BLOCKING SETS OF SMALL SIZE AND COLOURINGS IN FINITE AFFINE PLANES

SANDRO RAJOLA - MARIA SCAFATI TALLINI

Let (S, \mathcal{L}) be an either linear or semilinear space and $X \subset S$. Starting from X we define three types of colourings of the points of S. We characterize the Steiner systems $S(2, k, v)$ which have a colouring of the first type with $X=\{P\}$. By means of such colourings we construct blocking sets of small size in affine planes of order q. In particular, from the second and third type of colourings we get blocking sets B with $|B| \leq 2 q-2$.

1. Three different colourings in a semilinear space.

Let S be a semilinear space, that is a pair (S, \mathcal{L}) where S is a non-empty set of elements called points and \mathcal{L} is a family of subsets of S called lines, such that \mathcal{L} is a covering of S, every line has at least two points, through two distinct points there is at most one line. Let X be a subset of S, we define in (S, \mathcal{L}) three types of colourings of the points starting from X. We denote such colourings by X_{1}, X_{2}, X_{3} colouring respectively.
X_{1} colouring of S :
The points of any external line to X have different colours.
X_{2} colouring of ς :
The points of any tangent to X have different colours.
X_{3} colouring of S :
Entrato in Redazione il 10 novembre 1997.

The points of any secant s to $X,(|s \cap X| \geq 2)$, have different colours.

2. The X_{1} colourings of \mathcal{S}.

Let $\mathcal{L}_{e}(X) \neq \emptyset$ be the set of lines of \mathcal{L} external to X. Set

$$
k_{e}=\max _{s \in \mathcal{L}_{e}(X)}|s|
$$

Let C_{1} be a X_{1} colouring of S and let N_{1} be the number of colours of C_{1}. Let \mathcal{P}_{1} be the partition of S determined by C_{1} :

$$
\mathcal{P}_{1}=\left\{A_{i}\right\}_{i=1, \ldots, N_{1}}
$$

Lemma 1. For every line s external to X and for every $i=1, \ldots, N_{1}$ we have:

$$
\left|s \cap A_{i}\right| \leq 1
$$

Proof. The proof follows since the points of an external line to X have different colours.

Lemma 2. The following inequality holds:

$$
N_{1} \geq k_{e}
$$

Proof. Let s be a line of S external to X with $|s|=k_{e}$. Since the points of s have different colours, the proof follows.

If $N_{1}=k_{e}$, we call C_{1} minimal. Obviously, if C_{1} is minimal, every external line to X of size k_{e} is tangent to every class A_{i} of \mathscr{P}_{1}.
A partial Steiner system is a semilinear space such that the lines have the same size [4]. Now let us consider the minimal X_{1} colourings in a partial Steiner system $\mathcal{S}=(S, \mathcal{L})$. Let

$$
|S|=v, \quad|s|=k
$$

for any $s \in \mathcal{L}$. Let X be a set of S having some external line and let C_{1} be a minimal X_{1} colouring of S. We have:

$$
\sum_{i=1}^{N_{1}}\left|A_{i}\right|=v
$$

Now let

$$
m_{1}=\min _{i=1, \ldots, N_{1}}\left|A_{i}\right|
$$

It follows that
(1) $\quad v=\sum_{i=1}^{N_{1}}\left|A_{i}\right| \geq N_{1} m_{1}, \quad v=N_{1} m_{1} \Longleftrightarrow\left|A_{i}\right|=m_{1}, \quad i=1, \ldots, N_{1}$.

By (1), since C_{1} is minimal and $N_{1}=k_{e}=k$, it follows that
(2) $\quad m_{1} \leq v / k, \quad m_{1}=v / k \Longleftrightarrow\left|A_{i}\right|=m_{1}, \quad i=1, \ldots, N_{1}$.

