set related to X and C1 . Obviously, for any A∗
i

there is a unique set I . By Theorem 3 we get the following
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Corollary 4. Let S be a partial Steiner system. Let Y be any intersection set of
S. Let X be a subset of S such that X ∩ Y = ∅, S has a minimal X1 colouring
C1 and there is an intersection set I = X ∪ A∗

i related to X and C1 such that

I ∩ Y = ∅.

Then I and Y are blocking sets (i.e. sets meeting every line and not containing
a line) of S, since I and Y are two disjoint intersection sets. Moreover, we get:

|I | ≤ |X | + v/k.

Example 5. Let π be a Fano plane. Let A, B,C, D, E, F,G be the points
of π and {A,G,C}, {A, D, E}, {A, F, B}, {C, E, B}, {C, D, F}, {F, E,G},
{B, D,G} the lines of π . Let S be the partial Steiner system whose points are
those of π and whose lines are the lines of π not through A. Let X = {B}.

A minimal X1 colouring C1 of S is the following:

P1 = {{G,C}, {D, E}, {B, F, A}}.

In S there are two intersection sets related to X and C1 :

X ∪ {G,C} , X ∪ {D, E}.

We remark that they are both blocking sets. The blocking set I = X ∪{G,C} is
constructed from the Corollary by choosing Y = {D, E} and A∗

i = {G,C}. The
blocking set I � = X ∪{D, E} is constructed similarly by choosing Y = {G,C},
A∗
i = {D, E}.

Example 6. Let (S, L) = PG(2, 3) and let X be a 4-arc of PG(2, 3), that is
an irreducible conic of PG(2, 3). Let e1, e2, e3 be three external lines to X . Let
E1, E2, E3 be three non-collinear points such that:

E1 ∈ e1 − e1 ∩ e2 − e1 ∩ e3,

E2 ∈ e2 − e2 ∩ e1 − e2 ∩ e3,

E3 ∈ e3 − e3 ∩ e1 − e3 ∩ e2.

Let
X = {F,G, H, L},

V = e1 ∩ e3, Z = e1 ∩ e2, T = e2 ∩ e3,

M = e1 − V − Z − E1, P = e3 − V − T − E3,U = e2 − Z − T − E2.
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A minimal X1 colouring C1 of PG(2, 3) is the following:

P1 = {{V ,U, F, L}, {T ,M,G}, {E1, E2, E3}, {Z , P, H }}.

In PG(2, 3) there are three intersection sets related to X and C1 . As before they
are blocking sets. They are

X ∪ {T ,M,G}, X ∪ {E1, E2, E3}, X ∪ {Z , P, H }.

The blocking set I = X ∪ {T ,M,G} is constructed by choosing Y as the
complement of I . A similar construction holds for the other two blocking sets.

Example 7. Let πq be a �nite projective plane of order q . Let O be a point of
πq and s1, . . . , sq+1 the lines through O. Let X be a set of πq such that:

X ⊂ sq+1, O ∈ X, 1 ≤ |X | ≤ q.

A minimal X1 colouring C1 of πq is the following:

P1 = {s1 ∪ X, s2 − {O}, . . . , sq − {O}, sq+1 − X }.

If |X | = 1, that is X = {O}, this colouring is called radial colouring with
centre O .
We remark that there are semilinear spaces S where not any subset X gives rise
to a minimal X1 colouring, as the following example shows.

Example 8. Let S be the following linear space:

S = {A, B,C, D, E, F,G, H, L,M},

L = {{A, B,C, D}, {A, E, F,G}, {D,G, H, L}, {C, F,M, L}, {B, E,M, H },

{A,M}, {A, L}, {B, F}, {B,G}, {B, L},

{A, H }, {C, E}, {C,G}, {C, H }, {D, E},

{D, F}, {D,M}, {E, L}, {F, H }, {G,M}}.

