# A VERY AMPLENESS RESULT 

## ANTONIO LAFACE

Let $(M, L)$ be a polarized manifold. The aim of this paper is to establish a connection between the generators of the graded algebra $\bigoplus_{i \geq 1} H^{0}(M, i L)$ and the very ampleness of the line bundle $r L$. Some applications are given.

## 1. Introduction.

Let $L$ be an ample line bundle on an algebraic manifold $M$, the problem of finding the least $n$ such that $n L$ is very ample is a basic one in the classification theory of polarized varieties. Many attempts were made in order to establish a general formula. A fundamental result due to Matsusaka [9] says that there is a constant $c$, depending only on the Hilbert polynomial of $(M, L)$, such that $c L$ is very ample. Moving in another direction Fujita conjectured ([5], § 2, Conjecture b) that $K_{M}+(n+2) L$ is very ample and $K_{M}+(n+1) L$ is spanned for every polarized manifold $(M, L)$ with $n=\operatorname{dim} M$. In this paper we consider the graded algebra:

$$
G(M, L)=\bigoplus_{i \geq 1} H^{0}(M, i L) .
$$

Now the generators of this algebra describe the whole structure of $(M, L)$. They also allows us to determine the embedding of $M$ via the linear system $|r L|$ for $r \gg 0$, so there must be a connection between these generators and the very ampleness of $r L$. The aim of this paper is pointing out this connection. The

[^0]paper is organized as follows: in Section 2 we prove the main theorem asserting the very ampleness of $r L$, outside the base locus of $L$, for $L$ a $r$-generated line bundle. This also implies the very ampleness of $2 L$ for any ample 2 -generated line bundle 2.7. In Section 3 some applications of the main Theorem 2.2 are given, concerning: a) sectionally hyperelliptic polarized varieties of type ( - ), b) surfaces of general type, c) del Pezzo surfaces.

## 2. The main theorem.

All notation used in this paper are standard in algebraic geometry. Let $L$ be a line bundle on a projective manifold $M$ and consider the associated graded algebra $G(M, L)$. The following definition generalizes the notion of simply generated line bundle.

Definition 2.1. Let $r \geq 1$ be an integer. A line bundle $L$ on $M$ is $r$-generated if $G(M, L)$ is generated by the sections of $H^{0}(M, L), \ldots, H^{0}(M, r L)$. We also say that the pair $(M, L)$ is $r$-generated.

There is a connection between the $r$-generation of $L$ and the very ampleness of the line bundle $r L$; this connection, extending a known fact holding for simply generated line bundles, is expressed by the following

Theorem 2.2. Given a polarized manifold $(M, L)$ with $L$ effective and $r$ generated, then $\varphi_{|r L|}$ is an embedding of $M \backslash B s|L|$.

Proof. Set $N=M \backslash \mathrm{Bs}|L|$ and $\varphi=\varphi_{|r L|}$. First of all we observe that $\varphi$ is well defined in $N$, since $L$ is spanned on $N$ and so are its multiples. By hypothesis there is an integer $k \geq 1$ such that $k L$ is very ample. Take $p, q \in N$ and by contradiction suppose that no section of $H^{0}(i L)$ with $1 \leq i \leq r$ separates $p$ and $q$. Then each section $s \in H^{0}(M, i L)$ that vanish at $p$ must vanish at $q$ too. Consider two sections $s_{1}, s_{2} \in H^{0}(i L)$, and define $\gamma, \lambda$ so that $s_{1}(p)=\gamma s_{1}(q)$ e $s_{2}(p)=\lambda s_{2}(q)$. If we take $s=s_{1}(p) s_{2}-s_{2}(p) s_{1}$ we have that $s(p)=0$ and necessarily $0=s(q)=s_{1}(q) s_{2}(q)(\gamma-\lambda)$. This implies that $\gamma=\lambda$. We note that if one of the two sections vanishes at $q$ it must vanish also at $p$, otherwise it will separate $p$ and $q$, but in this situation we may equally take $\gamma=\lambda$.
The previous argument shows that there exist some constants $\gamma_{i}$ associate to each $H^{0}(i L)$ for $1 \leq i \leq r$ such that for each section $s \in H^{0}(i L)$ we have $s(p)=\gamma_{i} s(q)$.
Now note that since $G(M, L)$ is an algebra, the constants $\gamma_{i}$ have to satisfy the relations:

