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A VERY AMPLENESS RESULT

ANTONIO LAFACE

Let (M, L) be a polarized manifold. The aim of this paper is to establish
a connection between the generators of the graded algebra

�
i≥1 H 0(M, i L)

and the very ampleness of the line bundle rL . Some applications are given.

1. Introduction.

Let L be an ample line bundle on an algebraic manifold M , the problem of
�nding the least n such that nL is very ample is a basic one in the classi�cation
theory of polarized varieties. Many attempts were made in order to establish
a general formula. A fundamental result due to Matsusaka [9] says that there
is a constant c, depending only on the Hilbert polynomial of (M, L), such that
cL is very ample. Moving in another direction Fujita conjectured ([5], § 2,
Conjecture b) that KM + (n +2)L is very ample and KM + (n +1)L is spanned
for every polarized manifold (M, L) with n = dim M . In this paper we consider
the graded algebra:

G(M, L) =
�

i≥1

H 0(M, i L).

Now the generators of this algebra describe the whole structure of (M, L). They
also allows us to determine the embedding of M via the linear system |r L| for
r � 0, so there must be a connection between these generators and the very
ampleness of r L . The aim of this paper is pointing out this connection. The
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paper is organized as follows: in Section 2 we prove the main theorem asserting
the very ampleness of r L , outside the base locus of L , for L a r -generated line
bundle. This also implies the very ampleness of 2L for any ample 2-generated
line bundle 2.7. In Section 3 some applications of the main Theorem 2.2 are
given, concerning: a) sectionally hyperelliptic polarized varieties of type (−),
b) surfaces of general type, c) del Pezzo surfaces.

2. The main theorem.

All notation used in this paper are standard in algebraic geometry. Let L
be a line bundle on a projective manifold M and consider the associated graded
algebra G(M, L). The following de�nition generalizes the notion of simply
generated line bundle.

De�nition 2.1. Let r ≥ 1 be an integer. A line bundle L on M is r -generated
if G(M, L) is generated by the sections of H 0(M, L), . . . , H 0(M, r L). We also
say that the pair (M, L) is r -generated.

There is a connection between the r -generation of L and the very ample-
ness of the line bundle r L; this connection, extending a known fact holding for
simply generated line bundles, is expressed by the following

Theorem 2.2. Given a polarized manifold (M, L) with L effective and r -
generated, then ϕ|r L| is an embedding of M \ Bs |L|.

Proof. Set N = M \Bs |L| and ϕ = ϕ|r L| . First of all we observe that ϕ is well
de�ned in N , since L is spanned on N and so are its multiples. By hypothesis
there is an integer k ≥ 1 such that kL is very ample. Take p, q ∈ N and by
contradiction suppose that no section of H 0(i L) with 1 ≤ i ≤ r separates p
and q . Then each section s ∈ H 0(M, i L) that vanish at p must vanish at q too.
Consider two sections s1, s2 ∈ H 0(i L), and de�ne γ, λ so that s1(p) = γ s1(q)
e s2(p) = λs2(q). If we take s = s1(p)s2 − s2(p)s1 we have that s(p) = 0 and
necessarily 0 = s(q) = s1(q)s2(q)(γ − λ). This implies that γ = λ. We note
that if one of the two sections vanishes at q it must vanish also at p, otherwise
it will separate p and q , but in this situation we may equally take γ = λ.

The previous argument shows that there exist some constants γi associate to
each H 0(i L) for 1 ≤ i ≤ r such that for each section s ∈ H 0(i L) we have
s(p) = γi s(q).

