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ON HIGHER SECANT VARIETIES OF
RATIONAL NORMAL SCROLLS

PIETRO DE POI

In this paper we study the higher secant varieties of rational normal
scrolls, in particular we give them as determinantal varieties. From this we
can obtain, in some cases, the sequence of secant defects, generalizing to
a class of varieties and to every characteristic the counterexample given by
Adlandsvik to Zak’s theorem of superadditivity.

Introduction.

Let X C PV be a projective variety. The k™ secant variety X**! of X is
the closure of the union of the k-planes spanned by k + 1 points of X.

The interest for the properties of secant varieties arose first at the beginning
of this century; we recall in particular the articles of Palatini [8], [9] and one of
A. Terracini, [11]. In recent years the argument has been looked over again,
especially by the work of F. Zak, see [12]. Some of the most interesting
properties of higher secant varieties can be found in his study about the secant
defects: the expected dimension of the k™ secant variety of a projective variety
X, when not linear, is (k + 1)n + k, where n = dim X, so it is natural to
define the k" secant defect as the integer 8; := si_; + n + 1 — s, where
s = dim X*1'. In [13], Zak proved that the sequence of secant defects is
monotonic non decreasing; in the same paper, he also stated that this sequence
is superadditive for every non-degenerate smooth projective variety X C PV
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in the interval [0, ko], where kg is the minimum integer such that the k(t)h secant
variety X%*! is the whole PV, i.e. if k = k; +...+k,, then 8 > &, +...+8 .
But the proof was wrong, as a counterexample given by B. Adlandsvik in [15]
shows; in particular he found that, in zero-characteristic, for a rational normal
scroll of dimension two of the type (1, @), with a > 7, the theorem fails.

The theorem of superadditivity was then proved in more restrictive hy-
pothesis by B. Fantechi in [3], by assuming that the k™ secant variety is almost
smooth, i.e. the tangent star to every point is contained in the join of the point
and the variety itself. More recently, Holme and Roberts saw what the situation
is about this problem, in [6].

In this paper we will study the higher secant varieties of rational normal
scrolls. In particular, we prove Theorem 4.6 and Corollary 4.7 that, if X, 4,
is a scroll of type ay, ..., a;, then XX is a cone of vertex L, ...Lj,, and
basis the variety X z]’ ~ o~ where L; is the linear space associated to

cons @y e Ay sy A

aj,and a, < k, Vp = ji,..., jn, ag = k, Yg # ji,..., j,. From this
we can obtain, in some cases, the sequence {§;}, generalizing to a class of
varieties and to every characteristic the example given by Adlandsvik. We
will prove this by considering the higher secant varieties of rational normal
scrolls (and rational normal scrolls themselves, indeed) as linear determinantal
varieties; in particular, our main result will be proved as a generalization of a
new “geometric” proof of the fact that the higher secant varieties of a rational
normal curve are given, set-theoretically, by the linear determinantal varieties
of the catalecticant matrix associated to the curve (for other proofs see [2] and
[10]).

In the first section we introduce the language of the present work and
basic definitions. In the second one, we study linear determinantal varieties,
in particular the varieties X for which X* is given by the vanishing of the
minors of order k 4+ 1 of the matrix defining X and we characterize a class of
them. In the third section we apply these results to catalecticant matrices, whose
linear determinantal varieties are rational normal curves. In the fourth section
we prove the theorem about higher secant varieties of rational normal scrolls,
and we give an example of calculation of the sequence {3, } for a rational normal
scroll.

After sending this paper to the referee, prof. D. Eisenbud told me that a
student of him, M. Johnson, in his Ph. D. thesis, obtained results similar to
ours; recently he wrote an article, just appeared [7], reporting his main result on
this argument.

I am thankful to prof. E. Mezzetti for suggesting me this argument and
for her help and suggestions and to the referee also, for the careful reading and
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useful remarks.

Notations. Let K be an algebraically closed field; if V is a K-vector space of
dimension N + 1, we denote by AN*! := V(V) the affine space on V and by
PN = P(V) = ProjS(V) the projective space associated to V; [v] denotes the
point of PV associatedto ve V.