$$
\gamma_{i}=\gamma^{i} \text { where } \gamma:=\gamma_{1}
$$

For, since $L$ is effective there exists $\sigma \in H^{0}(L)$, then $\sigma^{i}(p)=\gamma^{i} \sigma^{i}(q)$, but $\sigma^{i} \in H^{0}(i L)$ so we have also $\sigma^{i}(p)=\gamma_{i} \sigma^{i}(q)$ and this implies the previous equation.
Now let us consider a section $s \in H^{0}(k L)$. By the $r$-generation hypothesis the sections of $H^{0}(M, k L)$ are linear combinations of products of sections in $H^{0}(i L)$ with $1 \leq i \leq r$. Then we can write $s=\sum \xi_{j} s_{j}$ where $\xi_{j} \in \mathbb{C}$ and $s_{j}=\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}$ with $\sigma_{n_{i}} \in H^{0}(i L)$, where $\alpha_{i}$ is the number of sections of $H^{0}(i L)$ that appears in the product. Note that $\sum_{i=0}^{r} i \alpha_{i}=k$, because $s_{j} \in H^{0}(k L)$. We have

$$
\begin{gathered}
s(p)=\sum \xi_{j} s_{j}(p)=\sum \xi_{j}\left(\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)\right)=\sum \xi_{j}\left(\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \gamma^{i} \sigma_{n_{i}}(q)\right)= \\
=\sum \xi_{j}\left(\prod_{i=1}^{r}\left(\gamma^{i \alpha_{i}} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(q)\right)\right)=\sum \xi_{j} \gamma^{\left(\sum_{i=1}^{r} i \alpha_{i}\right)}\left(\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(q)\right)= \\
=\sum \xi_{j} \gamma^{k}\left(\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(q)\right)=\gamma^{k} \sum \xi_{j} s_{j}(q)=\gamma^{k} s(q) .
\end{gathered}
$$

We thus obtained that the sections of $H^{0}(k L)$ do not separate points, which is absurd. Then there exists a section $\sigma \in H^{0}(i L)$ which separates $p$ and $q$, i.e. $\sigma(p)=0$ and $\sigma(q) \neq 0$. Since $L$ is spanned outside Bs $|L|$ we may take a section $\delta \in H^{0}(L)$ such that $\delta(q) \neq 0$. Now the section $\sigma \delta^{r-i} H^{0}(r L)$ separates $p$ and $q$.
In order to show that the map $\varphi$ is an immersion at each point $p \in N$ we have to show that for each vector $\tau \in T_{p} M$, there exists a section $\sigma \in H^{0}(i L)$ such that $d \sigma(\tau) \neq 0$ and $\sigma(p)=0$. By contradiction suppose that such a section does not exist, then for each $1 \leq i \leq r$ there exists a constant $\eta_{i}$ such that for each $s \in H^{0}(i L), d s(\tau)=\eta_{i} s(p)$. To show this let $s_{1}, s_{2} \in H^{0}(i L)$ and consider $\alpha, \beta$ such that $d s_{1}(\tau)=\alpha s_{1}(p)$ and $d s_{2}(\tau)=\beta s_{2}(p)$. Now consider the section $s=s_{1}(p) s_{2}-s_{2}(p) s_{1}$; we have $s(p)=0$ and $0=d s(\tau)=s_{1}(p) s_{2}(p)(\beta-\alpha)$. This implies $\alpha=\beta$.
Define $\eta:=\eta_{1}$. Take $\sigma^{i} \in H^{0}(i L)$ then $\eta_{i} \sigma^{i}(p)=d\left[\sigma^{i}\right](\tau)=i d \sigma(\tau) \sigma^{i-1}(p)=$ $i \eta \sigma^{i}(p)$. Hence we have:

$$
\eta_{i}=i \eta
$$

Now for a section $s \in H^{0}(k L)$ we have:

$$
d s(\tau)=\sum \xi_{j} d s_{j}(\tau)=\sum \xi_{j} d\left[\prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}\right](\tau)=
$$