Let $A_{i}^{*} \in \mathcal{P}_{1}$ with $\left|A_{i}^{*}\right|=m_{1}$. The following theorem holds:
Theorem 3. The set $I=X \cup A_{i}^{*}$ of S is an intersection set (i.e. the set meets every line) such that

$$
|I| \leq|X|+v / k
$$

The equality holds, if and only if, $X \cap A_{i}^{*}=\emptyset$ and $\left|A_{i}\right|=m_{1}, i=1, \ldots, N_{1}$.
Proof. Let s be any line δ. If s meets X, then $s \cap\left(X \cup A_{i}^{*}\right) \neq \emptyset$. If s is external to X, then s is tangent to A_{i}^{*}, since C_{1} is minimal and $|s|=k$ for every $s \in \mathscr{L}$.
It follows that $s \cap\left(X \cup A_{i}^{*}\right) \neq \emptyset$.
We get

$$
|I|=\left|X \cup A_{i}^{*}\right| \leq|X|+\left|A_{i}^{*}\right|=|X|+m_{1} \leq|X|+v / k
$$

Moreover, if

$$
\begin{gathered}
|I|=|X|+v / k, \quad \text { then } \quad m_{1}=v / k, \\
\left|X \cup A_{i}^{*}\right|=|X|+\left|A_{i}^{*}\right|,
\end{gathered}
$$

and by (2)

$$
\left|A_{i}\right|=m_{1}, \quad i=1, \ldots, N_{1}, \quad X \cap A_{i}^{*}=\emptyset
$$

Conversely, if the above conditions are satisfied, by (2) we get

$$
m_{1}=v / k, \quad X \cap A_{i}^{*}=\emptyset
$$

and then

$$
|I|=|X|+v / k
$$

The set I is called intersection set related to X and C_{1}. Obviously, for any A_{i}^{*} there is a unique set I. By Theorem 3 we get the following

Corollary 4. Let S be a partial Steiner system. Let Y be any intersection set of S. Let X be a subset of \mathcal{S} such that $X \cap Y=\emptyset$, \mathcal{S} has a minimal X_{1} colouring C_{1} and there is an intersection set $I=X \cup A_{i}^{*}$ related to X and C_{1} such that

$$
I \cap Y=\emptyset
$$

Then I and Y are blocking sets (i.e. sets meeting every line and not containing a line) of S, since I and Y are two disjoint intersection sets. Moreover, we get:

$$
|I| \leq|X|+v / k
$$

Example 5. Let π be a Fano plane. Let A, B, C, D, E, F, G be the points of π and $\{A, G, C\},\{A, D, E\},\{A, F, B\},\{C, E, B\},\{C, D, F\},\{F, E, G\}$, $\{B, D, G\}$ the lines of π. Let \mathcal{S} be the partial Steiner system whose points are those of π and whose lines are the lines of π not through A. Let $X=\{B\}$.
A minimal X_{1} colouring C_{1} of S is the following:

$$
\mathcal{P}_{1}=\{\{G, C\},\{D, E\},\{B, F, A\}\}
$$

In \mathcal{S} there are two intersection sets related to X and C_{1} :

$$
X \cup\{G, C\}, \quad X \cup\{D, E\} .
$$

We remark that they are both blocking sets. The blocking set $I=X \cup\{G, C\}$ is constructed from the Corollary by choosing $Y=\{D, E\}$ and $A_{i}^{*}=\{G, C\}$. The blocking set $I^{\prime}=X \cup\{D, E\}$ is constructed similarly by choosing $Y=\{G, C\}$, $A_{i}^{*}=\{D, E\}$.
Example 6. Let $(S, \mathcal{L})=P G(2,3)$ and let X be a 4 -arc of $P G(2,3)$, that is an irreducible conic of $P G(2,3)$. Let e_{1}, e_{2}, e_{3} be three external lines to X. Let E_{1}, E_{2}, E_{3} be three non-collinear points such that:

$$
\begin{aligned}
& E_{1} \in e_{1}-e_{1} \cap e_{2}-e_{1} \cap e_{3}, \\
& E_{2} \in e_{2}-e_{2} \cap e_{1}-e_{2} \cap e_{3}, \\
& E_{3} \in e_{3}-e_{3} \cap e_{1}-e_{3} \cap e_{2} .
\end{aligned}
$$