By a variety we mean a reduced and irreducible algebraic K-scheme.

For a variety Z of PV, we indicate with Z C ANT! the affine cone of Z in
AN+1.

1. Join of Varieties.
We recall the following definitions (see [14]).

Definition 1.1. Let X and Y be two varieties of AN*!; we call sum of X and
Y, and we indicate with X + Y, the closure of the image of X x Y under the
morphism determined by the addition of V.

Obviously we have dim (X 4+ Y) < dimX + dimY.
The analogous of the sum of two affine varieties in the projective space is
the join:

Definition 1.2. Let X and Y be two varieties of PV the reduced scheme XY
such that:

—

XY =X+7
is called join of X and Y .
One can prove that

Theorem 1.3. Let X and Y be two (irreducible) varieties of PV ; then we have:

1) XY isirreducible, therefore XY is a projective variety of PV ;
2) dim(XY) <dimX +dimY + 1.

Proof. See for example [3], (1.2.). U
A straightforward consequence of this theorem is the fact that the set
var(PV) of projective subvarieties of P¥ becomes a commutative semiordered

monoid by the operation given by the join. The order is given by the inclusion,
and the empty variety is the unit of the monoid.

Definition 1.4. By higher secant variety of a given variety X of PV we mean a
power X k of X in the monoid var(PV).
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It is easy to prove that this definition is equivalent to the classical one given
at the beginning of the introduction and used, for example, by F. Zak (see [12],

[13]).
An easy consequence of Theorem 1.3, 2) is that

dim X! <dimX* +dimX +1<--- < (k+ 1)dim X + k,

so we can give the following

Definition 1.5. The k" secant defect of X is the integer §; defined by

0 if k=0
=G tso+D)—sp if 1<k+1=<ko
dim X if k>ko
where s; is the dimension of X**! (obviously we have s = dim X) and

ko = min{k e N | X* = PV}.

2. Linear Determinantal Varieties.

Let us consider the projective space M := P"~! associated to the vector
space of n x m matrices with entries in K.

Definition 2.1. A generic determinantal variety M, C M is the locus of
matrices of rank at most k.

It is well known that M, is a subvariety of M, and its ideal is generated by
the minors of order k + 1 of

Xo S
P =
Xnm—m—1 o Xam—1
where the x;, i = 0, ..., nm — 1, are coordinates on M (see for instance [1],

pp. 67-75).

In particular M, is the locus of matrices of rank 1. Let us recall the
following interpretation of M; as a Segre variety (cfr. [5], pp. 98-99). Let o
be the Segre map

o : P(K") x P(K™)*) — P(K" @ (K™)")
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defined by

U(Yv Z):U([YI, ---,)’n], [Zl’ ,Zm]): [(ylv "'vyn)®(zlv"'vzm)]'
To give a n x m matrix of rank 1 means to give a linear map
A:K" — K"

of rank 1. To give such a matrix, up to a scalar multiplication, means to fix an
image of dimension 1 and a kernel of dimension m — 1, which is conceivable as
an element of (K™)*. Then we can write:

Im(A) = [y1, ..., yo) € P(K")
and
Ker(A) = [z1, - . ., zm] € P((K™)").

Under the canonical isomorphism
¥ : Hom (K", K") = (K")* @ K",
A corresponds to some (nonzero) multiple of
YZ=1[y, ...yl ®lz1,.--szml

Remark 2.2. The matrices of rank < k correspond, under i, to sums of k pure
tensors.

This remark allows to get in a short way the well known characterization
of higher secant varieties of generic determinantal varieties.

Theorem 2.3. M}If = M.

Proof. First of all, we observe that it is sufficient to prove the formula for
h =1, since if M{‘ = M,, then:

(M) = (MIY = MI* = My, .

