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ON HIGHER SECANT VARIETIES OF

RATIONAL NORMAL SCROLLS

PIETRO DE POI

In this paper we study the higher secant varieties of rational normal
scrolls, in particular we give them as determinantal varieties. From this we
can obtain, in some cases, the sequence of secant defects, generalizing to
a class of varieties and to every characteristic the counterexample given by
�Adlandsvik to Zak�s theorem of superadditivity.

Introduction.

Let X ⊂ PN be a projective variety. The kth secant variety Xk+1 of X is
the closure of the union of the k-planes spanned by k + 1 points of X .

The interest for the properties of secant varieties arose �rst at the beginning
of this century; we recall in particular the articles of Palatini [8], [9] and one of
A. Terracini, [11]. In recent years the argument has been looked over again,
especially by the work of F. Zak, see [12]. Some of the most interesting
properties of higher secant varieties can be found in his study about the secant
defects: the expected dimension of the kth secant variety of a projective variety
X , when not linear, is (k + 1)n + k, where n = dim X , so it is natural to
de�ne the kth secant defect as the integer δk := sk−1 + n + 1 − sk , where
sk = dim Xk+1 . In [13], Zak proved that the sequence of secant defects is
monotonic non decreasing; in the same paper, he also stated that this sequence
is superadditive for every non-degenerate smooth projective variety X ⊂ P

N
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in the interval [0, k0], where k0 is the minimum integer such that the kth
0 secant

variety Xk0+1 is the whole PN , i.e. if k = k1 + . . .+kr , then δk ≥ δk1
+ . . .+δkr

.
But the proof was wrong, as a counterexample given by B. �Adlandsvik in [15]
shows; in particular he found that, in zero-characteristic, for a rational normal
scroll of dimension two of the type (1, a), with a ≥ 7, the theorem fails.

The theorem of superadditivity was then proved in more restrictive hy-
pothesis by B. Fantechi in [3], by assuming that the kth

r secant variety is almost
smooth, i.e. the tangent star to every point is contained in the join of the point
and the variety itself. More recently, Holme and Roberts saw what the situation
is about this problem, in [6].

In this paper we will study the higher secant varieties of rational normal
scrolls. In particular, we prove Theorem 4.6 and Corollary 4.7 that, if Xa1,...,a�

is a scroll of type a1, . . . , a�, then Xk
a1,...,a�

is a cone of vertex Lj1 . . . Ljh , and

basis the variety Xk
a1,...,�aj1

,...,�ajh
,...,a�

where Lj is the linear space associated to

aj , and ap < k, ∀ p = j1, . . . , jh , aq ≥ k, ∀q �= j1, . . . , jh . From this
we can obtain, in some cases, the sequence {δk}, generalizing to a class of
varieties and to every characteristic the example given by �Adlandsvik. We
will prove this by considering the higher secant varieties of rational normal
scrolls (and rational normal scrolls themselves, indeed) as linear determinantal
varieties; in particular, our main result will be proved as a generalization of a
new �geometric� proof of the fact that the higher secant varieties of a rational
normal curve are given, set-theoretically, by the linear determinantal varieties
of the catalecticant matrix associated to the curve (for other proofs see [2] and
[10]).

In the �rst section we introduce the language of the present work and
basic de�nitions. In the second one, we study linear determinantal varieties,
in particular the varieties X for which Xk is given by the vanishing of the
minors of order k + 1 of the matrix de�ning X and we characterize a class of
them. In the third section we apply these results to catalecticant matrices, whose
linear determinantal varieties are rational normal curves. In the fourth section
we prove the theorem about higher secant varieties of rational normal scrolls,
and we give an example of calculation of the sequence {δk} for a rational normal
scroll.

After sending this paper to the referee, prof. D. Eisenbud told me that a
student of him, M. Johnson, in his Ph. D. thesis, obtained results similar to
ours; recently he wrote an article, just appeared [7], reporting his main result on
this argument.

I am thankful to prof. E. Mezzetti for suggesting me this argument and
for her help and suggestions and to the referee also, for the careful reading and
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useful remarks.