$$
\begin{gathered}
=\sum \xi_{j}\left(\sum_{h=1}^{r} d\left[\prod_{n_{h}=1}^{\alpha_{h}} \sigma_{n_{h}}\right](\tau) \prod_{i=1, i \neq h}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)\right)= \\
=\sum \xi_{j}\left(\sum_{h=1}^{r}\left(\sum_{m=0}^{\alpha_{h}} d \sigma_{m}(\tau) \prod_{n_{h}=1, n_{h} \neq m}^{\alpha_{h}} \sigma_{n_{h}}(p)\right) \prod_{i=1, i \neq h}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)\right)= \\
=\sum \xi_{j}\left(\sum_{h=1}^{r}\left(\sum_{m=0}^{\alpha_{h}} h \eta_{1} \prod_{n_{h}=1}^{\alpha_{h}} \sigma_{n_{h}}(p)\right) \prod_{i=1, i \neq h}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)\right)= \\
=\sum \xi_{j}\left(\sum_{h=1}^{r} h \alpha_{h} \eta_{1}\right) \prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)=\sum \xi_{j} k \eta_{1} \prod_{i=1}^{r} \prod_{n_{i}=1}^{\alpha_{i}} \sigma_{n_{i}}(p)=\eta_{k} s(p) .
\end{gathered}
$$

This implies that the sections of $H^{0}(k L)$ do not separate $p$ from the vector $\tau$, but this contradicts the very ampleness of $k L$.

Theorem 2.2 immediately gives the following
Corollary 2.3. Let $(M, L)$ a polarized manifold with $L$ spanned and $r$ generated, then $t L$ is very ample.

Note that Theorem 2.2 cannot be inverted. The following examples show very ample line bundles $L$ which are not 1 -generated.

Example 2.4. Let ( $S, L$ ) be an abelian surface polarized by a very ample line bundle. Let $L^{2}=2 d$, since $S$ is abelian $K_{S}$ is the trivial bundle, so we have $h^{i}(L)=h^{i}\left(K_{S}+L\right)=0$ for $i=1,2$. It follows that $h^{0}(L)=\chi(L)=$ $\chi \mathcal{O}_{S}+\frac{L^{2}-L K_{S}}{2}=d$.
Let $S^{2}\left(H^{0}(L)\right)$ denote the second symmetric power of $H^{0}(L)$. Then:

$$
\operatorname{dim} S^{2}\left(H^{0}(L)\right)=\frac{d(d+1)}{2} .
$$

Now if $L$ is simply generated we have $S^{2}\left(H^{0}(L)\right) \cong H^{0}(2 L)$, but $h^{0}(2 L)=$ $\chi\left(\mathcal{O}_{S}\right)+\frac{4 L^{2}-2 L K_{S}}{2}=4 d$. So if $d \leq 6$ we have $h^{0}(2 L)=4 d>\frac{d(d+1)}{2}=$ $S^{2}\left(H^{0}(L)\right)$. It is well known that there exist abelian surfaces of degree $2 d=10$ in $\mathbb{P}^{4}$.

Example 2.5. Let $Q=\mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$, we have $\operatorname{Pic}(Q) \cong \mathbb{Z} \times \mathbb{Z}$. Let $L_{1}, L_{2} \in \operatorname{Pic}(Q)$ be two generators; then $2 L_{1}+4 L_{2}$ is very ample ([6], Ch. 2.18, p. 380). So there exists a smooth curve $C \in\left|2 L_{1}+4 L_{2}\right|$. Now consider the polarized curve $(C, L)$, where $L=\mathcal{O}_{\mathbb{P} 3}(1)_{C}$. Since $C$ is smooth
we have: $2 g(C)-2=\left(2 L_{1}+4 L_{2}+K_{Q}\right)\left(2 L_{1}+4 L_{2}\right)=\left(2 L_{1}+4 L_{2}-\right.$ $\left.2 L_{1}-2 L_{2}\right)\left(2 L_{1}+4 L_{2}\right)=2 L_{2}\left(2 L_{1}+4 L_{2}\right)=4$. Hence $g(C)=3$ and $\operatorname{deg} L=\left(L_{1}+L_{2}\right)\left(2 L_{1}+4 L_{2}\right)=6>2 g(C)-1$. Then $h^{1}(L)=0$ and $h^{0}(L)=4$. From this it follows that: $\operatorname{dim} S^{2}\left(H^{0}(L)\right)=h^{0}(2 L)=10$. Now consider the exact sequence:

$$
0 \rightarrow \mathcal{I}_{C} \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