So, let us fix Ay, ..., Ay € M, and identify A; with ¥; ® Z;; then P € M, if
and only if it can be written as a sum of k pure tensors, by (2.2.), and then if and
onlyif Pe Mf. O

We will consider now linear sections of the generic determinantal variety,
or, more precisely, sets of zeroes of minors of a n x m matrix of linear forms
on a projective space IP¢, obtained by fixing a linear rational map i : P* --» M.
We give the following



8 PIETRO DE POI

Definition 2.4. Let 2 = (L;;) be a matrix of linear forms on P¢; the linear
determinantal variety ¥;(2) is the pullback of the generic determinantal variety
M; under the rational map i : P --» M determined by the linear forms (Lij).

A matrix of linear forms €2 can be thought of as a linear application
w:V — Hom (U, W)
where U = K", W = K" and P* = P(V), or as an element
weV'U W,
because of the canonical isomorphism:
V*QU*® W= (V, Hom (U, W)).
A further interpretation is given by the isomorphism:
V*® U*® W = Hom (Hom (U, W)*, V)
under which w corresponds to a surjective map:
w: HomU, W)= Hom(W,U)=Z2U Q W* - V*
with kernel:
V*:={y € Hom(W, U) | (w(¢), ¥) =0V eV}
where, V¢ € Hom (U, W) and V¢ € Hom (W, U), we have:
(0. V) =V (9)

(considering Hom (W, U) as the dual of Hom (U, W)).
Let us recall that two matrices Q, Q2" € Hom (U, W), are said to be
conjugate if there exist A € GL (W) and B € GL (U) such that:

Q' =A0QoB.

We recall also that the left multiplication by a matrix A € GL (W) (respectively
the right multiplication by B € GL (U)) is called an invertible row (resp.
column) operation.

We characterize now the class of matrices of linear forms for which the
variety of secant k-planes of (2;(Q))* is T(Q):
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Lemma 2.5. Let Q be a n x m matrix of linear forms on P¢; then the following
facts are equivalent:

D) (Z1(Q) = Zi(Q);

2) (Z1(Q) D Tu(R).

Proof. We observe that, as in the case of generic determinantal varieties, a
matrix A € X;(€2) can be thought of as an element of U* ® W which is the sum
of k pure tensors; so from (2.2.) it follows that (£;(22))* C Z(Q). O

To give a useful criterion for verifying if a matrix of linear forms €2 satisfies
the condition (X, (Q))* = Xx(2) Theorem 2.8, we need the following

Lemma 2.6. Let Q be a n x m matrix of linear forms on P*. Assume that Q
satisfies the following condition:

(*) forevery invertible matrix n xn A and for any choice of n—k rows of Ao<2,
the linear space defined by the vanishing of the linear forms of these rows
is contained in the reduced scheme X defined as follows: X is the union
of the k joins of (£,(R))*~! and one of the k linear spaces defined by the
vanishing of the linear forms contained in n — 1 rows of A o Q including
the fixed (n — k)’s.

Then:
(Z1(Q) = Zy().

Proof. By (2.5.), to prove the theorem, it is sufficient to prove that if A €
24(€2), it belongs to (Z(Q))*. To prove this, it is better thinking of A as an
element of Hom (U, W), or as a matrix of rank at most k. Now, since

rank (A) = dim (Im (A)),

A has rank at most k if there exists at least a subspace S of W with dim(S) = &
that contains Im (A) i.e. if and only if there exists at least a projection:

w
s . W— —
S
(with dim (§) = k) that, composed with A, gives the zero map. Therefore we
can write:

2.7) @@= |J aci@®)lrson=0}
SeGk—1,P(W))
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where G(k — 1, P(W)) is the Grassmannian of (k — 1)-planes of P(W) and
i : P < M is the map introduced in (2.4.). Fixed S € G(k — 1, P(W)), the
projection g can be represented as a matrix of the type:

P11 o Pln

s =

Pn—kl *t DPn—kn

whose minors of order n —k are the Pliicker coordinates of S in G(k— 1, P(W)).