Notations. Let K be an algebraically closed �eld; if V is a K-vector space of
dimension N + 1, we denote by AN+1 := V(V ) the af�ne space on V and by
P

N = P(V ) = ProjS(V ) the projective space associated to V ; [v] denotes the
point of PN associated to v ∈ V .

By a variety we mean a reduced and irreducible algebraic K-scheme.
For a variety Z of P

N , we indicate with �Z ⊂ A
N+1 the af�ne cone of Z in

AN+1 .

1. Join of Varieties.

We recall the following de�nitions (see [14]).

De�nition 1.1. Let X and Y be two varieties of AN+1 ; we call sum of X and
Y , and we indicate with X + Y , the closure of the image of X × Y under the
morphism determined by the addition of V .

Obviously we have dim (X + Y ) ≤ dim X + dimY .
The analogous of the sum of two af�ne varieties in the projective space is

the join:

De�nition 1.2. Let X and Y be two varieties of P
N ; the reduced scheme XY

such that:
�XY = �X + �Y

is called join of X and Y .

One can prove that

Theorem 1.3. Let X and Y be two (irreducible) varieties of P
N ; then we have:

1) XY is irreducible, therefore XY is a projective variety of P
N ;

2) dim (XY ) ≤ dim X + dimY + 1.

Proof. See for example [3], (1.2.). �

A straightforward consequence of this theorem is the fact that the set
var(PN ) of projective subvarieties of PN becomes a commutative semiordered
monoid by the operation given by the join. The order is given by the inclusion,
and the empty variety is the unit of the monoid.

De�nition 1.4. By higher secant variety of a given variety X of P
N we mean a

power Xk of X in the monoid var(PN ).
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It is easy to prove that this de�nition is equivalent to the classical one given
at the beginning of the introduction and used, for example, by F. Zak (see [12],
[13]).

An easy consequence of Theorem 1.3, 2) is that

dim Xk+1 ≤ dim Xk + dim X + 1 ≤ · · · ≤ (k + 1) dim X + k,

so we can give the following

De�nition 1.5. The kth secant defect of X is the integer δk de�ned by

δk :=






0 if k = 0

(sk−1 + s0 + 1) − sk if 1 ≤ k + 1 ≤ k0

dim X if k ≥ k0

where sk is the dimension of Xk+1 (obviously we have s0 = dim X ) and
k0 = min{k ∈ N | Xk = P

N }.

2. Linear Determinantal Varieties.

Let us consider the projective space M := P
nm−1 associated to the vector

space of n × m matrices with entries in K.

De�nition 2.1. A generic determinantal variety Mk ⊂ M is the locus of
matrices of rank at most k.

It is well known that Mk is a subvariety of M , and its ideal is generated by
the minors of order k + 1 of

P =







x0 · · · xm−1

...

xnm−m−1 · · · xnm−1







where the xi , i = 0, . . . , nm − 1, are coordinates on M (see for instance [1],
pp. 67-75).

In particular M1 is the locus of matrices of rank 1. Let us recall the
following interpretation of M1 as a Segre variety (cfr. [5], pp. 98-99). Let σ

be the Segre map

σ : P(Kn) × P((Km )∗) −→ P(Kn ⊗ (Km )∗)
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de�ned by

σ (Y, Z ) = σ ([y1, . . . , yn], [z1, . . . , zm ]) = [(y1, . . . , yn) ⊗ (z1, . . . , zm )].

To give a n × m matrix of rank 1 means to give a linear map

A : K
m −→ K

n

of rank 1. To give such a matrix, up to a scalar multiplication, means to �x an
image of dimension 1 and a kernel of dimension m −1, which is conceivable as
an element of (Km )∗ . Then we can write:

Im (A) = [y1, . . . , yn] ∈ P(Kn)

and
Ker(A) = [z1, . . . , zm ] ∈ P((Km)∗).

Under the canonical isomorphism

ψ : Hom (Km , K
n) ∼= (Km )∗ ⊗ K

n,

A corresponds to some (nonzero) multiple of

Y ⊗ Z = [y1, . . . , yn] ⊗ [z1, . . . , zm ].

Remark 2.2. The matrices of rank ≤ k correspond, under ψ , to sums of k pure
tensors.