Let

$$
\begin{gathered}
X=\{F, G, H, L\}, \\
V=e_{1} \cap e_{3}, Z=e_{1} \cap e_{2}, T=e_{2} \cap e_{3} \\
M=e_{1}-V-Z-E_{1}, P=e_{3}-V-T-E_{3}, U=e_{2}-Z-T-E_{2} .
\end{gathered}
$$

A minimal X_{1} colouring C_{1} of $P G(2,3)$ is the following:

$$
\mathcal{P}_{1}=\left\{\{V, U, F, L\},\{T, M, G\},\left\{E_{1}, E_{2}, E_{3}\right\},\{Z, P, H\}\right\} .
$$

In $P G(2,3)$ there are three intersection sets related to X and C_{1}. As before they are blocking sets. They are

$$
X \cup\{T, M, G\}, \quad X \cup\left\{E_{1}, E_{2}, E_{3}\right\}, \quad X \cup\{Z, P, H\}
$$

The blocking set $I=X \cup\{T, M, G\}$ is constructed by choosing Y as the complement of I. A similar construction holds for the other two blocking sets.

Example 7. Let π_{q} be a finite projective plane of order q. Let O be a point of π_{q} and s_{1}, \ldots, s_{q+1} the lines through O. Let X be a set of π_{q} such that:

$$
X \subset s_{q+1}, \quad O \in X, \quad 1 \leq|X| \leq q
$$

A minimal X_{1} colouring C_{1} of π_{q} is the following:

$$
\mathcal{P}_{1}=\left\{s_{1} \cup X, s_{2}-\{O\}, \ldots, s_{q}-\{O\}, s_{q+1}-X\right\} .
$$

If $|X|=1$, that is $X=\{O\}$, this colouring is called radial colouring with centre O.
We remark that there are semilinear spaces S where not any subset X gives rise to a minimal X_{1} colouring, as the following example shows.

Example 8. Let \S be the following linear space:

$$
\begin{gathered}
S=\{A, B, C, D, E, F, G, H, L, M\}, \\
\mathcal{L}=\{\{A, B, C, D\},\{A, E, F, G\},\{D, G, H, L\},\{C, F, M, L\},\{B, E, M, H\}, \\
\\
\{A, M\},\{A, L\},\{B, F\},\{B, G\},\{B, L\}, \\
\{A, H\},\{C, E\},\{C, G\},\{C, H\},\{D, E\}, \\
\{D, F\},\{D, M\},\{E, L\},\{F, H\},\{G, M\}\} .
\end{gathered}
$$

If $X=\{A\}$, then S does not have any minimal X_{1} colouring. If C_{1} is a minimal X_{1} colouring, we get $\left|\mathcal{P}_{1}\right|=4$ and the points B, E, M, H have different colours, since they belong to the same external line to X. Let b, e, m, h be the colours of B, E, M, H respectively. The point C has none of the colours e, m, h, since the 2-line $C E$, the 4 -line $C F M L$ and the 2 -line $C H$ are external
to $X=\{A\}$. Therefore C has necessarily the colour b. Similarly, D has the colour b and F, G have the colour e. Then L has the colour h, since the line $C F M L$ is external to X. We get a contradiction, since the line $D G H L$, external to X, contains the points L, H of the same colour h. The contradiction proves that S has not a minimal $\{A\}_{1}$ colouring.

The Corollary can be used to construct a blocking set B of a nondesarguesian finite affine plane α_{q}, with $|B| \leq t$, where t is a fixed integer. In order to do this, we choose in α_{q} a blocking set Y and a set X such that

$$
X \cap Y=\emptyset, \quad|X|+v / k=|X|+q \leq t
$$

that is such that $|X| \leq t-q$. Then we construct a minimal X_{1} colouring of α_{q} and we consider $I=X \cup A_{i}^{*}=B$. If $B \cap Y=\emptyset$, then B is a blocking set of α_{q} such that $|B| \leq t$. We prove the following theorem:

Theorem 9. Let P be a point of a Steiner system $S(2, k, v)$. If S has a minimal $\{P\}_{1}$ colouring C_{1}, then S is a projective plane and C_{1} is a radial colouring with centre P.