From this, if
Al Alm

Al Anm
we obtain the equations of the set {A | mg 0o A = 0}:
Yo Pukit o Do Plikim

OzﬂsoA:

Yoy Pnkihit ot Doiy Pa—kiAim
If we fix 7o, . .., z¢ coordinates on P¢, the equations become:
> pijhilzo. ... 2l=0  Yi=1...n—k = Vk=1_...m
j=1
Therefore, each of the elements in brackets of (2.7.) determines the linear space
given by the linear forms of the rows

(Zpij)»jl[Zo,---,Ze]-"Zpij)»jm[Zo,---,Ze]) i=1,...,n—k,
j=1 j=1

and our thesis easily follows from the hypothesis. ([

Theorema 2.8. Let Q be a n x m matrix of linear forms on P*. Assume that
the following condition is fulfilled: for any choice of n — k rows of 2, the linear
space defined by the vanishing of the linear forms of these rows is contained
in the reduced scheme X defined as follows: X is the union of the k joins of
(Z1(Q) ! and one of the k linear spaces defined by the vanishing of the linear
forms contained in n — 1 rows of Q2 including the fixed (n — k)’s. Then:

(Z1(Q)f = Zp(Q).
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Proof. By the previous lemma, it is enough to verify the condition (*) of
Lemma 2.6. In fact: let us consider A o 2, where A € GL (W), ie. an
invertible row operation; interpret X;(£2) as a subvariety of the Segre variety
P x P". The operation just considered, geometrically means a projectivity
of P" (since A determines a projectivity [A] € PGL (n)). Therefore, with the
change of projective coordinates of P determined by [A]~!, A o Q becomes,
in the new coordinates, again 2. Then, since a projective change of coordinates
maps linearly independent forms to linearly independent forms, the condition
(*) is fulfilled. O

It is clear that, passing to the dual spaces and considering the matrix ‘2,
we obtain an analogue proposition for the columns. Therefore in the following,
it will not be restrictive to suppose n < m.

3. Rational Normal Curves.

In this section, using Theorem 2.8, we get, in an easy way, the well-known
characterization of secant varieties of rational normal curves. Let us recall the
following

Definition 3.1. A n x m matrix A = (a;;) with entries in a ring R is called
catalecticant (or persymmetric) if a;; = apx Vi, j, h, k suchthati + j = h + k.
The following matrix

X1 X2 X3 s Xm+1
X2 X3
Catm+1,n+1) = X3
Xn+1 e Xm+n+1

with indeterminates entries is called the generic catalecticant matrix.

Let us note that Cat(m + 1, n 4+ 1) can be interpreted as the matrix of the
map:
¢ : Sym"V* ® Sym™V* — Sym‘V* t=n+m
determined by the ordinary multiplication of polynomials of degrees m and n
on a linear space V of dimension 2, or, (up to canonical isomorphisms) as a
map:
¢ :Sym'V — Sym"V ® Sym"V.
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We introduce now the rational normal curve C* := v, 1(P(V)), image of
the Veronese map:
ve1 : P(V) — P(Sym‘V).

The following proposition is well known (see [2], (4.2.)):
Proposition 3.2. % (Cat(m + 1,n+ 1)) = C*.

We are finally able to find the equations of the higher secant varieties of an
interesting class of linear determinantal varieties, and as a corollary we will find
the higher secant varieties of the rational normal curve. First of all, we need the
following

Lemma 3.3. Given a projective variety X C PN and a linear projection
7 PN ——5 PY | then we have w(X*) = ((X))X.

Proof. 1t is enough to prove the claim for open subsets, therefore our thesis
follows from these equivalences:

Pen(Xh «— Pen(Qi...0) =7(01)...71(Q),

where
0,eX,Vi=1,...,k, & Pea(X)t. O

From now on we will denote by P; the i th fundamental point of P*, whose
coordinates x;, vanishV j = 1,...,i,..., £+ 1. Then, we prove the following

Theorem 3.4. (XZ;(Cat(m + 1,n + 1)) = X,(Cat(m + 1,n + 1)) (with
h <min(m+ 1,n+ 1)).