This remark allows to get in a short way the well known characterization
of higher secant varieties of generic determinantal varieties.

Theorem 2.3. Mk
h = Mhk .

Proof. First of all, we observe that it is suf�cient to prove the formula for
h = 1, since if Mk

1 = Mk , then:

(Mh)k = (Mh
1 )k = Mhk

1 = Mhk .

So, let us �x A1, . . . , Ak ∈ M1 and identify Ai with Yi ⊗ Zi ; then P ∈ Mk if
and only if it can be written as a sum of k pure tensors, by (2.2.), and then if and
only if P ∈ Mk

1 . �

We will consider now linear sections of the generic determinantal variety,
or, more precisely, sets of zeroes of minors of a n × m matrix of linear forms
on a projective space P�, obtained by �xing a linear rational map i : P�

��� M .
We give the following
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De�nition 2.4. Let � = (Li j ) be a matrix of linear forms on P�; the linear
determinantal variety �k(�) is the pullback of the generic determinantal variety
Mk under the rational map i : P

�
��� M determined by the linear forms (Li j ).

A matrix of linear forms � can be thought of as a linear application

ω : V −→ Hom (U, W )

where U ∼= K
m, W ∼= K

n and P
� = P(V ), or as an element

ω ∈ V ∗ ⊗ U ∗ ⊗ W,

because of the canonical isomorphism:

V ∗ ⊗ U ∗ ⊗ W ∼= (V , Hom (U, W )).

A further interpretation is given by the isomorphism:

V ∗ ⊗ U ∗ ⊗ W ∼= Hom ( Hom (U, W )∗, V ∗)

under which ω corresponds to a surjective map:

µ : Hom (U, W )∗ ∼= Hom (W,U ) ∼= U ⊗ W ∗ → V ∗

with kernel:

V ⊥ := {ψ ∈ Hom (W,U ) | �ω(φ), ψ� = 0 ∀φ ∈ V }

where, ∀φ ∈ Hom (U, W ) and ∀ψ ∈ Hom (W,U ), we have:

�φ, ψ� := ψ(φ)

(considering Hom (W,U ) as the dual of Hom (U, W )).
Let us recall that two matrices �, �� ∈ Hom (U, W ), are said to be

conjugate if there exist A ∈ GL (W ) and B ∈ GL(U ) such that:

�� = A ◦ � ◦ B.

We recall also that the left multiplication by a matrix A ∈ GL (W ) (respectively
the right multiplication by B ∈ GL (U )) is called an invertible row (resp.
column) operation.

We characterize now the class of matrices of linear forms for which the
variety of secant k-planes of (�1(�))k is �k(�):
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Lemma 2.5. Let � be a n ×m matrix of linear forms on P�; then the following
facts are equivalent:

1) (�1(�))k = �k(�);

2) (�1(�))k ⊃ �k(�).

Proof. We observe that, as in the case of generic determinantal varieties, a
matrix � ∈ �k(�) can be thought of as an element of U ∗ ⊗ W which is the sum
of k pure tensors; so from (2.2.) it follows that (�1(�))k ⊂ �k(�). �

To give a useful criterion for verifying if a matrix of linear forms � satis�es
the condition (�1(�))k = �k(�) Theorem 2.8, we need the following

Lemma 2.6. Let � be a n × m matrix of linear forms on P
� . Assume that �

satis�es the following condition:

(*) for every invertiblematrix n×n A and for any choice of n−k rows of A◦�,
the linear space de�ned by the vanishing of the linear forms of these rows
is contained in the reduced scheme X de�ned as follows: X is the union
of the k joins of (�1(�))k−1 and one of the k linear spaces de�ned by the
vanishing of the linear forms contained in n − 1 rows of A ◦ � including
the �xed (n − k)�s.

Then:

(�1(�))k = �k(�).