Proof. Let C_{1} be a minimal X_{1} colouring of S. If r denotes the number of lines through any point of S, let s_{1}, \ldots, s_{r} be the lines through P. If $s_{j 1}, s_{j 2}$ are two lines through P and P_{1}, P_{2} are two points such that $P_{1} \in s_{j 1}-\{P\}, P_{2} \in$ $s_{j 2}-\{P\}$, the line P_{1}, P_{2} is external to $X=\{P\}$. The P_{1} and P_{2} have different colours. It follows that

$$
N_{1} \geq r=(v-1) /(k-1)
$$

Since

$$
r \geq k
$$

we get

$$
N_{1} \geq(v-1) /(k-1) \geq k
$$

Since C_{1} is minimal, we get

$$
N_{1}=k=(v-1) /(k-1)
$$

It follows that

$$
v=k^{2}-k+1
$$

that is S is an $S\left(2, k, k^{2}-k+1\right)$, i.e. a projective plane of order $q=k-1$ and then $r=k$. Since $N_{1}=k=r$ and two points $x, y \in S$ with $x \neq y, x \neq P$,
$x P \neq y P$ have different colours, it follows that C_{1} is radial with centre P. So the theorem is proved.

We remark that in Theorem 9 the hypothesis that S is a Steiner system is essential. The following example proves that there are linear spaces, which are not Steiner systems, and therefore not projective planes, having a minimal $\{P\}_{1}$ colouring.

Example 10.

$$
\begin{gathered}
S=\{X, Y, Z, T, U, V\} \\
\mathcal{L}=\{\{X, Y, T\},\{V, X, Z\},\{V, T\},\{Y, Z\} \\
\{V, Y\},\{T, Z\},\{V, U\},\{Y, U\},\{X, U\}\}
\end{gathered}
$$

Since the lines of S have not the same size, then S is not a Steiner system.
This linear space S has the following minimal $\{X\}_{1}$ colouring.

$$
\mathcal{P}_{1}=\{\{V, X, Z\},\{Y, T\},\{U\}\}
$$

3. The X_{2} colourings of \mathcal{S}.

Assume that the subset X has some tangent line and let $\mathcal{L}_{t}(X)$ be the set of lines of \mathcal{L} tangent to X. Set:

$$
k_{t}=\max _{s \in \mathcal{L}_{t}}|s|
$$

Let C_{2} be a X_{2} colouring of $S=(S, \mathcal{L})$ and N_{2} the number of colours of C_{2}. Let \mathscr{P}_{2} be the partition of S determined by C_{2}, that is

$$
\mathcal{P}_{2}=\left\{A_{i}^{\prime}\right\}_{i=1, \ldots, N_{2}}
$$

Lemma 11. For any line s tangent to X and for any $i=1, \ldots, N_{2}$ we get:

$$
\left|s \cap A_{i}^{\prime}\right| \leq 1
$$

The proof is like in Lemma 1.
Lemma 12. We get

$$
N_{2} \geq k_{t}
$$

The proof is like in Lemma 2.
If $N_{2}=k_{t}$, we call C_{2} minimal. Obviously, if C_{2} is minimal, then every line of size k_{t} tangent to X is tangent to every class $A_{i}^{\prime}, i=1, \ldots, N_{2}$, of \mathscr{P}_{2}. Now we consider the minimal X_{2} colourings in a partial Steiner system.
Let $\delta=(S, \mathcal{L})$ be a partial Steiner system and let

$$
v=|S|, \quad k=|s|
$$

for any $s \in \mathscr{L}$.
Let X be a set of S having some tangent line and let C_{2} be a minimal X_{2} colouring of S. With the same notations of the previous section, we get:

$$
\sum_{i=1}^{N_{2}}\left|A_{i}^{\prime}\right|=v
$$

Now let

$$
m_{2}=\min _{i=1, \ldots, N_{2}}\left|A_{i}^{\prime}\right| .
$$

It follows that
(3) $\quad v=\sum_{i=1}^{N_{2}}\left|A_{i}^{\prime}\right| \geq N_{2} m_{2}, v=N_{2} m_{2} \Longleftrightarrow\left|A_{i}^{\prime}\right|=m_{2}, i=1, \ldots, N_{2}$.

By the above equalities it follows (since C_{2} is minimal and then $N_{2}=k$):

$$
\begin{equation*}
m_{2} \leq v / N_{2}=v / k, \quad m_{2}=v / k \Longleftrightarrow\left|A_{i}^{\prime}\right|=m_{2}, i=1, \ldots, N_{2} \tag{4}
\end{equation*}
$$

Now we give two examples of minimal X_{2} colourings.

Example 13.

$$
\begin{gathered}
S=\{A, B, C, D, E, F, G, H, L\}, \\
\mathcal{L}=\{\{A, B, C\},\{D, E, F\},\{G, H, L\},\{A, D, G\}, \\
\{B, E, H\},\{C, F, L\},\{A, E, L\},\{G, E, C\}\}
\end{gathered}
$$

Let $X=\{A, B\}$. A minimal X_{2} colouring of S is the following:

$$
\mathcal{P}_{2}=\{\{A, B, C\},\{D, E, F\},\{G, H, L\}\} .
$$

We remark that there are semilinear spaces δ where not any subset X gives rise to a minimal X_{2} colouring, as the following example shows.

Example 14.

$$
\begin{gathered}
\mathcal{S}=(S, \mathcal{L})=P G(2,2) \\
S=\{A, B, C, D, E, F, G\} \\
\mathcal{L}=\{\{A, B, C\},\{C, D, E\},\{A, F, E\} \\
\{A, G, D\},\{E, G, B\},\{C, G, F\},\{B, D, F\}\}
\end{gathered}
$$

The set $X=\{A, B, C\}$ has some tangent line, but does not give rise to any minimal X_{2} colouring of $P G(2,2)$. For, let C_{2} be a minimal X_{2} colouring of $P G(2,2)$. The line $\{A, F, E\}$ is tangent to X and let a, f, e the colours of A, F, E respectively. The point G must have one of the colours a, f, e, since X_{2} is minimal and the lines of $P G(2,2)$ have three points. The point G cannot have the colours a, f, e, since the lines $\{A, G, D\},\{C, G, F\},\{B, G, E\}$ are tangent to X, a contradiction which proves that a minimal X_{2} colouring of $P G(2,2)$ does not exist.

4. The X_{3} colourings of S.

Assume that the subset X of S has some secant line z and let $\mathcal{L}_{s}(X)$ be the set of lines of \mathcal{L} secant to X. Set

$$
k_{s}=\max _{z \in \mathcal{L}_{s}(X)}|z| .
$$

Let C_{3} be a X_{3} colouring of δ and let N_{3} be the number of colours of C_{3}. Let \mathcal{P}_{3} be the partition determined by C_{3} :

$$
\mathcal{P}_{3}=\left\{A_{i}^{\prime \prime}\right\}_{i=1, \ldots, N_{3}} .
$$