If X = {A}, then S does not have any minimal X1 colouring. If C1 is a minimal
X1 colouring, we get |P1| = 4 and the points B, E,M, H have different
colours, since they belong to the same external line to X . Let b, e,m, h be
the colours of B, E,M, H respectively. The point C has none of the colours
e,m, h, since the 2-line CE , the 4-line CFML and the 2-line CH are external
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to X = {A}. Therefore C has necessarily the colour b. Similarly, D has the
colour b and F,G have the colour e. Then L has the colour h, since the line
CFML is external to X . We get a contradiction, since the line DGH L , external
to X , contains the points L, H of the same colour h. The contradiction proves
that S has not a minimal {A}1 colouring.

The Corollary can be used to construct a blocking set B of a non-
desarguesian �nite af�ne plane αq , with |B| ≤ t , where t is a �xed integer.
In order to do this, we choose in αq a blocking set Y and a set X such that

X ∩ Y = ∅, |X | + v/k = |X | + q ≤ t,

that is such that |X | ≤ t − q . Then we construct a minimal X1 colouring of αq
and we consider I = X ∪ A∗

i = B . If B ∩ Y = ∅, then B is a blocking set of
αq such that |B| ≤ t . We prove the following theorem:

Theorem 9. Let P be a point of a Steiner system S(2, k, v). If S has a minimal
{P}1 colouring C1 , then S is a projective plane and C1 is a radial colouring
with centre P .

Proof. Let C1 be a minimal X1 colouring of S . If r denotes the number of
lines through any point of S , let s1, . . . , sr be the lines through P . If sj1, sj2 are
two lines through P and P1, P2 are two points such that P1 ∈ sj1 − {P}, P2 ∈

sj2 − {P}, the line P1, P2 is external to X = {P}. The P1 and P2 have different
colours. It follows that

N1 ≥ r = (v − 1)/(k − 1).

Since
r ≥ k,

we get
N1 ≥ (v − 1)/(k − 1) ≥ k.

Since C1 is minimal, we get

N1 = k = (v − 1)/(k − 1).

It follows that
v = k2 − k + 1,

that is S is an S(2, k, k2 − k + 1), i.e. a projective plane of order q = k − 1 and
then r = k. Since N1 = k = r and two points x , y ∈ S with x �= y , x �= P ,
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x P �= yP have different colours, it follows that C1 is radial with centre P . So
the theorem is proved.

We remark that in Theorem 9 the hypothesis that S is a Steiner system is
essential. The following example proves that there are linear spaces, which are
not Steiner systems, and therefore not projective planes, having a minimal {P}1
colouring.

Example 10.

S = {X, Y, Z , T ,U, V},

L = {{X, Y, T }, {V , X, Z}, {V , T}, {Y, Z },

{V , Y }, {T , Z }, {V,U }, {Y,U }, {X,U }}.

Since the lines of S have not the same size, then S is not a Steiner system.

This linear space S has the following minimal {X }1 colouring.

P1 = {{V , X, Z }, {Y, T}, {U }}.

3. The X2 colourings of S.

Assume that the subset X has some tangent line and let Lt (X ) be the set
of lines of L tangent to X . Set:

kt = max
s∈Lt

|s|.

Let C2 be a X2 colouring of S = (S, L) and N2 the number of colours of C2 .
Let P2 be the partition of S determined by C2 , that is

P2 = {A�
i }i=1,...,N2

.

Lemma 11. For any line s tangent to X and for any i = 1, . . . , N2 we get:

|s ∩ A�
i | ≤ 1.

The proof is like in Lemma 1.

Lemma 12. We get
N2 ≥ kt .
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The proof is like in Lemma 2.

If N2 = kt , we call C2 minimal. Obviously, if C2 is minimal, then every
line of size kt tangent to X is tangent to every class A�

i , i = 1, . . . , N2, of P2.
Now we consider the minimal X2 colourings in a partial Steiner system.
Let S = (S, L) be a partial Steiner system and let

v = |S| , k = |s|,

for any s ∈ L.
Let X be a set of S having some tangent line and let C2 be a minimal X2

colouring of S. With the same notations of the previous section, we get:

N2�

i=1

|A�
i | = v.