Proof. By (2.5.), to prove the theorem, it is suf�cient to prove that if � ∈

�k(�), it belongs to (�1(�))k . To prove this, it is better thinking of � as an
element of Hom (U, W ), or as a matrix of rank at most k. Now, since

rank (�) = dim (Im (�)),

� has rank at most k if there exists at least a subspace S of W with dim (S) = k
that contains Im (�) i.e. if and only if there exists at least a projection:

πS : W −→
W

S

(with dim (S) = k) that, composed with �, gives the zero map. Therefore we
can write:

(2.7) �k(�) =
�

S∈G(k−1,P(W ))

{� ∈ i(P�) | πS ◦ � = 0}
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where G(k − 1, P(W )) is the Grassmannian of (k − 1)-planes of P(W ) and
i : P� �→ M is the map introduced in (2.4.). Fixed S ∈ G(k − 1, P(W )), the
projection πS can be represented as a matrix of the type:

πS =







p11 · · · p1n

...

pn−k1 · · · pn−kn







whose minors of order n−k are the Plücker coordinates of S in G(k−1, P(W )).
From this, if

� =







λ11 · · · λ1m

...

λn1 · · · λnm







we obtain the equations of the set {� | πS ◦ � = 0}:

0 = πS ◦ � =







�n
i=1 p1iλi1 · · ·

�n
i=1 p1iλim

...
�n

i=1 pn−ki λi1 · · ·
�n

i=1 pn−ki λim





 .

If we �x z0, . . . , z� coordinates on P�, the equations become:
n�

j=1

pi jλjk [z0, . . . , z�] = 0 ∀ i = 1, . . . , n − k, ∀k = 1, . . . , m.

Therefore, each of the elements in brackets of (2.7.) determines the linear space
given by the linear forms of the rows

� n�

j=1

pi jλj1[z0, . . . , z�] · · ·

n�

j=1

pi jλjm [z0, . . . , z�]
�

i = 1, . . . , n − k,

and our thesis easily follows from the hypothesis. �

Theorema 2.8. Let � be a n × m matrix of linear forms on P�. Assume that
the following condition is ful�lled: for any choice of n − k rows of �, the linear
space de�ned by the vanishing of the linear forms of these rows is contained
in the reduced scheme X de�ned as follows: X is the union of the k joins of
(�1(�))k−1 and one of the k linear spaces de�ned by the vanishing of the linear
forms contained in n − 1 rows of � including the �xed (n − k)�s. Then:

(�1(�))k = �k(�).
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Proof. By the previous lemma, it is enough to verify the condition (*) of
Lemma 2.6. In fact: let us consider A ◦ �, where A ∈ GL (W ), i.e. an
invertible row operation; interpret �1(�) as a subvariety of the Segre variety
Pm × Pn . The operation just considered, geometrically means a projectivity
of P

n (since A determines a projectivity [A] ∈ PGL (n)). Therefore, with the
change of projective coordinates of Pn determined by [A]−1 , A ◦ � becomes,
in the new coordinates, again �. Then, since a projective change of coordinates
maps linearly independent forms to linearly independent forms, the condition
(*) is ful�lled. �

It is clear that, passing to the dual spaces and considering the matrix t�,
we obtain an analogue proposition for the columns. Therefore in the following,
it will not be restrictive to suppose n ≤ m.

3. Rational Normal Curves.

In this section, using Theorem 2.8, we get, in an easy way, the well-known
characterization of secant varieties of rational normal curves. Let us recall the
following

De�nition 3.1. A n × m matrix A = (ai j ) with entries in a ring R is called
catalecticant (or persymmetric) if ai j = ahk ∀ i, j, h, k such that i + j = h + k.

The following matrix

Cat(m + 1, n + 1) =














x1 x2 x3 · · · xm+1

x2 x3

x3

...

...

xn+1 · · · xm+n+1














with indeterminates entries is called the generic catalecticant matrix.

Let us note that Cat(m + 1, n + 1) can be interpreted as the matrix of the
map:

φ : SymnV ∗ ⊗ SymmV ∗ → Sym�V ∗ � = n + m

determined by the ordinary multiplication of polynomials of degrees m and n
on a linear space V of dimension 2, or, (up to canonical isomorphisms) as a
map:

ϕ : Sym�V → SymnV ⊗ SymmV .
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We introduce now the rational normal curve C� := v�,1(P(V )), image of
the Veronese map:

v�,1 : P(V ) −→ P(Sym�V ).

