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ON STABILITY FOR PERTURBED

DIFFERENTIAL EQUATIONS

ALEXANDER ANDREEV - GIUSEPPE ZAPPALÀ

This paper deals with a nonautonomous differential equation, precom-
pact in the sense of G.R. Sell and Z. Artstein. We investigate the eventual
asymptotic stability and total stability of this equation with in�nitesimal per-
turbations using Liapunov function with semide�nite derivative.

Introduction.

Traditionally asymptotic stability has been studied either by Liapunov�s
direct method or by Poincare�s geometric method. The �rst attempt, to unify
the two procedures, was carried out by La Salle [8] by combining information,
obtained from simple and natural Liapunov�s functions, with information about
geometric properties obtained from the invariance principle of limit set. In
nonautonomous differential equations one obtains more results by using the
limiting equations theory established by Sell [14], [15] and Artstein [3], [4],
[5]; the main problem of locating the limit set, by using Liapunov functions,
was studied in [1] and [2].

The purpose of this paper is to describe, essentially, the eventual asymp-
totic stability of the trivial solution by a differential equation under in�nitesimal
perturbation, as considered by Artstein.
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The paper is organized as follows:
� in the Theorems 1.1 and 1.2 we analyze the properties of the limit set
� the Theorems 2.1, 2.2 and 2.3 highlight global attractivity and asymp-

totic stability
� from Theorem 2.4 we obtain uniform total stability
� three examples are given based on the explained theory.

Preliminaries, de�nitions, theorems on limit sets.

Let us consider the vectorial ordinary differential equation

(1.1) ẏ = Y (t, y) + P(t, y) = Z (t, y),

where P plays the role of perturbation for the equation

(1.2) ẏ = Y (t, y).

The vector functions Y, P : R
+ × R

n → R
n , (R+ = [0, +∞[, R

n is a
n-th dimension vector space with the norm �y�2 = (y2

1 + · · · + y2
n )) are such

that for every point (t0, y0) ∈ R
+ × R

n the solutions y(t) = y(t, t0, y0) and
ỹ(t) = ỹ(t, t0, y0) exist and they are unique [6].

Suppose also that for every compact set H ⊂ Rn there exist two locally L1

functions rH (t) and ηH (t) : R+ → R+ [3] such that (s.t.):

i) ∀ (t, y) ∈ R+ × H �Y (t, y)� ≤ rH (t) and ∀ε > 0∃µH (ε) > 0 s.t. if
E ⊂ [t, t + 1] ⊂ R+ is a measurable set with measure < µH (ε) then

�

E

rH (τ ) dτ ≤ ε .

2i) ∀ y �, y� ∈ H , ∀ t ∈ R+ we have

�Y (t, y �) − Y (t, y ��)� ≤ ηH (t)�y � − y ���

(Lipschitz) and ∃ a constant NH > 0 s.t.

� t+1

t

ηH (τ ) dτ ≤ NH ∀ t ∈ R+.

As is shown in [3] these hypotheses guarantee the precompactness of the
equation (1.2), in the restrict sense and the uniqueness of solutions for (1.2) and
for ẏ = ϕ(t, y) limiting equation [5] of (1.2).



ON STABILITY FOR PERTURBED. . . 29

De�nition 1.1. The perturbation P(t, y) is said to be integrally converging
to zero as t → +∞ if, for every sequence of continuous function {ur (t) :
[a, b] → Rn} uniformly converging to ϕ : [a, b] → Rn and for every sequence
tr → +∞, we have [5]

(1.3) lim
r→+∞

� b

a

P(tr + τ, ur (τ )) dτ = 0.

Remark. The previous de�nition is more general than the convergence to zero
introduced in [10], [16]. If we suppose that for each H there exists a function
σH : R+ → R+ so that ∀ t ∈ R+ ∀ y ∈ H we have [16]

�P(t, y)� ≤ σH (t) and lim
s→+∞

� s+1

s

σH (τ ) dτ = 0

then (1.3) holds.

De�nition 1.2. The perturbation P(t, y) is said to be in�nitesimal on R+: if
∃σ : R+ → R+ so that ∀ t ∈ R+, ∀ y ∈ Rn we have �P(t, y)� ≤ σ (t) and

(1.4)

� +∞

0

σ (τ ) dτ < +∞.