Now note that since G(M, L) is an algebra, the constants γi have to satisfy the
relations:

γi = γ i where γ := γ1.
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For, since L is effective there exists σ ∈ H 0(L), then σ i (p) = γ iσ i (q), but
σ i ∈ H 0(i L) so we have also σ i (p) = γiσ

i (q) and this implies the previous
equation.
Now let us consider a section s ∈ H 0(kL). By the r -generation hypothesis
the sections of H 0(M, kL) are linear combinations of products of sections in
H 0(i L) with 1 ≤ i ≤ r . Then we can write s =

�
ξj sj where ξj ∈ C and

sj =
�r

i=1

�αi

ni =1 σni
with σni

∈ H 0(i L), where αi is the number of sections

of H 0(i L) that appears in the product. Note that
�r

i=0 iαi = k, because
sj ∈ H 0(kL). We have

s(p) =
�

ξj sj (p) =
�

ξj (

r�

i=1

αi�

ni =1

σni
(p)) =

�
ξj (

r�

i=1

αi�

ni =1

γ iσni
(q)) =

=
�

ξj (

r�

i=1

(γ iαi

αi�

ni =1

σni
(q))) =

�
ξj γ

(
�r

i=1
iαi )(

r�

i=1

αi�

ni =1

σni
(q)) =

=
�

ξj γ
k(

r�

i=1

αi�

ni =1

σni
(q)) = γ k

�
ξj sj (q) = γ ks(q).

We thus obtained that the sections of H 0(kL) do not separate points, which is
absurd. Then there exists a section σ ∈ H 0(i L) which separates p and q , i.e.
σ (p) = 0 and σ (q) �= 0. Since L is spanned outside Bs |L| we may take a
section δ ∈ H 0(L) such that δ(q) �= 0. Now the section σδr−i H 0(r L) separates
p and q .
In order to show that the map ϕ is an immersion at each point p ∈ N we have
to show that for each vector τ ∈ Tp M , there exists a section σ ∈ H 0(i L) such
that dσ (τ ) �= 0 and σ (p) = 0. By contradiction suppose that such a section
does not exist, then for each 1 ≤ i ≤ r there exists a constant ηi such that for
each s ∈ H 0(i L), ds(τ ) = ηi s(p). To show this let s1, s2 ∈ H 0(i L) and consider
α, β such that ds1(τ ) = αs1(p) and ds2(τ ) = βs2(p). Now consider the section
s = s1(p)s2 − s2(p)s1; we have s(p) = 0 and 0 = ds(τ ) = s1(p)s2(p)(β − α).
This implies α = β .
De�ne η := η1. Take σ i ∈ H 0(i L) then ηiσ

i (p)= d[σ i ](τ )= idσ (τ )σ i−1(p)=
iησ i (p). Hence we have:

ηi = iη.

Now for a section s ∈ H 0(kL) we have:

ds(τ ) =
�

ξj dsj (τ ) =
�

ξj d[

r�

i=1

αi�

ni =1

σni
](τ ) =
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=
�

ξj (

r�

h=1

d[

αh�

nh =1

σnh
](τ )

r�

i=1,i �=h

αi�

ni =1

σni
(p)) =

=
�

ξj (

r�

h=1

(

αh�

m=0

dσm (τ )

αh�

nh =1,nh �=m

σnh
(p))

r�

i=1,i �=h

αi�

ni =1

σni
(p)) =

=
�

ξj (

r�

h=1

(

αh�

m=0

hη1

αh�

nh =1

σnh
(p))

r�

i=1,i �=h

αi�

ni =1

σni
(p)) =

=
�

ξj (

r�

h=1

hαhη1)

r�

i=1

αi�

ni =1

σni
(p) =

�
ξj kη1

r�

i=1

αi�

ni =1

σni
(p) = ηks(p).

This implies that the sections of H 0(kL) do not separate p from the vector τ ,
but this contradicts the very ampleness of kL . �

Theorem 2.2 immediately gives the following

Corollary 2.3. Let (M, L) a polarized manifold with L spanned and r -
generated, then t L is very ample.

Note that Theorem 2.2 cannot be inverted. The following examples show
very ample line bundles L which are not 1-generated.