The following proposition is well known (see [2], (4.2.)):

Proposition 3.2. �1(Cat (m + 1, n + 1)) = C� .

We are �nally able to �nd the equations of the higher secant varieties of an
interesting class of linear determinantal varieties, and as a corollary we will �nd
the higher secant varieties of the rational normal curve. First of all, we need the
following

Lemma 3.3. Given a projective variety X ⊂ PN and a linear projection
π : P

N
��� P

M , then we have π (Xk) = (π (X ))k .

Proof. It is enough to prove the claim for open subsets, therefore our thesis
follows from these equivalences:

P ∈ π (Xk) ⇐⇒ P ∈ π (Q1 . . . Qk) = π (Q1) . . . π (Qk) ,

where
Qi ∈ X, ∀ i = 1, . . . , k, ⇐⇒ P ∈ π (X )k . �

From now on we will denote by Pi the ith fundamental point of P� , whose
coordinates xj , vanish ∀ j = 1, . . . ,�i, . . . , � + 1. Then, we prove the following

Theorem 3.4. (�1(Cat (m + 1, n + 1))h = �h(Cat (m + 1, n + 1)) (with
h ≤ min(m + 1, n + 1)).

Proof. Let us prove this theorem by induction on h. The case h = 1 is trivial,
and for the case h = 2 it is suf�cient to verify the hypotheses of Theorem 2.8:
let us consider n − 2 rows of Cat (m + 1, n + 1); it is easy to see that the only
nontrivial case is if we consider the �rst n − 2 rows (or, which is the same, for
simmetry, the last n−2 ones), otherwise these rows give the empty set or a point
of the curve.

Let us consider then the �rst n − 2 rows; these determine the straight line

xn+m = λ, xn+m+1 = µ,

and the case h = 2 easily follows from the observation that this line is the
tangent to the rational normal curve at the point Pm+n+1 .

Now, let us consider n −h rows of Cat (m +1, n +1); it is easy to see, like
in the proof of the case h = 2, that the only nontrivial case is if we consider the
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�rst n − h rows, otherwise we have points of �g(Cat(m + 1, n + 1)), g < h
and our thesis follows by the inductive hypothesis.

Let us consider the �rst n − h rows: these determine the h plane:

xn+m−h+2 = λ1, . . . , xn+m+1 = λh,

therefore, by the inductive hypothesis, it is suf�cient to prove that Pn+m−h+2

belongs to (�1(Cat (m + 1, n + 1)))h . To prove this, let us consider the linear
projection

π ([x1, . . . , xn−h+2, xn−h+3, . . . , xn+m+1]) = [x1, . . . , xn−h+2]

which maps the curve Cm+n to the curve Cn−h+1 , and our thesis follows from
the Lemma 3.3 and the inductive hypothesis. �

Note 3.5. This theorem was proved by T.G. Room in [9] and by D. Eisenbud in
[2]; the above new �geometric� proof will be suitable to be generalized to �nd
higher secant varieties of rational normal scrolls.

As an obvious consequence we have the following

Corollary 3.6. �h(Cat (m + 1, n + 1)) = �h(Cat (p + 1, q + 1)) with � =

m + n = p + q and h ≤ min{m + 1, n + 1, p + 1, q + 1}.

Note 3.7. This corollary is proved in more general hypoteses in [4] (pag. 9,
Lemma 2.3). It is used in [2] just to prove (3.4.).

4. Rational Normal Scrolls.

Let a1, . . . , ak be integers such that ai ≥ 0, ∀ i = 1, . . . , k, and aj > 0 for
at least one index j . Let us take k linear supplementary subspaces

Li ⊂ P
N , i = 1, . . . , k

with dim (Li ) = ai . For ai �= 0, we consider the rational normal curve Ci ⊂ Li

image of the morphism:

φi := vai ,1 : P
1 −→ Li .

If ai = 0, we put Ci = Li and φi the constant map.
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De�nition 4.1. A rational normal scroll of type a1, . . . , ak, is the variety:

Xa1...ak
:=

�

P∈P1

φ1(P) . . . φk(P).