Remark. A perturbation in�nitesimal on R+ is integrally converging to zero as
t → +∞.

Remark. If P(t, y) is integrally converging to zero as t → +∞ then

(1.5) lim
r→+∞

� b

a

(Y + P)(tr + τ, ur (τ )) dτ = lim
r→+∞

� b

a

Y (tr + τ, ur (τ )) dτ

it follows that (1.1) and (1.2) share the same family of limiting equations [5].

In virtue of this connection we obtain fundamental results on the asymp-
totic behaviour of the solution of (1.1) by using auxiliary function [11] denoted
by V ,W, h.

De�nition 1.3. The function h ∈ C0(R+ → R+) is said to be �a function of
class K in the sense of Hahn� [11] if it is strictly increasing and h(0) = 0. A
function h ∈ K is said to be a function of class K if lim

r→+∞
h(r) = +∞.
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We will denote [11], for every Liapunov function V ∈C1(R+ × Rn → R):

(1.6) V̇(1.2) =
∂V

∂ t
+

∂V

∂y
· Y, V̇(1.1) =

∂V

∂ t
+

∂V

∂y
· Z

where a · b = aTb is the scalar product.
We will assume [1] that the scalar function W (t, y) ≥ 0, W (t, 0) = 0, is

bounded on (t, y) ∈ R+ × H and satis�es the Lipschitz conditions in t and y on
each compact [t0, t0 + υ] × H (t0 ≥ 0, υ > 0).

Then the set of functions ω(t, y) limiting to W (t, y) will be nonempty, and
the convergence of Wn(t, y) = W (tn + t, y) to ω(t, y) as t → +∞ will be
uniform in each compact mentioned.

De�nition 1.4. The pair (ϕ, ω) is said to be [1] a �limit pair� of (Y,W ) when ϕ

and ω derive from Y,W by using the identical sequence {tr}.

De�nition 1.5. Let (ϕ, ω) be a limit pair correspondent to (Y,W ), we assume

M+ = {z(t) ∈ Rn; ż(t) = ϕ[t, z(t)], z(t) ∈ [ω(t, y) = 0] ∀ t ∈ R+}

M+
∗ =

�
∪M+ ∀ (ϕ, ω)

�
.

We shall prove our main results on the limit sets in this section.

Theorem 1.1. Assume the following hypotheses:

1) ∃V ∈C1(R+ × Rn → R+) bounded, on every H , such that

V̇(1.2)(t, y) ≤ −W (t, y) ≤ 0;

2) the perturbation P(t, y) verify (1.3) and ∂V
∂y

· P ≤ 0;

3) the solution y(t) belongs to H .

Then the limit set �+(y(t)) ⊂ M+
∗ i.e. y(t) → M+

∗ .

Proof. By Malkin�s formula [11] we obtain

(1.7) V̇(1.1)(t, y) = V̇(1.2)(t, y) +
∂V (t, y)

∂y
· P(t, y) ≤ −W (t, y) ≤ 0.

From (1.5) it follows that (Y,W ) and (Y + P,W ) have the same family of
limit pair. On the basis of Theorem 2.1 of [1] we have the result required.
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Theorem 1.2. Let P(t, y) = P1(t, y)+P2(t, y). Then the results of the previous
theorem are con�rmed if

∂V

∂y
· P1 ≤ 0, �P2(t, y)� ≤ σ (t),

σ (t) veri�es (1.4) and ∃ S > 0 such that

�
∂V

∂y
� ≤ S, ∀ (t, y) ∈ R+ × Rn .

Proof. If we choose the auxiliary function

V1(t, y) = V (t, y) + S

� +∞

t

σ (τ ) dτ

we obtain

V̇1(1.1)(t, y) = V̇(1.2)(t, y) +
∂V

∂y
· P1 +

∂V

∂y
· P2 − Sσ (t) ≤ −W (t, y) ≤ 0

and so we can conclude the proof.