Lemma 15. For any line z secant to X and for any $i=1, \ldots, N_{3}$, we get

$$
\left|z \cap A_{i}^{\prime \prime}\right| \leq 1
$$

The proof is like in Lemma 1.
Lemma 16. We get

$$
N_{3} \geq k_{s}
$$

The proof is like in Lemma 2.
If $N_{3}=k_{s}$, we call C_{3} minimal. Obviously, if C_{3} is minimal, then every line of size k_{s} secant to X is tangent to every class $A_{i}^{\prime \prime}, i=1, \ldots, N_{3}$ of \mathcal{P}_{3}. Now we consider the minimal X_{3} colourings in a partial Steiner system.
Let $\delta=(S, \mathcal{L})$ be a partial Steiner system and let

$$
v=|S|, \quad k=|z|
$$

for any $z \in \mathcal{L}$.
Let X be a set of δ having some secant line and let C_{3} be a minimal X_{3} colouring of S. With the same notations of the previous Section we get:

$$
\sum_{i=1}^{N_{3}}\left|A_{i}^{\prime \prime}\right|=v
$$

Now let

$$
m_{3}=\min _{i=1, \ldots, N_{3}}\left|A_{i}^{\prime \prime}\right| .
$$

It follows that
(5) $\quad v=\sum_{i=1}^{N_{3}}\left|A_{i}^{\prime \prime}\right| \geq N_{3} m_{3}, v=N_{3} m_{3} \Longleftrightarrow\left|A_{i}^{\prime \prime}\right|=m_{3}, i=1, \ldots, N_{3}$.

By the above equation it follows (since C_{3} is minimal and then $N_{3}=k$):
(6) $\quad m_{3} \leq v / N_{3}=v / k, \quad m_{3}=v / k \Longleftrightarrow\left|A_{i}^{\prime \prime}\right|=m_{3}, i=1, \ldots, N_{3}$.

Example 17.

$$
\begin{gathered}
\mathcal{S}=(S, \mathcal{L})=P G(2,2), \\
S=\{A, B, C, D, E, F, G\}, \\
\mathcal{L}=\{\{A, B, C\},\{C, D, E\},\{A, F, E\},\{E, G, B\}, \\
\{F, G, C\},\{A, G, D\},\{F, D, B\}\} .
\end{gathered}
$$

Let $X=\{A, C, E\}$. A minimal X_{3} colouring of $P G(2,2)$ is the following:

$$
\mathscr{P}_{3}=\{\{A, D\},\{C, F\},\{E, G, B\}\} .
$$

Example 18.

$$
\mathcal{S}=(S, \mathcal{L})=P G(2,2)
$$

S and \mathscr{L} are like in Example 17.

Let $X=\{A, E\}$. A minimal X_{3} colouring of $P G(2,2)$ is the following:

$$
\mathcal{P}_{3}=\{\{A, B, C\},\{F, G\},\{E, D\}\} .
$$

We remark that there are semilinear spaces \mathcal{L} where not any subset X gives rise to a minimal X_{3} colouring, as the following example shows.

Example 19.

$$
\mathcal{S}=(S, \mathcal{L})=P G(2,2)
$$

S and \mathcal{L} are like Example 17.
Let $X=\{A, B, G, F\}$. Let C_{3} be a minimal X_{3} colouring of S. The line $\{A, B, C\}$ is secant to X and the points A, B, C have different colours a, b, c, respectively. The colours a, b, c are all the colours of C_{3}, since C_{3} is minimal. The point G cannot have the colours a, b, c, since the lines $\{A, G, D\}$, $\{E, G, B\},\{F, G, C\}$ are secant to X. A contradiction which proves that a minimal X_{3} colouring of $P G(2,2)$ does not exist.

