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ON STABILITY FOR PERTURBED
DIFFERENTIAL EQUATIONS

ALEXANDER ANDREEV - GIUSEPPE ZAPPALA

This paper deals with a nonautonomous differential equation, precom-
pact in the sense of G.R. Sell and Z. Artstein. We investigate the eventual
asymptotic stability and total stability of this equation with infinitesimal per-
turbations using Liapunov function with semidefinite derivative.

Introduction.

Traditionally asymptotic stability has been studied either by Liapunov’s
direct method or by Poincare’s geometric method. The first attempt, to unify
the two procedures, was carried out by La Salle [8] by combining information,
obtained from simple and natural Liapunov’s functions, with information about
geometric properties obtained from the invariance principle of limit set. In
nonautonomous differential equations one obtains more results by using the
limiting equations theory established by Sell [14], [15] and Artstein [3], [4],
[5]; the main problem of locating the limit set, by using Liapunov functions,
was studied in [1] and [2].

The purpose of this paper is to describe, essentially, the eventual asymp-
totic stability of the trivial solution by a differential equation under infinitesimal
perturbation, as considered by Artstein.
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The paper is organized as follows:

— in the Theorems 1.1 and 1.2 we analyze the properties of the limit set

— the Theorems 2.1, 2.2 and 2.3 highlight global attractivity and asymp-
totic stability

— from Theorem 2.4 we obtain uniform total stability

— three examples are given based on the explained theory.

Preliminaries, definitions, theorems on limit sets.

Let us consider the vectorial ordinary differential equation

(1.1 y=Y@t, )+ Pt y)=2,y),

where P plays the role of perturbation for the equation
(1.2) y=Y{, y.

The vector functions ¥, P : RT x R" — R", (RT = [0, +o0o[, R" is a
n-th dimension vector space with the norm | y||*> = (yl2 + -+ y,%)) are such
that for every point (7, yo) € Rt x R” the solutions y(z) = y(t, to, yo) and
y(t) = y(t, to, yo) exist and they are unique [6].

Suppose also that for every compact set H C R" there exist two locally L,
functions ry(t) and ny(¢) : R™ — R™ [3] such that (s.t.):

i) Vt,y)eRT x H ||[Y(,y)|| < ry@) and Ve > 0Iuy(e) > 0 s.t. if
E C [t,t+ 1] C R is a measurable set with measure < py(¢) then

f rp(t)dr <e.
E

2i) Vy',y’e€ H,Vt € RT we have
Y,y
1Y@, y) =Y, YOI < nu@®Illy — ¥l

(Lipschitz) and 3 a constant Ny > O s.t.

1+1
/ nu(t)dt < Ny VteR™.
t

As is shown in [3] these hypotheses guarantee the precompactness of the
equation (1.2), in the restrict sense and the uniqueness of solutions for (1.2) and
for y = (¢, y) limiting equation [5] of (1.2).
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Definition 1.1. The perturbation P(t, y) is said to be integrally converging
to zero as t — 400 if, for every sequence of continuous function {u,(t) :
[a, b] — R"} uniformly converging to ¢ : [a, b] — R" and for every sequence
t, — 400, we have [5]

b
(1.3) lim P + t,u.(r))dt =0.

-
r+ooa

Remark. The previous definition is more general than the convergence to zero
introduced in [10], [16]. If we suppose that for each H there exists a function
oy : Rt — R sothatVt € Rt Vye€ H we have [16]

s+1
|P(t, V)| <oy(t) and 1121 f og(t)dt =0
then (1.3) holds.

Definition 1.2. The perturbation P(z, y) is said to be infinitesimal on R*: if
Jo : R" — R" sothat Vi€ R",Vy e R" we have | P(¢, y)|| < o(t) and

+00
(1.4) / o(t)dt < +o0.
0

Remark. A perturbation infinitesimal on R™ is integrally converging to zero as
t — +o00.