Now let
m2 = min

i=1,...,N2

|A�
i |.

It follows that

(3) v =

N2�

i=1

|A�
i | ≥ N2m2, v = N2m2 ⇐⇒ |A�

i | = m2, i = 1, . . . , N2 .

By the above equalities it follows (since C2 is minimal and then N2 = k):

(4) m2 ≤ v/N2 = v/k , m2 = v/k ⇐⇒ |A�
i | = m2, i = 1, . . . , N2.

Now we give two examples of minimal X2 colourings.

Example 13.

S = {A, B,C, D, E, F,G, H, L},

L = {{A, B,C}, {D, E, F}, {G, H, L}, {A, D,G},

{B, E, H }, {C, F, L}, {A, E, L}, {G, E,C}}.

Let X = {A, B}. A minimal X2 colouring of S is the following:

P2 = {{A, B,C}, {D, E, F}, {G, H, L}}.

We remark that there are semilinear spaces S where not any subset X gives rise
to a minimal X2 colouring, as the following example shows.
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Example 14.

S = (S, L) = PG(2, 2),

S = {A, B,C, D, E, F,G},

L = {{A, B,C}, {C, D, E}, {A, F, E},

{A,G, D}, {E,G, B}, {C,G, F}, {B, D, F}}.

The set X = {A, B,C} has some tangent line, but does not give rise to any
minimal X2 colouring of PG(2, 2). For, let C2 be a minimal X2 colouring
of PG(2, 2). The line {A, F, E} is tangent to X and let a, f, e the colours of
A, F, E respectively. The point G must have one of the colours a, f, e, since X2

is minimal and the lines of PG(2, 2) have three points. The point G cannot have
the colours a, f, e, since the lines {A,G, D}, {C,G, F}, {B,G, E} are tangent
to X , a contradiction which proves that a minimal X2 colouring of PG(2, 2)
does not exist.

4. The X3 colourings of S.

Assume that the subset X of S has some secant line z and let Ls (X ) be the
set of lines of L secant to X . Set

ks = max
z∈Ls (X )

|z|.

Let C3 be a X3 colouring of S and let N3 be the number of colours of C3 . Let
P3 be the partition determined by C3 :

P3 = {A��
i }i=1,...,N3

.

Lemma 15. For any line z secant to X and for any i = 1, . . . , N3 , we get

|z ∩ A��
i | ≤ 1.

The proof is like in Lemma 1.

Lemma 16. We get
N3 ≥ ks .
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The proof is like in Lemma 2.

If N3 = ks , we call C3 minimal. Obviously, if C3 is minimal, then every
line of size ks secant to X is tangent to every class A��

i , i = 1, . . . , N3 of P3.
Now we consider the minimal X3 colourings in a partial Steiner system.
Let S = (S, L) be a partial Steiner system and let

v = |S| , k = |z|,

for any z ∈ L.
Let X be a set of S having some secant line and let C3 be a minimal X3

colouring of S. With the same notations of the previous Section we get:

N3�

i=1

|A��
i | = v.

Now let
m3 = min

i=1,...,N3

|A��
i |.

It follows that

(5) v =

N3�

i=1

|A��
i | ≥ N3m3, v = N3m3 ⇐⇒ |A��

i | = m3, i = 1, . . . , N3.

By the above equation it follows (since C3 is minimal and then N3 = k):

(6) m3 ≤ v/N3 = v/k , m3 = v/k ⇐⇒ |A��
i | = m3 , i = 1, . . . , N3.

Example 17.

S = (S, L) = PG(2, 2),

S = {A, B,C, D, E, F,G},

L = {{A, B,C}, {C, D, E}, {A, F, E}, {E,G, B},

{F,G,C}, {A,G, D}, {F, D, B}}.

Let X = {A,C, E}. A minimal X3 colouring of PG(2, 2) is the following:

P3 = {{A, D}, {C, F}, {E,G, B}}.

Example 18.
S = (S, L) = PG(2, 2).