Proof. Let us prove this theorem by induction on 4. The case h = 1 is trivial,
and for the case & = 2 it is sufficient to verify the hypotheses of Theorem 2.8:
let us consider n — 2 rows of Cat(m + 1, n 4 1); it is easy to see that the only
nontrivial case is if we consider the first n — 2 rows (or, which is the same, for
simmetry, the last n —2 ones), otherwise these rows give the empty set or a point
of the curve.

Let us consider then the first n — 2 rows; these determine the straight line

Xndm = A, Xndm+1 = U,

and the case 7 = 2 easily follows from the observation that this line is the
tangent to the rational normal curve at the point Py, .

Now, let us consider n — h rows of Cat (m + 1, n + 1); it is easy to see, like
in the proof of the case 4 = 2, that the only nontrivial case is if we consider the
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first n — h rows, otherwise we have points of ¥,(Cat(m + 1,n+ 1)), g < h
and our thesis follows by the inductive hypothesis.
Let us consider the first n — & rows: these determine the A plane:

Xptm—h+2 = Ay oo Xnpmt1 = An,

therefore, by the inductive hypothesis, it is sufficient to prove that P, ,,_p42
belongs to (X;(Cat (m + 1, n + 1)))". To prove this, let us consider the linear
projection

(X1, e oy Xnmn42s Xneht3s « o Xnpmt1]) = [X1, - ooy Xpopy2]

which maps the curve C"™*" to the curve C"~"*! and our thesis follows from
the Lemma 3.3 and the inductive hypothesis. ([

Note 3.5. This theorem was proved by T.G. Room in [9] and by D. Eisenbud in
[2]; the above new “geometric” proof will be suitable to be generalized to find
higher secant varieties of rational normal scrolls.

As an obvious consequence we have the following

Corollary 3.6. X,(Cat(m + 1,n + 1)) = Zy(Cat(p + 1,9 + 1)) with £ =
m+n=p+qgandh <minfm+1,n+1,p+ 1,9+ 1}.

Note 3.7. This corollary is proved in more general hypoteses in [4] (pag. 9,
Lemma 2.3). It is used in [2] just to prove (3.4.).

4. Rational Normal Scrolls.

Letay, ..., a; beintegers such thata; > 0, Vi =1,...,k, and a; > O for
at least one index j. Let us take k linear supplementary subspaces

L; c PV, i=1,...,k

with dim (L;) = a;. For a; # 0, we consider the rational normal curve C' C L;
image of the morphism:

(]5,' = Vg;,1 Z]P)l —> Ll'.

If a; =0, we put C' = L; and ¢, the constant map.
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Definition 4.1. A rational normal scroll of type ay, . . ., ay, is the variety:

Xayoa = | ¢1(P)... ¢u(P).

PeP!

We show now how rational normal scrolls can be seen as linear determi-
nantal varieties. We fix homogeneous coordinates x(()’), cxDon Ly, i =

(€8] 1 (@) i (k) k :
... kysothatxg”, o xfD o xg?, o x0 xg L x (P are coordi-
nates on P¥. We may assume that ¢; = O Vi = 1,...,h — 1 and aj #0
otherwise. Let us consider the matrix
0 X
(h) (h)
X o X
(h) h
xah—m xéh)
N
Md]“.dk = ’
xé’o s x®
(k) (k)
X T X
(k) k
xak—m e xL(1k)
where m is an integer such that
min{ay, ..., a} if 1#£a,=---=a,
1<m< . .
min{ay, ...,a;} +1 otherwise.
Itis given by the “concatenation” of k—h+-1 catalecticant matrices My,, ..., M.

The proof of the following classical theorem is standard.
Theorem 4.2. X, ., = X1(My, 4).