Example 2.4. Let (S, L) be an abelian surface polarized by a very ample line
bundle. Let L2 = 2d , since S is abelian KS is the trivial bundle, so we have
hi (L) = hi (KS + L) = 0 for i = 1, 2. It follows that h0(L) = χ (L) =

χOS + L2−L KS

2
= d .

Let S2(H 0(L)) denote the second symmetric power of H 0(L). Then:

dim S2(H 0(L)) =
d(d + 1)

2
.

Now if L is simply generated we have S2(H 0(L)) ∼= H 0(2L), but h0(2L) =

χ (OS) + 4L2−2L KS

2
= 4d . So if d ≤ 6 we have h0(2L) = 4d > d(d+1)

2
=

S2(H 0(L)). It is well known that there exist abelian surfaces of degree 2d = 10
in P4.

Example 2.5. Let Q = P1 × P1 ⊂ P3, we have Pic(Q) ∼= Z × Z. Let
L1, L2 ∈ Pic (Q) be two generators; then 2L1 + 4L2 is very ample ([6],
Ch. 2.18, p. 380). So there exists a smooth curve C ∈ |2L1 + 4L2|. Now
consider the polarized curve (C, L), where L = OP3 (1)C . Since C is smooth



A VERY AMPLENESS RESULT 435

we have: 2g(C) − 2 = (2L1 + 4L2 + KQ)(2L1 + 4L2) = (2L1 + 4L2 −

2L1 − 2L2)(2L1 + 4L2) = 2L2(2L1 + 4L2) = 4. Hence g(C) = 3 and
deg L = (L1 + L2)(2L1 + 4L2) = 6 > 2g(C) − 1. Then h1(L) = 0 and
h0(L) = 4. From this it follows that: dim S2(H 0(L)) = h0(2L) = 10. Now
consider the exact sequence:

0 → IC → OP3 → OC → 0.

Tensoring with OP3 (2) and taking cohomology, we obtain:

0 → H 0(IC (2)) → H 0(OP3 (2)) → H 0(2L) → · · ·

Since C is contained in a quadric it follows that H 0(IC (2)) �= 0, and recalling
that H 0(OP3 (2)) = S2(H 0(L)) we immediately see that the map: S2(H 0(L)) →

H 0(2L) cannot be surjective.

Theorem 2.2 can be regarded as a generalization of the following well
known fact

Proposition 2.6. Let (M, L) be a polarized manifold and assume that L is
simply generated (i.e. 1-generated), then L is very ample.

We have only to show that in this case BS|L| = ∅. By contradiction
suppose that there exists p ∈ Bs |L| and let t L be very ample. Since L is
1-generated, each section of t L is a sum of products of sections belonging to
H 0(L), then t L would not be spanned at p.
Theorem 2.2 also allows us to prove the following

Theorem 2.7. Let (M, L) be a polarized manifold with effective and 2-
generated line bundle; then 2L is very ample.

Proof. From Theorem 2.2 we have only to show that:

• 2L is spanned.

• 2L separates p, q with at least one in Bs |L|.

• 2L separates p ∈ Bs |L| from each τ ∈ TpM .

Let t L, t ≥ 2, be a very ample line bundle. Each section s ∈ H 0(t L) is of the
form

(1) s =
�

(

a�

i=0

αi

b�

j=0

βj ),
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with αi ∈ H 0(2L) and βj ∈ H 0(L) so that 2a + b = t . Now 2L is spanned
outside Bs |L|, since Bs |2L| ⊂ Bs |L|. Let p ∈ Bs |L|, if every α ∈ H 0(2L)
vanishes at p then each product in 1 must vanish, so t L is not spanned.
If p ∈ Bs |L| and q /∈ Bs |L| take β ∈ H 0(L) such that β(q) �= 0, β2 ∈ H 0(2L)
separates p and q . Let p, q ∈ Bs |L|. As in the proof of Theorem 2.2 the same
shows that there exists a section in H 0(L) or in H 0(2L) separating p from q ,
then 2L separates p and q .
If p ∈ Bs |L| and τ ∈ Tp M , then as before we know that exists a section of
H 0(L) or of H 0(2L) separating p and τ . But in this case we may have a
β ∈ H 0(L) with dβp(τ ) �= 0. This doesn�t tell anything on H 0(2L) because
β2(p) = 0 but also dβ2