Remark. If P(¢, y) is integrally converging to zero as t — +oo then

b b
(1.5) liEl / Y + P)t, +1,u,(v))dt = 1121 / Y@ + 7, u.(r))dr

it follows that (1.1) and (1.2) share the same family of limiting equations [5].

In virtue of this connection we obtain fundamental results on the asymp-
totic behaviour of the solution of (1.1) by using auxiliary function [11] denoted
by V, W, h.

Definition 1.3. The function 4 € C°(RT — R™) is said to be “a function of
class K in the sense of Hahn” [11] if it is strictly increasing and h(0) = 0. A
function 4 € K is said to be a function of class K if liin h(r) = +o0.

r—+00
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We will denote [11], for every Liapunov function V € C'(R* x R" — R):

06 GV AV VY
' 2= Ty T DT e Ty

where a - b = a” b is the scalar product.

We will assume [1] that the scalar function W(z, y) > 0, W(¢,0) = 0, is
bounded on (¢, y) € R x H and satisfies the Lipschitz conditions in # and y on
each compact [fy, to + v] x H (tp >0, v > 0).

Then the set of functions w(¢, y) limiting to W (¢, y) will be nonempty, and
the convergence of W, (t,y) = W(t, + t,y) to w(t,y) as t — oo will be
uniform in each compact mentioned.

Definition 1.4. The pair (¢, w) is said to be [1] a “limit pair” of (¥, W) when ¢

and w derive from Y, W by using the identical sequence {¢,}.

Definition 1.5. Let (¢, w) be a limit pair correspondent to (Y, W), we assume

M* ={z(t)e R"; z(t) = ¢l[t, z(1)], z(t) € [w(t, y) = 0] Vi€ R™}
M ={uMt V(p, w)}.

We shall prove our main results on the limit sets in this section.

Theorem 1.1. Assume the following hypotheses:
1) 3V eCY(R* x R* — R*) bounded, on every H, such that

V(l.z)(t, y)<-W(,y)<0;

2) the perturbation P(t, y) verify (1.3) and % -P <0;
3) the solution y(t) belongs to H .

Then the limit set Q*(y(1)) C M i.e. y(t) > M].
Proof. By Malkin’s formula [11] we obtain

v, y)
d

(L7 Vant, y) = Vaalt, y)+ . P(t,y) < —W(,y) <0.

From (1.5) it follows that (Y, W) and (Y + P, W) have the same family of
limit pair. On the basis of Theorem 2.1 of [1] we have the result required.
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Theorem 1.2. Let P(t, y) = Pi(t, y)+ Py(¢t, y). Then the results of the previous
theorem are confirmed if

A%
5 P <0, [P, I <o),

o (t) verifies (1.4) and S > 0 such that

oV + n
||a—||§S, V(t,y)e RT x R".
y

Proof. 1f we choose the auxiliary function

+00
Vilt, y) = V(t,y)—l—Sf o(t)drt
t
we obtain

. . A% A%
Via(t, y) = Vay, y)+ E - P+ @ Py, —So(t) < -W(t,y) <0

and so we can conclude the proof.

1. Theorems on the global attractivity and the eventual stability (of y = 0).

Assume that Y(z,0) = 0 for every t € R, so that, for the differential
equation (1.2), the origin is an equilibrium or critical point. Then we obtain
sufficient conditions for the eventual stability of this solution [7].

For the right maximal interval where y(t, #y, yo) is defined we write
J* (10, yo).

Definition 2.1. The solution y = 0 of (1.2) is said to be eventually stable with
respect to (1.1) if (Ve > 0) 3t = 1(e) > 0) (Vtp > 1) (3 = 8(tp, ¢) > 0)
(Vyo : [lyoll < &) one has (|[y(, fo, yo)ll <& Vi > to).