1. Theorems on the global attractivity and the eventual stability (of y = 0).

Assume that Y (t, 0) = 0 for every t ∈ R+ , so that, for the differential
equation (1.2), the origin is an equilibrium or critical point. Then we obtain
suf�cient conditions for the eventual stability of this solution [7].

For the right maximal interval where y(t, t0, y0) is de�ned we write
J+(t0, y0).

De�nition 2.1. The solution y = 0 of (1.2) is said to be eventually stable with
respect to (1.1) if (∀ε > 0) (∃τ = τ (ε) > 0) (∀ t0 > τ ) (∃δ = δ(t0, ε) > 0)
(∀ y0 : �y0� ≤ δ) one has (�y(t, t0, y0)� < ε ∀ t ≥ t0).

De�nition 2.2. The solution y = 0 of (1.2) is said to be eventually uniformly
stable with respect to (1.1) if (∀ε > 0) (∃τ = τ (ε) > 0) (∀ t0 > τ )
(∃δ = δ(ε) > 0) such that (∀ y0 : �y0� ≤ δ) one has (�y(t, t0, y0)� < ε

∀ t ≥ t0).
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De�nition 2.3. The solution y = 0 of (1.2) is said to be globally attractivewith
respect to (1.1) if ∀ (t0, y0) ∈ R+ × Rn lim

t→+∞
y(t, t0, y0) = 0.

De�nition 2.4. The solution y = 0 of (1.2) is said to be globally equiattractive
with respect to (1.1) if (∀ t0 ∈ R+) (∀ y0 ∈ Rn) (J+(t0, y0) = [t0, +∞[) and
(∀ε > 0) (∃T = T (t0, ε) > 0) s.t. (�y(t, t0, y0)� < ε ∀ t ≥ t0 + T ).

De�nition 2.5. The solution y = 0 of (1.2) is said to be globally uniformly at-
tractive with respect to (1.1) if (∀ t0 ∈ R+) (∀ y0 ∈ Rn) (J+(t0, y0) = [t0, +∞[)
and (∀ε > 0) (∃T = T (ε) > 0) s.t. (�y(t, t0, y0)� < ε ∀ t ≥ t0 + T ).

De�nition 2.6. The solution y = 0 of (1.2) is said to be uniformly totally stable
if (∀ t0 ∈ R+) (∀ε > 0) (∃δ� = δ�(ε), δ�� = δ��(ε) > 0) s.t. (∀ y0 : �y0� < δ�)
(∀ P : �P� < δ��) (�y(t, t0, y0)� < � ∀ t ≥ t0) [11].

Theorem 2.1. Suppose that the following assumptions hold

1) ∃V ∈C1(R+ × Rn → R+) such that:

a) V (t, 0) = 0 ∀ t ∈ R+,

b) V (t, y) ≥ h(�y�) where h ∈ K̄ ,

c) ∃ l = l(t, y) ∈ C1(R+ × Rn → R+) bounded such that �
∂V

∂y
� ≤

λ(1 + V ),

d) V̇(1.2)(t, y) ≤ −W (t, y) ≤ 0.

2) The perturbation P(t, y) satis�es the following hypotheses

a�) P = P1 + P2,

b�)
∂V

∂y
· P1 ≤ 0,

c�) P1 veri�es (1.3),

d�) ∃σ (t) : R+ → R+ such that �P2(t, y)� ≤ σ (t) and

� +∞

0

σ (τ ) dτ <

+∞,

e�)
∂λ

∂y
· P + λ̇(1.2)(t, y) = 0.

3) For each limit pair (ϕ, ω) of (Y,W ) we have M+ = {y = 0}.

Then the solution y = 0 of (1.2) is globally attractive and eventually stable
with respect to the solutions of system (1.1).
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Proof. Put

µ(t, y) = exp(−l(t, y)

� t

0

σ (τ )dτ ), µ0(t, y) = exp(−l(t, y)

� +∞

0

σ (τ ) dτ ),

V1(t, y) = µ(t, y)(V (t, y) + 1) − µ0(t, y)

we obtain

(2.1) V̇1(1.1)(t, y) ≤ −µ(t, y)V̇(1.2)(t, y) ≤ −µ(t, y)W (t, y) ≤ 0.