Tensoring with $\mathcal{O}_{\mathbb{P}^{3}}(2)$ and taking cohomology, we obtain:

$$
0 \rightarrow H^{0}\left(\mathcal{I}_{C}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right) \rightarrow H^{0}(2 L) \rightarrow \cdots
$$

Since $C$ is contained in a quadric it follows that $H^{0}\left(\mathcal{I}_{C}(2)\right) \neq 0$, and recalling that $H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(2)\right)=S^{2}\left(H^{0}(L)\right)$ we immediately see that the map: $S^{2}\left(H^{0}(L)\right) \rightarrow$ $H^{0}(2 L)$ cannot be surjective.

Theorem 2.2 can be regarded as a generalization of the following well known fact

Proposition 2.6. Let $(M, L)$ be a polarized manifold and assume that $L$ is simply generated (i.e. 1-generated), then $L$ is very ample.

We have only to show that in this case $\mathrm{BS}|L|=\emptyset$. By contradiction suppose that there exists $p \in \mathrm{Bs}|L|$ and let $t L$ be very ample. Since $L$ is 1 -generated, each section of $t L$ is a sum of products of sections belonging to $H^{0}(L)$, then $t L$ would not be spanned at $p$.
Theorem 2.2 also allows us to prove the following
Theorem 2.7. Let $(M, L)$ be a polarized manifold with effective and 2generated line bundle; then $2 L$ is very ample.
Proof. From Theorem 2.2 we have only to show that:

- $2 L$ is spanned.
- $2 L$ separates $p, q$ with at least one in $\mathrm{Bs}|L|$.
- $2 L$ separates $p \in \mathrm{Bs}|L|$ from each $\tau \in T_{p} M$.

Let $t L, t \geq 2$, be a very ample line bundle. Each section $s \in H^{0}(t L)$ is of the form

$$
\begin{equation*}
s=\sum\left(\prod_{i=0}^{a} \alpha_{i} \prod_{j=0}^{b} \beta_{j}\right) \tag{1}
\end{equation*}
$$

with $\alpha_{i} \in H^{0}(2 L)$ and $\beta_{j} \in H^{0}(L)$ so that $2 a+b=t$. Now $2 L$ is spanned outside $\mathrm{Bs}|L|$, since $\mathrm{Bs}|2 L| \subset \mathrm{Bs}|L|$. Let $p \in \mathrm{Bs}|L|$, if every $\alpha \in H^{0}(2 L)$ vanishes at $p$ then each product in 1 must vanish, so $t L$ is not spanned.
If $p \in \mathrm{Bs}|L|$ and $q \notin \mathrm{Bs}|L|$ take $\beta \in H^{0}(L)$ such that $\beta(q) \neq 0, \beta^{2} \in H^{0}(2 L)$ separates $p$ and $q$. Let $p, q \in \mathrm{Bs}|L|$. As in the proof of Theorem 2.2 the same shows that there exists a section in $H^{0}(L)$ or in $H^{0}(2 L)$ separating $p$ from $q$, then $2 L$ separates $p$ and $q$.
If $p \in \mathrm{Bs}|L|$ and $\tau \in T_{p} M$, then as before we know that exists a section of $H^{0}(L)$ or of $H^{0}(2 L)$ separating $p$ and $\tau$. But in this case we may have a $\beta \in H^{0}(L)$ with $d \beta_{p}(\tau) \neq 0$. This doesn't tell anything on $H^{0}(2 L)$ because $\beta^{2}(p)=0$ but also $d \beta_{p}^{2}(\tau)=0$. Now we prove that, if $2 L$ does not separate $p$ and $\tau$, such a $\beta$ does not exists. We have two cases:
$t$ is even. Let $\eta$ be as in Theorem 2.2 such that $d \alpha_{p}(\tau)=\eta \alpha(p)$, for each $\alpha \in H^{0}(2 L)$. Let $t=2 r$ and consider $s \in H^{0}=(t L)$ :

$$
\begin{gathered}
d s_{p}(\tau)=\sum\left(d\left(\prod_{i=1}^{a} \alpha_{i} \prod_{2 j=0}^{b} \beta_{j}\right)_{p}(\tau)\right)=\sum\left(d\left(\prod_{i=1}^{r} \alpha_{i}\right)_{p}(\tau)\right)= \\
=\sum \sum_{i=1}^{r}\left(\prod_{j \neq i} \alpha_{j}(p)\right) d \alpha_{i p}(\tau)=\sum \sum_{i=1}^{r} \eta\left(\prod_{j=1}^{r} \alpha_{j}(p)\right)= \\
=\sum r \eta\left(\prod_{j=1}^{r} \alpha_{j}(p)\right)=r \eta s(p)
\end{gathered}
$$