Definition 2.2. The solution y = 0 of (1.2) is said to be eventually uniformly
stable with respect to (1.1) if (Ve > 0) @t = 1(¢) > 0) (Vi > 1)
(35 = 6(e) > 0) such that (Yyy : ||yoll < &) one has (||y(z, ty, Yo < ¢
Yt > 1)
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Definition 2.3. The solution y = 0 of (1.2) is said to be globally attractive with
respect to (1.1) if V(z, yo) € R x R" tliin y(t, to, yo) = 0.
—+0Q0

Definition 2.4. The solution y = 0 of (1.2) is said to be globally equiattractive
with respect to (1.1) if (Vi € RY) (Vyo € R") (J T (t9, yo) = [to, +00[) and
NVMe>0)@AT =T(ty,e) > 0)s.t. (Jly(t, to, yo)l| <eVt =1ty +T).

Definition 2.5. The solution y = 0 of (1.2) is said to be globally uniformly at-
tractive with respect to (1.1) if (Vg € RT) (Vyo € R"™) (J T (t9, yo) = [to, +00[)
and Ve > 0) AT =T(e) > 0) s.t. (Jly(, to, yo)ll <e VYVt >1t9+T).

Definition 2.6. The solution y = 0 of (1.2) is said to be uniformly totally stable
if Vtp € RT) (Ve > 0) (38" = §'(),8" = 8"(e) > 0) s.t. (Vyo : |yl < &)
(VP [Pl <8") (lly(, 1o, yoll <€ Vi >19) [11].

Theorem 2.1. Suppose that the following assumptions hold

1) 3V eCY(RT x R" — R*) such that:
a) V(t,00=0VteRT,
b) V(t,y)> h(||y|) where h € K,

av
¢) 3l = I(t,y) € C'(RT x R" — R%) bounded such that ”8_” =<
y

A1+ V),

2) The perturbation P(t, y) satisfies the following hypotheses
a’) P=P + Py,
v
b) — - P <0,
dy
c’) Py verifies (1.3),
+00
d’) 3o(t): RT — R™ such that | Px(t, y)| < o(t) and/ o(t)dr <
0
00,

JIA .
e’) — - -P+Arun, y)=0.
dy

3) For each limit pair (¢, w) of (Y, W) we have M = {y = 0}.

Then the solution y = 0 of (1.2) is globally attractive and eventually stable
with respect to the solutions of system (1.1).
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Proof. Put

t +o0
ult, y) = exp(—L(t, y) /0 o (1)), polt, y) = exp(—I(t, y) fo o (1) d7),

Vit, y) = pu(t, y)(V(I, )+ 1) — o, y)

we obtain

2.1)  Vian(t, y) < —ut, y)Vaat, y) < —ut, y)W(t, y) <0.
Let
(to, Yo) € RT x R", mg = Vi(to, yo)(> 0)
and
po = inf{ug : 1t > 1y, y € R"}

Since pg > 0, from (2.1) follows
my > Vi(t, y(0)) = u(t, y)V(t, y@) = poh(lly@ll)

hence ||y(¢)|| < h~! (Zﬂ) VYt > ty i.e. y(¢) is bounded. By the Theorem 1.1 we
0
obtain that ) ligl y(t) = 01i.e. y = 0is globally attractive with respect to the
—+00
solutions of (1.1).

We deduce the eventual stability from the following consideration: for
every ¢ > 0 we define T'(¢) > O such that

h(e)
(T (&), yo) — mo(T (&), yo) = — Mo

This is possible because u(t, y) — uo(t, y) \¢ 0 uniformly on every H
when t — 400. Given ty > T(¢), because V(t,0) = 0 Vt > ¢, it is possible to
find o (ty, €) > O from the inequality

h(e)
(2.2) u(to, yo) sup V(to, y) < TMS

Iyll<o

For every ty > T'(¢) and || yo|| < o by virtue of Vl(l.l)(ta y) <0 and (2.2)
follows, Vit > 1

noh(lyOI) < Vi, y(@)) < Vilto, yo) < uoh(e)

ire. |ly@®)l < e YVt > ty, therefore y = 0 is eventually stable with respect to

(1.1).
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Remark. If A = const then we omit the hypothesis 2-¢”).