p(τ ) = 0. Now we prove that, if 2L does not separate p
and τ , such a β does not exists. We have two cases:
t is even. Let η be as in Theorem 2.2 such that dαp(τ ) = ηα(p), for each
α ∈ H 0(2L). Let t = 2r and consider s ∈ H 0 = (t L):

dsp(τ ) =
�

(d(

a�

i=1

αi

b�

2 j=0

βj )p(τ )) =
�

(d(

r�

i=1

αi)p(τ )) =

=
� r�

i=1

(
�

j �=i

αj (p))dαip(τ ) =
� r�

i=1

η(

r�

j=1

αj (p)) =

=
�

rη(

r�

j=1

αj (p)) = rηs(p).

So t L does not separate p and τ .
t is odd. Since βj (p) = 0 for each j , we have:

s(p) =
�

(

a�

i=0

αi (p)

b�

2 j+1=0

βj (p)) = 0.

Then t L would not span in p. �

3. Some applications.

In this section we discuss some applications of Theorem 2.2.
First we consider a polarized manifold (M, L) with Bs|L| = {p1, . . . , pn}

(a �nite set) and we obtain some information on the generator of G(M, L).
To apply the main technique: �the Apollonius method� see [3], recall that
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given (M, L) be a polarized manifold, a sequence of irreducible and reduced
subvarieties Di of M such that Di ∈ |LDi−1

| and D1 ∈ |L| is called a ladder of
(M, L) and the Di are said the rungs of the ladder. In the second applicationswe
study some connection between the generator of the canonical ring G(S, KS) of
a surface of general type and the very ampleness of t KS . Finally we study the
very ampleness of −t KS for a del Pezzo surface.

a) Hyperelliptic polarized manifold of type (−).

In this subsectionwe apply the main theorem to provide an evidence for the �rst
conjecture of Fujita in a special case. First of all we recall Fujita�s conjecture,
see [5] (§ 2, Conjecture b).

Conjecture 3.1. For every polarized manifold (M, L) with dim M = n, KM +

(n + 2)L is very ample.

We recall that the delta-genus �(M, L) of a polarized manifold (M, L)
is de�ned as �(M, L) = Ln + n − h0(M, L). Here we deal with polarized
manifolds with �(M, L) = 1. In this case for Ln ≥ 3 it is known [3] that L is
very ample. It is also easy to prove that for Ln = 2 the line bundle (g + 1)L is
very ample [7].
The case Ln = 1 is very dif�cult to classify and there are only partial results,
see [4]. Here we consider only polarized manifolds sectionally hyperelliptic of
type (−). In this case Fujita [4] proved the following facts:

H q(M, t L) = 0 for q ≥ 1, t ∈ Z,(2)

KM = (2g − n − 1)L where g = g(M, L) and n = dim M,(3)

Pic M ∼= Z, generated by L,(4)

(M, L) has a ladder.(5)

Properties 2 and 3 are true also for the rungs (D, LD ) of this ladder. In
this situation we may apply Theorem 2.2 to prove the very ampleness of
KM + (n + 2)L = (2g + 1)L .

We start with a lemma on the r -generation inspired by [3], 2.3.

Lemma 3.2. Let (M, L) be a polarized manifold with �(M, L) = d(M, L) =

1, sectionally hyperelliptic of type (−); if the line bundle LC is r -generated,
then L is r -generated.