So $t L$ does not separate $p$ and $\tau$.
$t$ is odd. Since $\beta_{j}(p)=0$ for each $j$, we have:

$$
s(p)=\sum\left(\prod_{i=0}^{a} \alpha_{i}(p) \prod_{2 j+1=0}^{b} \beta_{j}(p)\right)=0
$$

Then $t L$ would not span in $p$.

## 3. Some applications.

In this section we discuss some applications of Theorem 2.2.
First we consider a polarized manifold $(M, L)$ with $\mathrm{Bs}|L|=\left\{p_{1}, \ldots, p_{n}\right\}$ (a finite set) and we obtain some information on the generator of $G(M, L)$. To apply the main technique: "the Apollonius method" see [3], recall that
given $(M, L)$ be a polarized manifold, a sequence of irreducible and reduced subvarieties $D_{i}$ of $M$ such that $D_{i} \in\left|L_{D_{i-1}}\right|$ and $D_{1} \in|L|$ is called a ladder of $(M, L)$ and the $D_{i}$ are said the rungs of the ladder. In the second applications we study some connection between the generator of the canonical ring $G\left(S, K_{S}\right)$ of a surface of general type and the very ampleness of $t K_{S}$. Finally we study the very ampleness of $-t K_{S}$ for a del Pezzo surface.

## a) Hyperelliptic polarized manifold of type (-).

In this subsection we apply the main theorem to provide an evidence for the first conjecture of Fujita in a special case. First of all we recall Fujita's conjecture, see [5] (§ 2, Conjecture b).

Conjecture 3.1. For every polarized manifold $(M, L)$ with $\operatorname{dim} M=n, K_{M}+$ $(n+2) L$ is very ample.

We recall that the delta-genus $\Delta(M, L)$ of a polarized manifold $(M, L)$ is defined as $\Delta(M, L)=L^{n}+n-h^{0}(M, L)$. Here we deal with polarized manifolds with $\Delta(M, L)=1$. In this case for $L^{n} \geq 3$ it is known [3] that $L$ is very ample. It is also easy to prove that for $L^{n}=2$ the line bundle $(g+1) L$ is very ample [7].
The case $L^{n}=1$ is very difficult to classify and there are only partial results, see [4]. Here we consider only polarized manifolds sectionally hyperelliptic of type ( - ). In this case Fujita [4] proved the following facts:

$$
\begin{gather*}
H^{q}(M, t L)=0 \text { for } q \geq 1, t \in \mathbb{Z},  \tag{2}\\
K_{M}=(2 g-n-1) L \text { where } g=g(M, L) \text { and } n=\operatorname{dim} M,  \tag{3}\\
\operatorname{Pic} M \cong \mathbb{Z}, \text { generated by } L,  \tag{4}\\
(M, L) \text { has a ladder. } \tag{5}
\end{gather*}
$$

Properties 2 and 3 are true also for the rungs $\left(D, L_{D}\right)$ of this ladder. In this situation we may apply Theorem 2.2 to prove the very ampleness of $K_{M}+(n+2) L=(2 g+1) L$.
We start with a lemma on the $r$-generation inspired by [3], 2.3.
Lemma 3.2. Let $(M, L)$ be a polarized manifold with $\Delta(M, L)=d(M, L)=$ 1, sectionally hyperelliptic of type $(-)$; if the line bundle $L_{C}$ is $r$-generated, then $L$ is $r$-generated.

Proof. Consider a ladder of $(M, L):\left(M_{1}, L_{1}\right)=(M, L), \ldots,\left(M_{n}, L_{n}\right)=$ $\left(C, L_{C}\right)$ and proceed by induction on $n$.