Theorem 2.2. Suppose that the assumption 1) and 2) of Theorem 2.1 hold, but
we substitute 3) with: 3’) 3 a sequence t. — +00 ensuring that the limit pair
(¢o, wo) have the property:

the set {wo(t,y) = 0} does not contain solutions of the limiting equation

y = @o(t, y) except y = 0.
Then the zero solution of (1.2) is globally equiattractive and eventually
stable with respect to (1.1).

This theorem is a slight modification of Theorem 2.1.

Theorem 2.3. Assume that the following hypotheses hold
1) 3V eCY (Rt x R" — RY) so that:
a) hi(lyl) < V. y) < hao(llyll) with hy, hy € K,
b) IA = constant > 0 so that ” % ” <x1+4+V),
©) Vuat, y) < =W, y) <0,
d) forany H 3m = m(H) > 0 suchthat V(t, y) <mV(t,y)€e Rt x H,

e) VI >03d =d(, H) > 0 such that |V (t, y2) — V(t1, y1)| <1
Y(ti, y1), (t2, y2) € RY x H with |t —t;| < d and ||y, — y1|| <d.

2) The perturbation P(t, y) has the properties:
a’) P(t,y)= Pit,y)+ Pz, ),

oV
b’) 8_ - Py <0, P, verifies (1.3),
y
¢’) o : R™ — R* sothat | Py(t, y)|| < o(t) and (1.4) hold.

3) For any limit pair (¢, ) of (Y, W) the set {w(t, y) = 0} does not contain
solutions of the limiting equation y = ¢(t, y) except y = 0.

Then the solution y = 0 of (1.2) is globally uniformly attractive and
eventually uniformly stable with respect to the solutions of (1.1).

Proof. Since A = constant > 0 put

t +00
u(t) = eXP(—)»/ o(r)dt), po = pu(co) = CXP(—Z/ o(r)dt) >0
0 0

and
Vi(e, y) = n@)VE, y)+ 1) — po,

we obtain as in Theorem 2.1

(2.3) Vian(, ¥) < —puOW(t, y) < —uoW(t, y) <0
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hence
lim y(t, to, yo) =0, lim Vi(z, y(t)) = co > 0V (t, yo) C R™ x R".
t—>+00 t—>+00

Using V (¢, y) < hy(|ly ), by (2.2) we deduce the eventual uniform stability
of y = 0 with respect to the solutions of (1.1).

From the inequality (2.3) when #y € R™, ||yoll < ro(ro > 0) we deduce
YVt >ty

mohi(IlyI) < Vi(to, yo) < u(to)(ha(ro) + 1) — no = Lo

hence || y(#)|| < hl_l(Lo/[Lo) = ry i.e. the y(¢) are uniformly bounded.

Let us prove that y(#) — 0 for + — +oo uniformly with respect to
to € R™, yo e {llyll < ro}.

Suppose, ab absurdo, that 3¢ > 0 such that for every sequence 7, — +00
there exist two sequences {y,} = {y, € R" : ||y, || < ro} and ¢, — 400 so that
ly(., t, y.)|| > e for some ¢/ > t. + T,.

Let Tp = T(e) > 0 and 69 = 8(e) > O be chosen as in the definition of
uniform eventual stability, obviously, if . > T, we have

24 Iyt yll = 80 V1> 1,.
Since y(t, t., y,) is solution of (1.1), by (2.3), we have respectively
Yt b ) = Z(, Y 1, 3)); Vil Y8 1, 30)) < =W, ¥(2, 57, 7).
Consider the translations
Y&+t te, ) = Z(@A 1, Y+ 1, 1, Y1),

Vit + 1, Yt + 1 1, 32)) < —uW(t + 1, Yt + 1oy 1y 30)).
Put

@)=yt +t,4,y), 2, y)=Z(E+1,y), W.(t,y) = Wi +1,y)
we obtain
3 (t) = Z,(t, y(0), Vi (t, (1)) < —uW,(t, y,(1)) <0, y,(0) = y,.