Let
(t0, y0) ∈ R+ × Rn,m0 = V1(t0, y0)(> 0)

and
µ∗

0 = inf{µ0 : t ≥ t0, y ∈ Rn}

Since µ∗
0 > 0, from (2.1) follows

m0 ≥ V1(t, y(t)) ≥ µ(t, y(t))V (t, y(t)) ≥ µ∗
0h(�y(t)�)

hence �y(t)� ≤ h−1
�
m0

µ∗
0

�
∀ t ≥ t0 i.e. y(t) is bounded. By the Theorem 1.1 we

obtain that lim
t→+∞

y(t) = 0 i.e. y = 0 is globally attractive with respect to the

solutions of (1.1).
We deduce the eventual stability from the following consideration: for

every ε > 0 we de�ne T (ε) > 0 such that

µ(T (ε), y0) − µ0(T (ε), y0) =
h(ε)

2
µ∗

0.

This is possible because µ(t, y) − µ0(t, y) � 0 uniformly on every H
when t → +∞. Given t0 ≥ T (ε), because V (t, 0) = 0 ∀ t ≥ t0 it is possible to
�nd σ (t0, ε) > 0 from the inequality

(2.2) µ(t0, y0) sup
�y�<σ

V (t0, y) <
h(ε)

2
µ∗

0.

For every t0 ≥ T (�) and �y0� < σ by virtue of V̇1(1.1)(t, y) ≤ 0 and (2.2)
follows, ∀ t ≥ t0

µ∗
0h(�y(t)�) ≤ V1(t, y(t)) ≤ V1(t0, y0) ≤ µ∗

0h(ε)

i.e. �y(t)� < ε ∀ t ≥ t0, therefore y = 0 is eventually stable with respect to
(1.1).
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Remark. If λ = const then we omit the hypothesis 2-e�).

Theorem 2.2. Suppose that the assumption 1) and 2) of Theorem 2.1 hold, but
we substitute 3) with: 3�) ∃ a sequence tr → +∞ ensuring that the limit pair
(ϕ0, ω0) have the property:

the set {ω0(t, y) = 0} does not contain solutions of the limiting equation
ẏ = ϕ0(t, y) except y = 0.

Then the zero solution of (1.2) is globally equiattractive and eventually
stable with respect to (1.1).

This theorem is a slight modi�cation of Theorem 2.1.

Theorem 2.3. Assume that the following hypotheses hold

1) ∃V ∈C1(R+ × Rn → R+) so that:
a) h1(�y�) ≤ V (t, y) ≤ h2(�y�) with h1, h2 ∈ K̄ ,

b) ∃λ = constant > 0 so that
�
�
�
∂V

∂y

�
�
� ≤ λ(1 + V ),

c) V̇(1.2)(t, y) ≤ −W (t, y) ≤ 0,
d) for any H ∃m = m(H ) > 0 such that V (t, y) ≤ m ∀ (t, y) ∈ R+×H ,
e) ∀l > 0 ∃d = d(l, H ) > 0 such that |V (t2, y2) − V (t1, y1)| ≤ l

∀ (t1, y1), (t2, y2) ∈ R+ × H with |t2 − t1| ≤ d and �y2 − y1� ≤ d .

2) The perturbation P(t, y) has the properties:
a�) P(t, y) = P1(t, y) + P2(t, y),

b�)
∂V

∂y
· P1 ≤ 0, P1 veri�es (1.3),

c�) ∃σ : R+ → R+ so that �P2(t, y)� ≤ σ (t) and (1.4) hold.

3) For any limit pair (ϕ, ω) of (Y,W ) the set {ω(t, y) = 0} does not contain
solutions of the limiting equation ẏ = ϕ(t, y) except y = 0.

Then the solution y = 0 of (1.2) is globally uniformly attractive and
eventually uniformly stable with respect to the solutions of (1.1).