For $n=1$ the assumption is true. Now suppose that it is true for $k+1$ and consider the exact sequence:

$$
0 \rightarrow \mathcal{O}_{M_{k}}\left(-L_{k}\right) \rightarrow \mathcal{O}_{M_{k}} \rightarrow \mathcal{O}_{M_{k+1}} \rightarrow 0,
$$

tensor with $\mathcal{O}_{M_{k}}\left(t L_{k}\right)$ and consider the exact cohomology sequence, recalling 2 we get:

$$
\begin{equation*}
0 \rightarrow H^{0}\left(M_{k},(t-1) L_{k}\right) \rightarrow H^{0}\left(M_{k}, t L_{k}\right) \rightarrow H^{0}\left(M_{k+1}, t L_{k+1}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

So for each $t$ the restriction map $\psi$ :

$$
H^{0}\left(M_{k}, t L_{k}\right) \rightarrow H^{0}\left(M_{k+1}, t L_{k+1}\right)
$$

is surjective. Let us take a set of generators $\gamma_{1}, \ldots, \gamma_{i}$ of $G\left(M_{k+1}, L_{k+1}\right)$ and their inverse images $\eta_{1}, \ldots, \eta_{i}$ in $G\left(M_{k}, L_{k}\right)$, if $\sigma \in H^{0}\left(M_{k}, L_{k}\right)$ is the defining section of $M_{k+1}$ then $G\left(M_{k}, L_{k}\right)$ is generated by the $\eta_{j}$ and $\sigma$. To show this, observe that by $6 H^{0}\left(M_{k}, L_{k}\right)$ is generated by $\sigma$ and by the $\eta_{j}$ that belong to $H^{0}\left(M_{k+1}, L_{k+1}\right)$. Proceeding by induction on $t$ it is simple to prove the assertion. Finally observe that $\eta_{1}, \ldots, \eta_{i}$ and $\sigma$ belong to $H^{0}\left(M_{k}, t L_{k}\right)$ with $t \leq r$. This completes the proof.

Considering the ladder of ( $M, L$ ), by adjunction from 3 we have:

$$
K_{M_{i}}=(2 g-i-1) L_{i} .
$$

Then $K_{C}=(2 g-2) L_{C}=(2 g-2) p$, with $p=\mathrm{Bs}|L|$. Hence $g(M, L)=$ $g=g(C)$ the genus of the curve $C$. Then since $C$ is an hyperelliptic curve we have that $L_{C}$ is exactly $2 g+1$-generated. Then by the lemma $(M, L)$ is $2 g+1$-generated.
The following theorem extends what proved in [8] for $g=1$.
Theorem 3.3. Let $(M, L)$ be a polarized manifold with $\Delta(M, L)=L^{n}=1$, sectionally hyperelliptic of type $(-)$, then $(2 g+1) L$ is very ample.
Proof. Since $L$ is $(2 g+1)$-generated, by 2.2 we know that $\varphi_{|(2 g+1) L|}$ is an embedding of $M \backslash\{p\}$.
To see that $(2 g+1) L$ is spanned on $p$ we proceed by induction. Clearly $(2 g+1) L_{C}$ is very ample. Consider a smooth $D \in|L|$ (we know that such a $D$ exists by the ladder property), then consider the exact sequence:

$$
0 \rightarrow H^{0}(2 g L) \rightarrow H^{0}((2 g+1) L) \rightarrow H^{0}\left((2 g+1) L_{D}\right) \rightarrow 0 .
$$

By induction we have that $(2 g+1) L_{D}$ is spanned on $p$ then there exists $\sigma \in H^{0}\left((2 g+1) L_{D}\right)$ with $\sigma(p) \neq 0$. By the suriectivity of the restriction map we have a $\gamma \in H^{0}((2 g+1) L)$ such that $\gamma(p) \neq 0$.
To see that $(2 g+1) L$ defines an embedding in $p$, consider a vector $\tau \in T_{p} M$. We say that exists a section $\eta \in H^{0}(M, L)$ such that $d \eta(\tau) \neq 0$. To construct $\eta$ we may take an hypersurface $D \in|L|$ such that $\tau \notin T_{p} D$ then the section that define $D$ clearly have a differential that does not vanish on $\tau$. Suppose by contradiction that for each $D \in|L| \tau \in T_{p} D$ then the intersection of $n$ such $D_{i}$ cannot be transverse, so $L^{n}>1$, absurd. Section $\eta^{2 g+1}$ defines an embedding in $p$.
Now consider a point $q \in M$ different from $p$, we have to find a section in $H^{0}((2 g+1) L)$ that separates $p$ and $q$, i.e. that vanishes on $p$ but not on $q$. To see this observe that every section of $H^{0}(L)$ vanish on $p$, since $p=\mathrm{Bs}|L|$, but there is a section $\sigma \in H^{0}(L)$ that does not vanish on $q$, otherwise $q \in \operatorname{Bs}|L|$. Now consider $\sigma^{2 g+1} \in H^{0}((2 g+1) L)$, this section separates $p$ from $q$.