According to Arstein’s [3] and Arzela’-Ascoli’s theorems on the precom-
pactness of

(Y.(t,y)=Y(t+71,y), e R}, (W, (t,y)=W(t +1,y), € RT}
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and {Vi.(t, y) = Vi(t + 1, y), T € R*} we can select a subsequence {7} such
that we obtain the convergences

Ye(t) = (1), yr(0) = 3(0), Zz(t, y) > Y(t, ),
Vir(t, y) — Vi(t, y), Wit y) — W, y).
Consequently we have

=Y, 50, Vi, 51) < —uW (e, 5(1) <0,

@) dim V106, 50) = ¢ = 0.

Let a sequence t, — +o00, T > 0 from (2.4) and (2.5) we deduce

0 <8 < I3¢ + 1)l <71, ¥ + 1) =Y (1 +1,, 5 +1,)),

T
Vilts + T, y(ts +T)) — Vits, y(t5)) < —/L/ W(t + 15, y(r +t,))dt < 0.
0
Consider the new translates

o) = 5t +1,), Yy, y) = Yt + 15, 9), Wy, y) = Wt + 15, ).
The precompactness of Y (¢, y), W(z, y) implies this property for ¥ and W,
therefore we can deduce the convergences
(2.6)  Fs(t) = y*(1), ¥5(0) = y5, Ys(t, y) = o(t, y), Ws(t,y) ><(,y)
From (2.5) and (2.6) formulas it follows that || y*(z)|| > 8o > 0 Vt € RT,

T
yi) = ot, y*(t), 0< f o(t, y*(t))dt <0 VT > 0.
0

On the basis of which we conclude the proof.

Theorem 2.4. Suppose that:
1) The function Y(t, y) satisfies, for t € R™, y, y, € R"

1Y, y1) = Y (&, y2)Il < Lliyr — y2ll
with L = constant > 0.
2) Afunction V(t,y)e C'(RT x R" — R™) exists such that
a) hi(llyl) = V@, y) < hao(llyll) with hy, hy € K
b) Vuo(t,y) < —-W(,y) <0.
3) For each limit pair (¢, ), the set {w(t, y) = 0} does not contain the
solutions of y = ¢(t, y) except y = 0.
Then the solution y = 0 of (1.2) is uniformly totally stable with respect to
(1.1).
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The proof is done by using Theorem 2.3 and Malkin’s converse theorem

[7].

2. Applications and examples.
A) Consider the differential system
3.1) {)"1 =g, y)y1 + g12(t, y)y2
' y2 = —gn(t, Y)y1 + g2, y)y2
where y = (y1, ) and the perturbed system
yi=gut, y)yi + g2, y)y2 + g13(t, y) + 147, y),
Y2 = —gun(t, Y)y1 + g22(t, y)y2 + 823(1, y) + g24(t, y)
Theorem 3.1. Suppose that the functions g;; : R x R*> — R satisfy the
following hypotheses:
1) the system (3.1) is precompact (in the bounded sense [2]).
2) gn <—-1<0,80<0,g%,>h*>0,
3) y1813 + 2823 < 0,
4) g13, 823 satisfy (1.3),

+o0
5) 184, g24)|l <o, witho : Rt — RY, / o(t)dt < +oo.
0

(3.2)

Then the solution y; = y, = 0 of (3.1) is globally uniformly attractive and
eventually uniformly stable with respect to (3.2).
Proof. Choose V = y? + y3,1 = 2 thus all the assumptions of Theorem 2.3
are satisfied.
Remark. If g;; : R™ — R, are such that g;;(¢), g22(r) < 0 V¢ > 0 and
gu(t) < —1 < 0, gn() <0, g&,(t) > h? only when ¢ € [t,,t, + T] where
t, — 400, T > 0, then, in virtue of Theorem 2.2, we obtain that y; = y, =0
is globally attractive and eventually stable with respect to (3.2).