Proof. Since λ = constant > 0 put

µ(t) = exp(−λ

� t

0

σ (τ ) dτ ), µ0 = µ(∞) = exp(−l

� +∞

0

σ (τ ) dτ ) > 0

and
V1(t, y) = µ(t)(V (t, y) + 1) − µ0,

we obtain as in Theorem 2.1

(2.3) V̇1(1.1)(t, y) ≤ −µ(t)W (t, y) ≤ −µ0W (t, y) ≤ 0
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hence

lim
t→+∞

y(t, t0, y0) = 0, lim
t→+∞

V1(t, y(t)) = c0 ≥ 0 ∀ (t0, y0) ⊂ R+ × Rn.

Using V (t, y) ≤ h2(�y�), by (2.2) we deduce the eventual uniformstability
of y = 0 with respect to the solutions of (1.1).

From the inequality (2.3) when t0 ∈ R+, �y0� < r0(r0 > 0) we deduce
∀ t ≥ t0

µ0h1(�y(t)�) ≤ V1(t0, y0) ≤ µ(t0)(h2(r0) + 1) − µ0 = L0

hence �y(t)� ≤ h−1
1 (L0/µ0) = r1 i.e. the y(t) are uniformly bounded.

Let us prove that y(t) → 0 for t → +∞ uniformly with respect to
t0 ∈ R+, y0 ∈ {�y� ≤ r0}.

Suppose, ab absurdo, that ∃ε > 0 such that for every sequence Tr → +∞

there exist two sequences {yr } = {yr ∈ Rn : �yr� ≤ r0} and tr → +∞ so that
�y(t �r , tr , yr )� ≥ ε for some t �r ≥ tr + Tr .

Let T0 = T (ε) > 0 and δ0 = δ(ε) > 0 be chosen as in the de�nition of
uniform eventual stability, obviously, if tr ≥ T0 we have

(2.4) �y(t, tr, yr )� ≥ δ0 ∀ t ≥ tr .

Since y(t, tr, yr ) is solution of (1.1), by (2.3), we have respectively

ẏ(t, tr, yr ) ≡ Z (t, y(t, tr, yr )); V̇1(t, y(t, tr, yr )) ≤ −µW (t, y(t, tr, yr )).

Consider the translations

ẏ(t + tr , tr , yr ) ≡ Z (t + tr , y(t + tr , tr , yr )),

V̇1(t + tr , y(t + tr , tr , yr )) ≤ −µW (t + tr , y(t + tr , tr , yr )).

Put

yr (t) = y(t + tr , tr , yr ), Zr (t, y) = Z (t + tr , y),Wr (t, y) = W (t + tr , y)

we obtain

ẏr (t) ≡ Zr (t, yr (t)), V̇1r (t, yr (t)) ≤ −µWr (t, yr (t)) ≤ 0, yr (0) = yr .

According to Arstein�s [3] and Arzela�-Ascoli�s theorems on the precom-
pactness of

{Yτ (t, y) = Y (t + τ, y), τ ∈ R+}, {Wτ (t, y) = W (t + τ, y), τ ∈ R+}
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and {V1τ(t, y) = V1(t + τ, y), τ ∈ R+} we can select a subsequence {tr̄ } such
that we obtain the convergences

yr̄ (t) → ȳ(t) , yr̄ (0) → ȳ(0) , Zr̄ (t, y) → Ȳ (t, y),

V1r̄ (t, y) → V̄1(t, y) , Wr̄ (t, y) → W̄ (t, y).

Consequently we have

(2.5)
˙̄y ≡ Ȳ (t, ȳ(t)), ˙̄V1(t, ȳ(t)) ≤ −µW̄ (t, ȳ(t)) ≤ 0,

lim
t→+∞

V̄1(t, ȳ(t)) = c0 ≥ 0.

Let a sequence ts → +∞, T > 0 from (2.4) and (2.5) we deduce

0 < δ0 ≤ � ȳ(t + ts)� ≤ r1, ˙̄y(t + ts) ≡ Ȳ (t + ts, ȳ(t + ts)),

V̄1(ts + T , ȳ(ts + T )) − V̄1(ts , ȳ(ts)) ≤ −µ

� T

0

W̄ (τ + ts, ȳ(τ + ts))dτ ≤ 0.

Consider the new translates

ȳs(t) = ȳ(t + ts), Ȳs (t, y) = Ȳ (t + ts , y), W̄s(t, y) = W̄ (t + ts, y).