Theorem 3.3 is as best as possible as proved in the following:
Proposition 3.4. Given a polarized manifold $(M, L)$ with $\Delta(M, L)=d(M, L)=$ 1 , sectionally hyperelliptic of type $(-)$, the least integer $t$ such that $t L$ is very ample is $2 g+1$, i.e. $K_{M}+r L$ is not very ample for $r \leq n+1$.
Proof. By contradiction suppose that $2 g L$ is very ample and consider a regular ladder of $(M, L)$. Since the ladder is regular, the very ampleness of $2 g L$ implies the very ampleness of the line bundles $L_{M_{i}}$.
In particular we have that $2 g p$ is very ample, where $p=\mathrm{Bs}|L|$ and $2 g p$ is a divisor on $C$, where $C$ is the one-dimensional element of the ladder. Note that $C$ is an hyperelliptic curve and that $g(M, L)=g(C)$.
Now we may compute canonical bundle by adjunction. By 6 we have $K_{M}=$ $(2 g-n-1) L$, then we obtain: $K_{D}=\left(K_{M}+L\right)_{D}=(2 g-n) L_{D}$, and by induction: $K_{C}=(2 g-2) L_{C}$. But $L_{C}=\mathrm{Bs}|L|=p$ so we have $K_{C}=(g-1) 2 p$. Since $C$ is hyperelliptic we know that $h^{0}(2 p)=2$. Now consider the canonical map $\varphi_{\left|K_{c \mid}\right|}$ on $C$ and let $\langle\sigma, \tau\rangle$ is a basis of $H^{0}(2 p)$, a basis of $H^{0}\left(K_{C}\right)$ is: $\left\langle\sigma^{g-1}, \sigma^{g-2} \tau, \ldots, \tau^{g-1}\right\rangle$.
Now observe that $\left\langle\sigma^{g}, \sigma^{g-1} \tau \ldots, \tau^{g}\right\rangle$ is a basis of $H^{0}\left(K_{C}+2 p\right)$. In fact by Riemann-Roch we have $h^{0}\left(K_{C}+2 p\right)=g+1$. This theorem implies that also $\varphi_{\left|K_{C}+2 p\right|}$ is a double covering of $\mathbb{P}^{1}$ followed by the Veronese embedding, but this implies that $(2 g+1) L_{C}=K_{C}+2 p$ is not very ample.
b) Surfaces of general type.

Let $S$ be a minimal surface of general type (i.e. of Kodaira dimension 2) and let $K_{S}$ be its canonical bundle. It is known [1] that $K$ is ample outside the set of
$(-2)$-curves, i.e. $K C=0$ if and only if $C$ is a ( -2 )-curve.
In literature there are results [1] on the $C$-isomorphism property of the maps $\varphi_{n}=\varphi_{|n L|}$, there are also results [2] on the generation of the canonical ring:

$$
\bigoplus_{t \geq 1} H^{0}\left(S, t K_{S}\right)
$$

As Theorem 2.2 shows there must be a connection between these results. In the following table the results on the generation of the canonical ring, for surfaces with $q=H^{1}\left(S, \mathcal{O}_{S}\right)=0$, are compared with the very ampleness of $r K_{S}$. For each pair of values of $K_{S}^{2}$ and $P_{g}(S)=h^{0}\left(S, K_{S}\right)$ are compared the $C$ isomorphism property of $\varphi_{\left|r K_{S}\right|}$ and the $r$-generation of $K_{S}$.