We will now obtain the equations of higher secant varieties of rational
normal scrolls. We need the following three lemmas:
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Lemma 4.3. X" = 2,(My,..q4), withn <m.

ap...ag

Proof. We can follow the proof of Theorem 3.4 on the columns instead of the
TOWS. (]

Lemma 44. Let X, 4.4 be a rational normal scroll; let us fix i and

let P° ..., P% be a; + 1 points such that L; = PO, P4 et 7 =
Xa,..a;10..0a;,,..a, be the rational normal scroll generated by the linear spaces
Li,...,Li_i,P° ...,P% Liy,..., L. Then:

x€G1(P)...¢i(P)...¢(P),
therefore -
XE€G(P)...0i(P)...o0(P)L

and finally e
xed(P)...¢i(P)...on(P)P°... P"

ie. QeZ. (]

Lemma 4.5. In the hypotesis of the previous lemma, if n > a;, we have:

X =X

ay...a;...a ay...a;—10..0a; 41 ...a "

Xn kCX}'l

ay...a;...a ay...a;—10..0a; 41 ...a "

Viceversa. From the previous lemma (and from the fact that L" = L, since L is
linear) it suffices to prove that

X" ~ LcCX!

ap...a;...ay ai...a;...ap”
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We consider a point x € XZ ~ L: by definition,
1-- k

NP

XEY ...Vl
where yi, ..., y, € Xa,...é?...ak’ [ € L, and, in particular there exist Py, ..., P, €
P! for which we have:
VeED(P)...¢i(P)...¢u(P) L=1,....n.
We have also that y;, ..., y, € X4, 4.4 therefore there exist [;,...,[, € L
such that
¢i(P)=11,...,9;(P,) =1,,
moreover, since n > a;, we have
Lh...l,=L
and
Ve€EPI(Pe)...lg...n(P) £=1,...,n;
therefore, since
(@1(P) ... 9 (P)) ... (P ... (@1(Po) ... ¢i(Py) ... du(P)) L =
= (¢1(P)...Li o (P (@1(Po) ol i (Py) C XD
we conclude that x € X7, - (|
It is clear that a permutation of the integers ay, .. ., a; induces a projective

transformation of rational normal scrolls. So it is not restrictive to suppose

O0<a <...<a.

Theorem 4.6. Let X,, ., be a rational normal scroll, with0 < a; < ..

then X" =X,(My, .4 n), where M, .. , is the following matrix
ai.. 1---Gks 1---Gks

Ay

L= ag;
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RN
) )
X T Xy
) )
xaj_m e xaj
x(()j+1) gD
Mal‘..ak,n =
(k) k
Xo ce xr(n)
(k) (k)
Xy X
(k) k
xak—m xgk)

where j is the minimum integer such that a; > n and 1 <m < a;.

Proof. Let us observe that the matrix M,, , , may be seen as a catalecticant
matrix to which some rows have been taken away. So, if @y —m + 1 > 2, our
claim follows from (3.7.) and Lemma 4.5.

If ag —m +1 = 1, we have a; = --- = a = n + 1, therefore
X1(My, .. q.n) is a cone of vertex L := Lo...L;_; and basis the Segre variety
Ymk—j = X1(Mg,..aq.n) N (L;j ...Lyg). This cone contains X, g, , SO Xu .4 C
Zn(Ma,...ap.n)-

To prove the other inclusion, let us consider a point T € X,(My, _a..0);
therefore there exist points Si,..., S, such that §; € LPl.(j)...Pl.(k), i =
1,....,n,where PP e L;, Vi =j, ... .k,and PV ... PP = P x 0, C
Y n,k—j 1s an element of the family of (k — j)-planes of %, ;_ ;. Then, we have

TeLP?...PO)... PP . POy =L . PPy, (PP .. PY).

From the facts that, Vi = 1, ..., k, the rational normal curve C! generates the
L;, and the spaces Pl.(j ). Pl.(k), as i varies, are each contained in a space of
the same family of (k — j)-planes of X,, _;, it follows that there exist n points
[s1,t1], ..., [Sn, t,] € P! such that

(P(7. . P = gu(lsi, n]) ... pellsn, ta]), €= j, .. k.
Therefore T € X" U

a...ag”

The geometrical meaning of Theorem 4.6 is the following:
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Corollary 4.7. The (n —1)™ secant variety of the rational normal scroll X ay..ax
is a cone of vertex the span generated by the linear spaces L; such that
dim L; < n * and basis the (n — 1) secant variety of the rational normal scroll
determined by the intersection of X,, . 4, with the span of the linear spaces such
thatdim L; > n.