The precompactness of Y (t, y),W (t, y) implies this property for Ȳ and W̄ ,
therefore we can deduce the convergences

(2.6) ȳs̄(t) → y∗(t), ȳs̄(0) → y∗
0 , Ȳs̄(t, y) → ϕ(t, y), W̄s̄(t, y) →≤ (t, y)

From (2.5) and (2.6) formulas it follows that �y∗(t)� ≥ δ0 > 0 ∀ t ∈ R+,

ẏ∗(t) ≡ ϕ(t, y∗(t)), 0 ≤

� T

0

ω(τ, y∗(τ )) dτ ≤ 0 ∀T > 0.

On the basis of which we conclude the proof.

Theorem 2.4. Suppose that:

1) The function Y (t, y) satis�es, for t ∈ R+, y1, y2 ∈ Rn

�Y (t, y1) − Y (t, y2)� ≤ L�y1 − y2�

with L = constant > 0.

2) A function V (t, y) ∈C1(R+ × Rn → R+) exists such that
a) h1(�y�) ≤ V (t, y) ≤ h2(�y�) with h1, h2 ∈ K
b) V̇(1.2)(t, y) ≤ −W (t, y) ≤ 0.

3) For each limit pair (ϕ, ω), the set {ω(t, y) = 0} does not contain the
solutions of ẏ = ϕ(t, y) except y = 0.

Then the solution y = 0 of (1.2) is uniformly totally stable with respect to
(1.1).
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The proof is done by using Theorem 2.3 and Malkin�s converse theorem
[7].

2. Applications and examples.

A) Consider the differential system

(3.1)

�
ẏ1 = g11(t, y)y1 + g12(t, y)y2
ẏ2 = −g12(t, y)y1 + g22(t, y)y2

where y = (y1, y2) and the perturbed system

(3.2)

�
ẏ1 = g11(t, y)y1 + g12(t, y)y2 + g13(t, y) + g14(t, y),
ẏ2 = −g12(t, y)y1 + g22(t, y)y2 + g23(t, y) + g24(t, y)

Theorem 3.1. Suppose that the functions gi j : R+ × R2 → R satisfy the
following hypotheses:

1) the system (3.1) is precompact (in the bounded sense [2]).

2) g11 ≤ −l < 0, g22 ≤ 0, g2
12 ≥ h2 > 0,

3) y1g13 + y2g23 ≤ 0,

4) g13, g23 satisfy (1.3),

5) �(g14, g24)� ≤ σ , with σ : R+ → R+,

� +∞

0

σ (τ ) dτ < +∞.

Then the solution y1 = y2 = 0 of (3.1) is globally uniformly attractive and
eventually uniformly stable with respect to (3.2).

Proof. Choose V = y2
1 + y2

2 , l = 2 thus all the assumptions of Theorem 2.3
are satis�ed.

Remark. If gi j : R+ → R, are such that g11(t), g22(t) ≤ 0 ∀ t ≥ 0 and
g11(t) ≤ −l < 0, g22(t) ≤ 0, g2

12(t) ≥ h2 only when t ∈ [tr , tr + T ] where
tr → +∞, T > 0, then, in virtue of Theorem 2.2, we obtain that y1 = y2 = 0
is globally attractive and eventually stablewith respect to (3.2).

B) Consider the nonlinear second order differential equation [13]

ÿ + a(t) f1(y)g1(ẏ)ẏ + b(t) f2(y)g2(ẏ)y = 0

which is equivalent to the system

(3.3)

�
ẏ = z
ż = −a(t) f1(y)g1(z)z − b(t) f2(y)g2(z)y.