We show now how rational normal scrolls can be seen as linear determi-
nantal varieties. We �x homogeneous coordinates x (i)

0 , . . . , x (i)
ai

on Li , i =

1, . . . , k, so that x (1)
0 , . . . , x (1)

a1
, . . . , x (i)

0 , . . . , x (i)
ai

, . . . , x (k)
0 , . . . , x (k)

ak
are coordi-

nates on P
N . We may assume that ai = 0 ∀ i = 1, . . . , h − 1 and aj �= 0

otherwise. Let us consider the matrix

Ma1 ...ak
:=
































x (h)
0 · · · x (h)

m

x
(h)
1 · · · x

(h)
m+1

...

x
(h)
ah−m · · · x (h)

ah

x
(h+1)
0 · · · x (h+1)

m

...

x (k)
0 · · · x (k)

m

x (k)
1 · · · x (k)

m+1

...

x
(k)
ak−m · · · x (k)

ak
































,

where m is an integer such that

1 ≤ m <

�
min{ah, . . . , ak} if 1 �= ah = · · · = ak ,

min{ah, . . . , ak} + 1 otherwise.

It is given by the �concatenation� of k−h+1 catalecticant matrices Mh , . . . , Mk .
The proof of the following classical theorem is standard.

Theorem 4.2. Xa1...ak
= �1(Ma1 ...ak

).

We will now obtain the equations of higher secant varieties of rational
normal scrolls. We need the following three lemmas:
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Lemma 4.3. Xn
a1...ak

= �n(Ma1 ...ak
), with n ≤ m.

Proof. We can follow the proof of Theorem 3.4 on the columns instead of the
rows. �

Lemma 4.4. Let Xa1...ai ...ak
be a rational normal scroll; let us �x i and

let P0, . . . , Pai be ai + 1 points such that Li = P0 . . . Pai ; let Z :=
Xa1...ai−10...0ai+1 ...ak

be the rational normal scroll generated by the linear spaces
L1, . . . , Li−1, P0, . . . , Pai , Li+1, . . . , Lk . Then:

Z = Xa1...�ai ...ak
L = Xa1...ai ...ak

L.

Proof. The inclusions:

Z ⊂ Xa1...�ai ...ak
L ⊂ Xa1...ai ...ak

L

are obvious. To prove the others, consider a point Q ∈ Xa1...ai ...ak
L . Then we

have Q ∈ xl , where x ∈ Xa1...ai ...ak
, l ∈ L so there exists a point P ∈ P

1 such that

x ∈ φ1(P) . . . φi (P) . . . φk (P),

therefore

x ∈ φ1(P) . . . �φi (P) . . . φk (P)L

and �nally

x ∈ φ1(P) . . . �φi (P) . . . φk (P)P0 . . . Ph

i.e. Q ∈ Z . �

Lemma 4.5. In the hypotesis of the previous lemma, if n > ai , we have:

Xn
a1 ...ai ...ak

= Xn
a1...ai−10...0ai+1 ...ak

.

Proof. From Xa1 ...ai ...ak
⊂ Xa1...ai−10...0ai+1 ...ak

, we obtain

Xn
a1 ...ai ...ak

⊂ Xn
a1...ai−10...0ai+1 ...ak

.

Viceversa. From the previous lemma (and from the fact that Ln = L , since L is
linear) it suf�ces to prove that

Xn
a1...�ai ...ak

L ⊂ Xn
a1...ai ...ak

.
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We consider a point x ∈ Xn
a1...�ai ...ak

L: by de�nition,

x ∈ y1 . . . ynl

where y1, . . . , yn ∈ Xa1...�ai ...ak
, l ∈ L , and, in particular there exist P1, . . . , Pn ∈

P1 for which we have:

y� ∈ φ1(P�) . . . �φi (P�) . . . φk(P�) � = 1, . . . , n.