S and L are like in Example 17.
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Let X = {A, E}. A minimal X3 colouring of PG(2, 2) is the following:

P3 = {{A, B,C}, {F,G}, {E, D}}.

We remark that there are semilinear spaces L where not any subset X gives rise
to a minimal X3 colouring, as the following example shows.

Example 19.
S = (S, L) = PG(2, 2).

S and L are like Example 17.

Let X = {A, B,G, F}. Let C3 be a minimal X3 colouring of S. The
line {A, B,C} is secant to X and the points A, B,C have different colours
a, b, c, respectively. The colours a, b, c are all the colours of C3 , since C3 is
minimal. The point G cannot have the colours a, b, c, since the lines {A,G, D},
{E,G, B}, {F,G,C} are secant to X . A contradiction which proves that a
minimal X3 colouring of PG(2, 2) does not exist.

5. The minimal skew irregular X j colourings of a partial Steiner system
and the construction of blocking sets.

Let S = (S, L) be a partial Steiner system and let X be a subset of S . Let
Cj be a minimal Xj colouring of S, j = 1, 2, 3, and let mj be the minimal size
of the classes of Pj . We say that Cj is skews if there is a class A∗ ∈ Pj with
|A∗| = mj , such that X ∩ A∗ = ∅. We say that Cj is irregular if there are two
classes of Pj having different sizes. The minimal X2 colouring of Example 13
is skew and not irregular. The minimal X1 colouring of Examples 5, 6, 7 are
skew and irregular. The minimal X3 colouring of Example 17 is irregular and
not skew. The minimal X3 colouring of Example 18 is irregular and skew.

The minimal X j , j = 2, 3 colourings can be applied to �nd blocking sets in
�nite af�ne planes as follows.

Let αq be a �nite af�ne plane of order q and let X be an intersection set of
αq having some tangent line. Assume that αq has a minimal X2 skew irregular
colouring C2 and a minimal X3 skew irregular colouring C3 . Let A∗

2 be a class
of P2 such that |A∗

2 | = m2 and A∗
2 ∩ X = ∅ and let A∗

3 be a class of P3 such
that |A∗

3 | = m3 and A∗
3 ∩ X = ∅. We remark that the set A∗ = A∗

2 ∪ A∗
3 is a

blocking set of αq and then X is a blocking set too. In fact, A∗ does not contain
lines, since A∗ ∩ X = ∅ and X is an intersection set. Moreover, any line of αq
is either tangent to X (and then it is tangent also to A∗

2 , since C2 is minimal), or
it is secant to X (and then it is tangent to A∗

3 , since C3 is minimal). Therefore
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every line meets A∗
2 ∪ A∗

3 . Moreover, X is an intersection set not containing
lines (that is a blocking set). For, if X contains a line, such a line is external to
A∗ which is a blocking set. This proves the remark. We get

|A∗| ≤ 2q − 2.

In fact, by (4) and (6) it follows that m2 ≤ q , m3 ≤ q and therefore |A∗
2 | ≤ q ,

|A∗
3 | ≤ q . The case |A∗

2 | = q is impossible, otherwise the other classes of P2

(which have at least q points) have all the same size q . A contradiction, since
C2 is irregular. Similarly we prove that |A∗

3 | = q is impossible too. Therefore
we get:

|A∗
2 | ≤ q − 1, |A∗

3 | ≤ q − 1.

This implies
|A∗| ≤ |A∗

2 | + |A∗
3 | ≤ 2q − 2.

Thus the following Theorem is proved:

Theorem 20. Let X be an intersection set of a non-desarguesian �nite af�ne
plane αq . If αq has both a minimal skew irregular X2 colouring C2 and a
minimal skew irregular X3 colouring C3 , then αq contains a blocking set B ,
with |B| ≤ 2q − 2. Such a blocking set B coincides with A∗

2 ∪ A∗
3 , where A

∗
2 is

a class of C2 of minimal size and such that A
∗
2 ∩ X = ∅ and A∗

3 is a class of C3

of minimal size such that A∗
3 ∩ X = ∅.
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