From Theorem 4.6 we can compute the dimension of some higher secant
varieties and the sequence of secant defects.

Lemma 4.8. Let X,, ,, be arational normal scroll, with0 <a; < ... <a, n
an integer and j the minimum integer such that a; > n, then

-1

dimX) = (@ +1)+dim (O (M, _a) N(Lj ... L)),
1 n

~.

i

where the matrix M, g, , is defined in the previous theorem.

Proof. 1t follows from the fact that X is a cone of vertex L;...L;_; and

ap...ay
basis Y, (Mg, a.n) N (Lj...Ly), the (n — )" secant variety of the rational
normal scroll X, 4 C (Lj...Ly) of type a;, ..., a. |
Lemma 4.9. Let X, ., be a rational normal scroll, with0 < a; < ... < g

and n < ay, then

dimX; , =min{N,nk+n—1}.

.a,
Proof. If dim X ;’] o = N, the lemma is trivial; therefore from now on we will
suppose dim X7 < N.

ap...dg

Let us define the following variety:

S:={(P1,.... P; Q)| PP, Q€ di(P)...¢(P1)...¢1(P)...(Py)} C

c (P x PV
and the projections Pi; : § --» P! x ... x P! and 7, : § --» PV, whose
image is Xj . The generic fibre of the map m; at the point (Py, ..., P,) is
the variety

T (P P = (P Py 0(P) (P 1 (Pa) - i (Pa)

* ie. these linear spaces are “filled up” by the (n — 1) secants of the rational normal

curves.
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of dimension nk — 1. These facts follow from the observation that n distinct
points of a rational normal curve of degree less or equal to n — 1 generate a
linear space of dimension n — 1.

Besides, for the same reason, the generic fibre of m, is a point, i.e.
dim S = dim X? and from this we obtain our claim. Ol

ap...dg
Lemma 4.10. Let X, , be a rational normal scroll, with0 < a; < ... < a,
n aninteger and j the minimum integer such that a; > n; then

j—1
@.11) dim X5, ,, = min {N. Y@ + 1)+ nk —nj+21 1.

i=1
Proof. 1t is an easy dimensional count from the previous two lemmas. (I

This theorem gives a class of counterexamples to Zak’s theorem of su-
peradditivity; they are highly unbalanced scrolls. For example we can obtain
Adlandsvik’s counterexample; but we note that our theorem holds in every char-
acteristic, while Adlandsvik restricts himself to a field of zero-characteristic,
because he uses the strong Terracini lemma (see [14], (1.11., (2))).

Example. Let X, , be a rational normal scroll, with 0 < a; < ... < a
(i.e. a smooth scroll), and 3 < [%] — a;_;. By (4.10.), and the fact that
dim (C*)" =2n — 1, if (C*)" #£ Ly (see, for example, [14], (1.5)), we obtain
k-1 ax—1
dimX2 , = (@+1D+nk—nk+2n—1=> (@ +1+2n—1

i=1 i=1

fora_; <n < [”k;“]. Then, ifa;_; < n < [%], we get:

k-1 k=1
Si= @i+ D+2n+dimX o — Y (@ +1)—2n—1=
i=l i=1

=dimX, o —1=k—1

and the sequence is not superadditive.

Note 4.13. If we assume that our scroll X,, ,, is smooth (i.e. a; > 0), we have
that:
j-1
81 =2k+1—dimX] , =2%k+1-( (@+1D—14+2k—2j+4) =0,
i=1
so this is not in contraddiction with the Zak’s claim stating that the theorem of
superadditivity should hold for smooth varieties with §; > 0.
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Note 4.14. It is easy to see that these examples do not satisfy the almost
smoothness required in [3] to restore Zak’s statement.
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