Proof. Consider a ladder of (M, L) : (M1, L1) = (M, L), . . . , (Mn, Ln) =

(C, LC ) and proceed by induction on n.
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For n = 1 the assumption is true. Now suppose that it is true for k + 1 and
consider the exact sequence:

0 → OMk
(−Lk ) → OMk

→ OMk+1
→ 0,

tensor with OMk
(t Lk) and consider the exact cohomology sequence, recalling 2

we get:

(6) 0 → H 0(Mk, (t − 1)Lk ) → H 0(Mk, t Lk) → H 0(Mk+1, t Lk+1) → 0.

So for each t the restriction map ψ :

H 0(Mk , t Lk) → H 0(Mk+1, t Lk+1)

is surjective. Let us take a set of generators γ1, . . . , γi of G(Mk+1, Lk+1) and
their inverse images η1, . . . , ηi in G(Mk, Lk), if σ ∈ H 0(Mk, Lk ) is the de�ning
section of Mk+1 then G(Mk , Lk) is generated by the ηj and σ . To show this,
observe that by 6 H 0(Mk , Lk) is generated by σ and by the ηj that belong
to H 0(Mk+1, Lk+1). Proceeding by induction on t it is simple to prove the
assertion. Finally observe that η1, . . . , ηi and σ belong to H 0(Mk, t Lk) with
t ≤ r . This completes the proof. �

Considering the ladder of (M, L), by adjunction from 3 we have:

KMi
= (2g − i − 1)Li .

Then KC = (2g − 2)LC = (2g − 2)p, with p = Bs |L|. Hence g(M, L) =

g = g(C) the genus of the curve C . Then since C is an hyperelliptic curve
we have that LC is exactly 2g + 1-generated. Then by the lemma (M, L) is
2g + 1-generated.
The following theorem extends what proved in [8] for g = 1.

Theorem 3.3. Let (M, L) be a polarized manifold with �(M, L) = Ln = 1,
sectionally hyperelliptic of type (−), then (2g + 1)L is very ample.

Proof. Since L is (2g + 1)-generated, by 2.2 we know that ϕ|(2g+1)L| is an
embedding of M \ {p}.
To see that (2g + 1)L is spanned on p we proceed by induction. Clearly
(2g + 1)LC is very ample. Consider a smooth D ∈ |L| (we know that such
a D exists by the ladder property), then consider the exact sequence:

0 → H 0(2gL) → H 0((2g + 1)L) → H 0((2g + 1)LD) → 0.
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By induction we have that (2g + 1)LD is spanned on p then there exists
σ ∈ H 0((2g + 1)LD) with σ (p) �= 0. By the suriectivity of the restriction
map we have a γ ∈ H 0((2g + 1)L) such that γ (p) �= 0.
To see that (2g + 1)L de�nes an embedding in p, consider a vector τ ∈ TpM .
We say that exists a section η ∈ H 0(M, L) such that dη(τ ) �= 0. To construct
η we may take an hypersurface D ∈ |L| such that τ /∈ Tp D then the section
that de�ne D clearly have a differential that does not vanish on τ . Suppose by
contradiction that for each D ∈ |L|τ ∈ Tp D then the intersection of n such Di

cannot be transverse, so Ln > 1, absurd. Section η2g+1 de�nes an embedding
in p.
Now consider a point q ∈ M different from p, we have to �nd a section in
H 0((2g + 1)L) that separates p and q , i.e. that vanishes on p but not on q . To
see this observe that every section of H 0(L) vanish on p, since p = Bs |L|, but
there is a section σ ∈ H 0(L) that does not vanish on q , otherwise q ∈ Bs |L|.
Now consider σ 2g+1 ∈ H 0((2g + 1)L), this section separates p from q . �

Theorem 3.3 is as best as possible as proved in the following:

Proposition 3.4. Given a polarized manifold (M, L) with �(M,L)=d(M, L)=
1, sectionally hyperelliptic of type (−), the least integer t such that t L is very
ample is 2g + 1, i.e. KM + r L is not very ample for r ≤ n + 1.