B) Consider the nonlinear second order differential equation [13]

V+a@®) fimg(y + b() 2(0)g20(0)y =0
which is equivalent to the system
(3.3) {? =z
z=—a(t) fi(y)g1(2)z — b(t) f2(y)g2(2)y.
Let us introduce a perturbation, we have:
{5’=Z+P11+P21

3.4 f
34 z=—afig1z —bfrgoy + Pio + Px.
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Theorem 3.2. Assume that

1) Ja(t) e C(R* — R); b(r) e C'(RT — R); fi(y), g1(x) € C(RT — R)

and f>(y), g2(z) € C(RT — R™) and four constants ay, a,, by, b so that:
i) 0 <ap<a() < a,
2i) 0 < by < b(¢) < by,
3i) b(r) > 0,
4i) fig1, f82 >0,
+o0 +o0
51) / rg;l(r)dr = / tfr(t)dt = 400,
0 0

2 4 y
2) 3M > 0 such that = < bOM2/ gy (W dr, Y22 < sz tf(T)dr.
82 0 0

P
3) yHPu+ 22 o,

bg,
4) Py and Py satisfy (1.3).

+00
5) Ao : Rt — R such that ||(Pa1, P»)| < o(1), f o(t)drt < +o0.
0

Then the singular point of (3.3) is globally attractive and eventually stable
with respect to (3.4).

Proof. The conclusion follows by Theorem 2.1, if we choose

1 2 rdt Y |
A= — _ dt [12], V=(1+A4)2 -1, 2l =M.
b(t)/o v +/0 T (t)dT [12] ( )

C) An application to a control problem [9]. The state of an object is repre-
sented by a vector y € R” and described by a linear equation

(3.5) y=—A@)y + B()y

A, B are matrices n x n. Consider the “perturbed” equation

(3.6) y=—A@)y + B(t)y + Pi(t, y) + P(t, y)

inwhicht e Rt, AT = A, BT = —B, P, P,: R x R" — R". We suppose
that the matrices A, B are differentiable of (n — 1)th order ‘pounded with their

derivatives; henceforth we shalldenote G| = A, ..., G, = G,_1+G,_ 1B (r =
2,3,...,n).
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Definition 3.1. The pair of matrices (A, B) is said to be an “observable” if

1) therank of G(1) = (G, ..., Gy)uxn2y isn YVt € RT;

2) AL, T > 0 such that V¢ > O there exists a submatrix G, ., C G whose
columns are linearly independent and so that Vy : || y|| = 1 we have

t+T
/ 1Grxn(T)y|] dt > L.
t

Theorem 3.3. Suppose that the following conditions hold
1) the pair (A, B) is an observable,
2) A(t) is definite semipositive [y A(t)y>0],
3) P satisfies the condition (1.3), Py -y <0,
+00
4) Fo(t): Rt — R" suchthat | Py(t, y)| <o withf o(t)drt < +o0.
0

Then the solution y = 0 of (3.5) is globally uniformly attractive and
eventually uniformly stable with respect to (3.6).

Proof. Put2V = ||y||?>,! = 1; it should be shown that this function satisfies all
the conditions of Theorem 2.3, according to V(345) = —yT A(t)y < 0 we choose
W=-V.

A limiting equation of (3.5) and (3.6) has the form [5]

(3.7 y=—A")y+ B*(1)y

where: J )
1) A*(t) = E(tnl_l)gl_loofo A(t, + t)dT),

d t
s 4
B*(t) = dt(tnETOO/(; B(t, + 1) d7),
ii) the pair (A*, B*) is observable, hence 3G, ,(¢) so that

(nxn)

t+T
(3.8) f 1G* . (©lldr = L.
t

Since a limiting function of W is w(t, y) = y’ A*y, we have

{w(t,y)=0}={yeR": A"y =0}.
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If y(t) € {A*(t)y = 0}V € R* is a solution of (3.7) then

() = B*(0)y(t), A"(H)y(H) =0 — GX(O)y(t) =0, ...... G (1)y(t) = 0.

Hence in by (3.8) we obtain y(z) = 0 V¢ € R™, this complete the proof.

(6]

(7]

(8]

(9]

(10]

(11]

[12]
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[14]
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