5. The minimal skew irregular X_{j} colourings of a partial Steiner system and the construction of blocking sets.

Let $S=(S, \mathcal{L})$ be a partial Steiner system and let X be a subset of S. Let C_{j} be a minimal X_{j} colouring of $S, j=1,2,3$, and let m_{j} be the minimal size of the classes of \mathscr{P}_{j}. We say that C_{j} is skews if there is a class $A^{*} \in \mathscr{P}_{j}$ with $\left|A^{*}\right|=m_{j}$, such that $X \cap A^{*}=\emptyset$. We say that C_{j} is irregular if there are two classes of \mathscr{P}_{j} having different sizes. The minimal X_{2} colouring of Example 13 is skew and not irregular. The minimal X_{1} colouring of Examples 5, 6, 7 are skew and irregular. The minimal X_{3} colouring of Example 17 is irregular and not skew. The minimal X_{3} colouring of Example 18 is irregular and skew.
The minimal $X_{j}, j=2,3$ colourings can be applied to find blocking sets in finite affine planes as follows.
Let α_{q} be a finite affine plane of order q and let X be an intersection set of α_{q} having some tangent line. Assume that α_{q} has a minimal X_{2} skew irregular colouring C_{2} and a minimal X_{3} skew irregular colouring C_{3}. Let A_{2}^{*} be a class of \mathscr{P}_{2} such that $\left|A_{2}^{*}\right|=m_{2}$ and $A_{2}^{*} \cap X=\emptyset$ and let A_{3}^{*} be a class of \mathscr{P}_{3} such that $\left|A_{3}^{*}\right|=m_{3}$ and $A_{3}^{*} \cap X=\emptyset$. We remark that the set $A^{*}=A_{2}^{*} \cup A_{3}^{*}$ is a blocking set of α_{q} and then X is a blocking set too. In fact, A^{*} does not contain lines, since $A^{*} \cap X=\emptyset$ and X is an intersection set. Moreover, any line of α_{q} is either tangent to X (and then it is tangent also to A_{2}^{*}, since C_{2} is minimal), or it is secant to X (and then it is tangent to A_{3}^{*}, since C_{3} is minimal). Therefore
every line meets $A_{2}^{*} \cup A_{3}^{*}$. Moreover, X is an intersection set not containing lines (that is a blocking set). For, if X contains a line, such a line is external to A^{*} which is a blocking set. This proves the remark. We get

$$
\left|A^{*}\right| \leq 2 q-2
$$

In fact, by (4) and (6) it follows that $m_{2} \leq q, m_{3} \leq q$ and therefore $\left|A_{2}^{*}\right| \leq q$, $\left|A_{3}^{*}\right| \leq q$. The case $\left|A_{2}^{*}\right|=q$ is impossible, otherwise the other classes of \mathscr{P}_{2} (which have at least q points) have all the same size q. A contradiction, since C_{2} is irregular. Similarly we prove that $\left|A_{3}^{*}\right|=q$ is impossible too. Therefore we get:

$$
\left|A_{2}^{*}\right| \leq q-1, \quad\left|A_{3}^{*}\right| \leq q-1
$$

This implies

$$
\left|A^{*}\right| \leq\left|A_{2}^{*}\right|+\left|A_{3}^{*}\right| \leq 2 q-2
$$

Thus the following Theorem is proved:
Theorem 20. Let X be an intersection set of a non-desarguesian finite affine plane α_{q}. If α_{q} has both a minimal skew irregular X_{2} colouring C_{2} and a minimal skew irregular X_{3} colouring C_{3}, then α_{q} contains a blocking set B, with $|B| \leq 2 q-2$. Such a blocking set B coincides with $A_{2}^{*} \cup A_{3}^{*}$, where A_{2}^{*} is a class of C_{2} of minimal size and such that $A_{2}^{*} \cap X=\emptyset$ and A_{3}^{*} is a class of C_{3} of minimal size such that $A_{3}^{*} \cap X=\emptyset$.

REFERENCES

[1] L.M. Batten - A. Beutelspacher, The theory of finite linear spaces, Cambridge Univ. Press, 1993.
[2] A.A. Bruen - M.J. de Resmini, Blocking sets in affine planes, Annals Discrete Math., 18 (1983), pp. 169-176.
[3] S. Rajola - M. Scafati Tallini, Colorings of a finite semilinear space, Italian Journal of Pure and Applied Mathematics, 3, to appear.
[4] M. Scafati-G. Tallini, Semilinear spaces and their remarkable subsets, Journal of Geometry, 56 (1996), pp. 161-167.

> Dipartimento di Matematica,
> Università di Roma "La Sapienza",
> Piazzale A. Moro 2,
> 00185 Roma (ITALY)