We have also that y1, . . . , yn ∈ Xa1...ai ...ak
, therefore there exist l1, . . . , ln ∈ L

such that

φi (P1) = l1, . . . , φi (Pn) = ln ,

moreover, since n > ai , we have

l1 . . . ln = L

and

y� ∈ φ1(P�) . . . l� . . . φk(P�) � = 1, . . . , n ;

therefore, since

�
φ1(P1) . . . �φi (P1)) . . . φk(P1) . . . (φ1(Pn) . . . �φi (Pn) . . . φk(Pn)

�
L =

=
�
φ1(P1) . . . l1 . . . φk(P1)) . . . (φ1(Pn) . . . ln . . . φk (Pn)

�
⊂ Xn

a1...ai ...ak

we conclude that x ∈ Xn
a1...ai ...ak

. �

It is clear that a permutation of the integers a1, . . . , ak induces a projective
transformation of rational normal scrolls. So it is not restrictive to suppose
0 ≤ a1 ≤ . . . ≤ ak .

Theorem 4.6. Let Xa1...ak
be a rational normal scroll, with 0 ≤ a1 ≤ . . . ≤ ak ;

then Xn
a1...ak

= �n(Ma1 ...ak ,n), where Ma1 ...ak ,n is the following matrix
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Ma1...ak,n :=
































x
( j )
0 · · · x

( j )
m

x
( j )
1 · · · x

( j )
m+1

...

x
( j )
aj−m · · · x

( j )
aj

x
( j+1)
0 · · · x

( j+1)
m

...

x (k)
0 · · · x (k)

m

x
(k)
1 · · · x

(k)
m+1

...

x
(k)
ak−m · · · x (k)

ak
































where j is the minimum integer such that aj ≥ n and 1 ≤ m ≤ aj .

Proof. Let us observe that the matrix Ma1...ak,n may be seen as a catalecticant
matrix to which some rows have been taken away. So, if ak − m + 1 ≥ 2, our
claim follows from (3.7.) and Lemma 4.5.

If ak − m + 1 = 1, we have aj = · · · = ak = n + 1, therefore
�1(Ma1 ...ak ,n) is a cone of vertex L := L0 . . . Lj−1 and basis the Segre variety
�m,k− j := �1(Ma1 ...ak ,n) ∩ (Lj . . . Lk). This cone contains Xa1...ak

, so Xn
a1 ...ak

⊂

�n(Ma1 ...ak ,n).
To prove the other inclusion, let us consider a point T ∈ �n(Ma1 ...ak ,n);

therefore there exist points S1, . . . , Sn such that Si ∈ LP
( j )
i . . . P

(k)
i , i =

1, . . . , n, where P
(�)
i ∈ Li , ∀ i = j, . . . , k, and P

( j )
i . . . P

(k)
i

∼= P
k− j × Qi ⊂

�m,k− j is an element of the family of (k − j )-planes of �m,k− j . Then, we have

T ∈ L(P
( j )
1 . . . P (k)

1 ) . . . (P ( j )
n . . . P (k)

n ) = L(P
( j )
1 . . . P ( j )

n ) . . . (P (k)
1 . . . P (k)

n ) .

From the facts that, ∀ i = 1, . . . , k, the rational normal curve Ci generates the

Li , and the spaces P
( j )
i . . . P (k)

i , as i varies, are each contained in a space of
the same family of (k − j )-planes of �m,k− j , it follows that there exist n points
[s1, t1], . . . , [sn, tn] ∈ P1 such that

(P (�)
1 . . . P (�)

n ) = φ�([s1, t1]) . . . φ�([sn, tn]), � = j, . . . , k.

Therefore T ∈ Xn
a1...ak

. �

The geometrical meaning of Theorem 4.6 is the following:
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Corollary 4.7. The (n −1)th secant variety of the rational normal scroll Xa1...ak

is a cone of vertex the span generated by the linear spaces Li such that
dim Li < n ∗ and basis the (n −1)th secant variety of the rational normal scroll
determined by the intersection of Xa1...ak

with the span of the linear spaces such
that dim Li ≥ n.

From Theorem 4.6 we can compute the dimension of some higher secant
varieties and the sequence of secant defects.

Lemma 4.8. Let Xa1...ak
be a rational normal scroll, with 0 ≤ a1 ≤ . . . ≤ ak , n

an integer and j the minimum integer such that aj ≥ n; then

dim Xn
a1...ak

=

j−1�

i=1

(ai + 1) + dim
�
(
�

n

(Ma1 ...ak ,n)) ∩ (Lj . . . Lk )
�
,

where the matrix Ma1 ...ak ,n is de�ned in the previous theorem.