Proof. By contradiction suppose that 2gL is very ample and consider a regular
ladder of (M, L). Since the ladder is regular, the very ampleness of 2gL implies
the very ampleness of the line bundles LMi

.
In particular we have that 2gp is very ample, where p = Bs |L| and 2gp is a
divisor on C , where C is the one-dimensional element of the ladder. Note that
C is an hyperelliptic curve and that g(M, L) = g(C).
Now we may compute canonical bundle by adjunction. By 6 we have KM =

(2g − n − 1)L , then we obtain: KD = (KM + L)D = (2g − n)LD , and
by induction: KC = (2g − 2)LC . But LC = Bs |L| = p so we have
KC = (g − 1)2p. Since C is hyperelliptic we know that h0(2p) = 2. Now
consider the canonical map ϕ|KC | on C and let �σ, τ � is a basis of H 0(2p), a
basis of H 0(KC ) is: �σ g−1, σ g−2τ, . . . , τ g−1�.
Now observe that �σ g, σ g−1τ . . . , τ g� is a basis of H 0(KC + 2p). In fact by
Riemann-Roch we have h0(KC + 2p) = g + 1. This theorem implies that also
ϕ|KC+2p| is a double covering of P

1 followed by the Veronese embedding, but
this implies that (2g + 1)LC = KC + 2p is not very ample. �

b) Surfaces of general type.

Let S be a minimal surface of general type (i.e. of Kodaira dimension 2) and let
KS be its canonical bundle. It is known [1] that K is ample outside the set of
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(−2)-curves, i.e. K C = 0 if and only if C is a (−2)-curve.
In literature there are results [1] on the C-isomorphism property of the maps
ϕn = ϕ|nL| , there are also results [2] on the generation of the canonical ring:

�

t≥1

H 0(S, t KS).

As Theorem 2.2 shows there must be a connection between these results. In the
following table the results on the generation of the canonical ring, for surfaces
with q = H 1(S, OS) = 0, are compared with the very ampleness of r KS .
For each pair of values of K 2

S and Pg(S) = h0(S, KS) are compared the C-
isomorphism property of ϕ|r KS | and the r -generation of KS .

K 2
S ϕr KS is a C-isomorphism Pg KS is r -generated

1 5

0

1

2

≤ 6

≤ 4

5

2 4

0

1

2

3

≤ 6

≤ 4

3(�)

4

3
3KS is spanned
and ϕ3 is a

birational morphism

0

1

2

3

≤ 6

≤ 4

3(�)

2(•)

Where (�) means that the result is true if |KS| contains an irreducible element
and (•) means that the result is true if KS is base point free and ϕ|KS |(S) is not a
rational surface of degree r − 1 in P

r (r = h0(KS)).
We observe that r -generation of KS is not so far from the very ampleness of
r KS and by Theorem 2.2 we have also the following propositions:

Proposition 3.5. Let S be a surface of general type with Pg = K 2 = 2 and
q = 0. If the generic element of |KS| is irreducible, then ϕ|3KS| is a C-
isomorphism outside Bs |KS|.
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Proof. By Theorem 3.7 of [2], KS is 3-generated so the proof follows from
Theorem 2.2. �

Similarly one can prove

Proposition 3.6. Let S a surface of general type with q = 0, Pg ≥ 3, K 2
S ≥ 3

and KS spanned, then we have two cases:

• ϕ|KS |(S) is a rational surface of degree r − 1 in Pr (r = h0(KS)),

• 2KS is a C-isomorphism.

c) Del Pezzo surfaces.

In the following table is resumed the correspondence between very ampleness
and r -generation for a Del Pezzo Surface. Here L = −KS

degree very ampleness r -generation

L2 = 3 L 1-generated

L2 = 2 2L 2-generated

L2 = 1 3L 3-generated
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