| $K_{S}^{2}$ | $\varphi r K_{S}$ is a $C$-isomorphism | $P_{g}$ | $K_{S}$ is $r$-generated |
| :---: | :---: | :---: | :---: |
| 1 | 5 | 0 | $\leq 6$ |
|  |  | 1 | $\leq 4$ |
|  |  | 2 | 5 |
| 2 | 4 | 0 | $\leq 6$ |
|  |  | 1 | $\leq 4$ |
|  |  | 2 | 3(*) |
|  |  | 3 | 4 |
| 3 | $3 K_{S}$ is spanned and $\varphi_{3}$ is a birational morphism | 0 | $\leq 6$ |
|  |  | 1 | $\leq 4$ |
|  |  | 2 | 3(*) |
|  |  | 3 | 2(*) |

Where ( $\star$ ) means that the result is true if $\left|K_{S}\right|$ contains an irreducible element and $(\bullet)$ means that the result is true if $K_{S}$ is base point free and $\varphi_{\left|K_{S}\right|}(S)$ is not a rational surface of degree $r-1$ in $\mathbb{P}^{r}\left(r=h^{0}\left(K_{S}\right)\right)$.
We observe that $r$-generation of $K_{S}$ is not so far from the very ampleness of $r K_{S}$ and by Theorem 2.2 we have also the following propositions:

Proposition 3.5. Let $S$ be a surface of general type with $P_{g}=K^{2}=2$ and $q=0$. If the generic element of $\left|K_{S}\right|$ is irreducible, then $\varphi_{\left|3 K_{S}\right|}$ is a $C$ isomorphism outside $B s\left|K_{S}\right|$.

Proof. By Theorem 3.7 of [2], $K_{S}$ is 3-generated so the proof follows from Theorem 2.2.

Similarly one can prove
Proposition 3.6. Let $S$ a surface of general type with $q=0, P_{g} \geq 3, K_{S}^{2} \geq 3$ and $K_{S}$ spanned, then we have two cases:

- $\varphi_{\left|K_{S}\right|}(S)$ is a rational surface of degree $r-1$ in $\mathbb{P}^{r}\left(r=h^{0}\left(K_{S}\right)\right)$,
- $2 K_{S}$ is a C-isomorphism.
c) Del Pezzo surfaces.

In the following table is resumed the correspondence between very ampleness and $r$-generation for a Del Pezzo Surface. Here $L=-K_{S}$

| degree | very ampleness | $r$-generation |
| :---: | :---: | :---: |
| $L^{2}=3$ | L | 1-generated |
| $L^{2}=2$ | 2 L | 2-generated |
| $L^{2}=1$ | 3L | 3-generated |

## REFERENCES

[1] E. Bombieri, Canonical model of surfaces of general type, Publ. IHES, 42 (1973), pp. 447-495.
[2] C. Ciliberto, Sul grado dei generatori dell'anello canonico di una superficie di tipo generale, Rend. Sem. Mat. Univ. Polit. Torino, 41-3 (1983), pp. 83-111.
[3] T. Fujita, Classification theory of polarized varieties, Cambridge University Press.
[4] T. Fujita, On the structure of polarized manifolds with total deficiency one III, J. Math. Soc. Japan, 36-1 (1984), pp. 75-89.
[5] T. Fujita, Problems on Polarized varieties, Unpublished supplement to [3].
[6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., Springer. n. 52, 1977.
[7] A. Lanteri - M. Palleschi - A.J. Sommese, Very ampleness of $K_{X} \otimes \mathcal{L}^{\operatorname{dim} X}$ for ample and spanned line bundles $\mathcal{L}$, Osaka J. Math., 26 (1989), pp. 647-664.
[8] A. Lanteri - M. Palleschi - A.J. Sommese, On triple covers of $\mathbb{P}^{n}$ as very ample divisors, Classification of Algebraic Varieties, Proc. L'Aquila 1992, Contemporary Mathematics 162, pp. 277-292.
[9] T. Matsusaka, Polarized Varieties with a given Hilbert polynomial, Amer. J. Math., 5 (1975), pp. 1027-1076.

Dipartimento di Matematica " $F$. Enriques",
Università di Milano, Via C. Saldini, 50, 20133 Milano (ITALY)


[^0]:    Entrato in Redazione il 17 dicembre 1997.