Proof. It follows from the fact that Xn
a1...ak

is a cone of vertex L1 . . . Lj−1 and

basis
�

n(Ma1 ...ak,n) ∩ (Lj . . . Lk ), the (n − 1)th secant variety of the rational
normal scroll Xaj ...ak

⊂ (Lj . . . Lk ) of type aj , . . . , ak . �

Lemma 4.9. Let Xa1 ...ak
be a rational normal scroll, with 0 ≤ a1 ≤ . . . ≤ ak

and n ≤ a1, then

dim Xn
a1...ak

= min{N, nk + n − 1}.

Proof. If dim Xn
a1...ak

= N , the lemma is trivial; therefore from now on we will
suppose dim Xn

a1 ...ak
< N .

Let us de�ne the following variety:

S :={(P1, . . . , Pn; Q) | Pi ∈ P1, Q ∈ φ1(P1) . . . φk(P1) . . . φ1(Pn) . . . φk (Pn)} ⊂

⊂ (P1)n × P
N

and the projections Pi1 : S ��� P1 × . . . × P1 and π2 : S ��� PN , whose
image is Xn

a1 ...ak
. The generic �bre of the map π1 at the point (P1, . . . , Pn) is

the variety

π−1
1 (P1, . . . , Pn) = (P1, . . . , Pn; φ1(P1) . . . φk(P1) . . . φ1(Pn) . . . φk (Pn))

∗ i.e. these linear spaces are ��lled up� by the (n−1)th secants of the rational normal
curves.
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of dimension nk − 1. These facts follow from the observation that n distinct
points of a rational normal curve of degree less or equal to n − 1 generate a
linear space of dimension n − 1.

Besides, for the same reason, the generic �bre of π2 is a point, i.e.
dim S = dim Xn

a1...ak
and from this we obtain our claim. �

Lemma 4.10. Let Xa1...ak
be a rational normal scroll, with 0 ≤ a1 ≤ . . . ≤ ak ,

n an integer and j the minimum integer such that aj ≥ n; then

(4.11) dim Xn
a1...ak

= min
�
N,

j−1�

i=1

(ai + 1) + nk − nj + 2n − 1
�
.

Proof. It is an easy dimensional count from the previous two lemmas. �

This theorem gives a class of counterexamples to Zak�s theorem of su-
peradditivity; they are highly unbalanced scrolls. For example we can obtain
�Adlandsvik�s counterexample; but we note that our theorem holds in every char-
acteristic, while �Adlandsvik restricts himself to a �eld of zero-characteristic,
because he uses the strong Terracini lemma (see [14], (1.11., (2)) ).

Example. Let Xa1...ak
be a rational normal scroll, with 0 < a1 ≤ . . . ≤ ak

(i.e. a smooth scroll), and 3 ≤
�

ak+1
2

�
− ak−1 . By (4.10.), and the fact that

dim (Cak )n = 2n − 1, if (Cak )n �= Lk (see, for example, [14], (1.5)), we obtain

dim Xn
a1...ak

=

k−1�

i=1

(ai + 1) + nk − nk + 2n − 1 =

ak−1�

i=1

(ai + 1) + 2n − 1

for ak−1 < n ≤
�

ak+1
2

�
. Then, if ak−1 < n ≤

�
ak+1

2

�
, we get:

δn =

k−1�

i=1

(ai + 1) + 2n + dim Xa1...ak
−

k−1�

i=1

(ai + 1) − 2n − 1 =

= dim Xa1...ak
− 1 = k − 1

and the sequence is not superadditive.

Note 4.13. If we assume that our scroll Xa1...ak
is smooth (i.e. a1 > 0), we have

that:

δ1 = 2k + 1 − dim X 2
a1...ak

= 2k + 1 − (

j−1�

i=1

(ai + 1) − 1 + 2k − 2 j + 4) = 0,

so this is not in contraddiction with the Zak�s claim stating that the theorem of
superadditivity should hold for smooth varieties with δ1 > 0.
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Note 4.14. It is easy to see that these examples do not satisfy the almost
smoothness required in [3] to restore Zak�s statement.
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