Let us introduce a perturbation, we have:

(3.4)

�
ẏ = z + P11 + P21

ż = −a f1g1z − bf2g2y + P12 + P22 .
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Theorem 3.2. Assume that

1) ∃a(t) ∈ C(R+ → R); b(t) ∈ C1(R+ → R); f1(y), g1(z) ∈ C(R+ → R)
and f2(y), g2(z) ∈C(R+ → R+) and four constants a0, a1, b0, b1 so that:

i) 0 < a0 ≤ a(t) ≤ a1 ,

2i) 0 < b0 ≤ b(t) ≤ b1,

3i) ḃ(t) ≥ 0,

4i) f1g1, f2g2 > 0,

5i)

� ±∞

0

τg−1
2 (τ ) dτ =

� ±∞

0

τ f2(τ ) dτ = +∞,

2) ∃M > 0 such that
z2

g2
2

≤ b0M
2

� z

0

τg−1
2 (τ ) dτ , y2 f 2

2 ≤ M2

� y

0

τ f2(τ )dτ .

3) y f2P11 +
zP12

bg2
≤ 0.

4) P11 and P12 satisfy (1.3).

5) ∃σ : R+ → R+ such that �(P21, P22)� ≤ σ (t),

� +∞

0

σ (τ ) dτ < +∞.

Then the singular point of (3.3) is globally attractive and eventually stable
with respect to (3.4).

Proof. The conclusion follows by Theorem 2.1, if we choose

A =
1

b(t)

� z

0

τdτ

g2(τ )
+

� y

0

τ f2(τ )dτ [12], V = (1 + A)
1
2 − 1, 2l = M.

C) An application to a control problem [9]. The state of an object is repre-
sented by a vector y ∈ Rn and described by a linear equation

(3.5) ẏ = −A(t)y + B(t)y

A, B are matrices n × n. Consider the �perturbed� equation

(3.6) ẏ = −A(t)y + B(t)y + P1(t, y) + P2(t, y)

in which t ∈ R+, AT = A, BT = −B, P1, P2 : R+ × Rn → Rn. We suppose
that the matrices A, B are differentiable of (n − 1)th order bounded with their
derivatives; henceforth we shall denote G1 = A, . . . ,Gr = Ġr−1+Gr−1B (r =

2, 3, . . . , n).
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De�nition 3.1. The pair of matrices (A, B) is said to be an �observable� if
1) the rank of G(t) = (G1, . . . ,Gn)(n×n2 ) is n ∀ t ∈ R+;
2) ∃ L, T > 0 such that ∀ t ≥ 0 there exists a submatrix Gn×n ⊂ G whose

columns are linearly independent and so that ∀ y : �y� = 1 we have

� t+T

t

�Gn×n(τ )y� dτ ≥ L.

Theorem 3.3. Suppose that the following conditions hold

1) the pair (A, B) is an observable,

2) A(t) is de�nite semipositive [yT A(t)y≥0],

3) P1 satis�es the condition (1.3), P1 · y ≤ 0,

4) ∃σ (t) : R+ → R+ such that �P2(t, y)� ≤ σ with

� +∞

0

σ (τ ) dτ < +∞.

Then the solution y = 0 of (3.5) is globally uniformly attractive and
eventually uniformly stable with respect to (3.6).

Proof. Put 2V = �y�2 , l = 1; it should be shown that this function satis�es all
the conditions of Theorem 2.3, according to V̇(3.5) = −yT A(t)y ≤ 0 we choose
W = −V̇ .

A limiting equation of (3.5) and (3.6) has the form [5]

(3.7) ẏ = −A∗(t)y + B∗(t)y

where:

i) A∗(t) =
d

dt
( lim
tn→+∞

� t

0

A(tn + τ ) dτ ),

B∗(t) =
d

dt
( lim
tn→+∞

� t

0

B(tn + τ ) dτ ),

ii) the pair (A∗, B∗) is observable, hence ∃G∗
(n×n)(t) so that

(3.8)

� t+T

t

�G∗
n×n(τ )�dτ ≥ L.

Since a limiting function of W is ω(t, y) = yT A∗ y , we have

{ω(t, y) = 0} ≡ {y ∈ Rn : A∗ y = 0}.
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If y(t) ∈ {A∗(t)y = 0}∀ t ∈ R+ is a solution of (3.7) then

ẏ(t) ≡ B∗(t)y(t), A∗(t)y(t) ≡ 0 → G∗
1(t)y(t) ≡ 0, . . . . . .G∗

n(t)y(t) ≡ 0.

Hence in by (3.8) we obtain y(t) ≡ 0 ∀ t ∈ R+, this complete the proof.
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