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SPACE-TIME FINITE ELEMENTS NUMERICAL

SOLUTION OF BURGERS PROBLEMS

M. MORANDI CECCHI - R. NOCIFORO - P. PATUZZO GREGO

A �nite-element numerical method to solve a weak formulation of
quasi-linear parabolic problems on space-time domain governed by Burgers
equation is given. Stability and errors estimates theorems for the numerical
solution are proved for smooth initial conditions and numerical examples are
presented.

1. Introduction.

In this paper a class of quasi-linear parabolic problems controlled by the
Burgers equation, as presented in [2], is solved applying the space-time �nite
element discretization as in [3]. Numerically this problem has a considerable
interest ([1],[4],[5],[6],[13]) because the Burgers equations have the some con-
vective and dissipative form as the incompressible Navier-Stokes equations, al-
though the pressure gradient terms are not retained. A variational formulation
is given and by direct integration, having used a linear approximation in time,
one obtains the non linear system to get the approximate solution. Stability and
error estimate theorems are proved for this approximate solution. An iterative
algorithm is implemented and applied to solve some numerical examples.
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Key words: Quasi linear parabolic problems, Burgers equation, weak formulation,
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2. The space-time �nite element method.

Let � = (a, b) be a bounded one dimensional set of R. In Q = �×]0, T [,
T < ∞, we consider the Burgers problem P with homogeneous boundary
conditions:

(2.1) P :






ut (x , t)−
1

Re
uxx (x , t)+ u(x , t) ux(x , t) = f (x , t), (x , t)∈ Q

u(x , 0) = u0(x ) x ∈ �

u(a, t) = u(b, t) = 0 t ∈ [0, T ]

where f (x , t) : Q → R, u0(x ) : � → R are given functions, with
u0(a) = u0(b) = 0. Let be V = H 1

0 (�), performing an inner product on
H = L2(�) of both sides of the equations of P by a test function v ∈ V , it
results

(2.2) (ut , v)+
1

Re
(ux , vx )+ (uux , v) = ( f, v), ∀v ∈ V , a.e. t ∈ [0, T ]

where (·, ·) is the inner product in H . This is a �weak problem� of the Burgers
equations and a solution u ∈ L2(Q), if it satis�es the conditions ofP, is called
a �weak solution� of the Burgers problemP.

In [10] we prove that, if in the problem P we have u0(x ) ∈ L∞(�) and
f (x , t) ∈ L∞(Q), there exist a unique solution u(x , t) ∈ L2(0, T ; H 1

0 (�)) ∩

L∞(Q) of the correspondent weak problem. This solution is proved to be limit
of the Cauchy sequence in L∞(0, T ; L2(�)) of smooth functions un(x , t) ∈

L2(0, T ; H 2(�)) ∩ H 1(0, T ; L2(�)). Each smooth function un(x , t) is the
weak solution of the problemP, corresponding to initial data u0n(x )∈ H 1

0 (�),
|u0n(x )| ≤ M , with

M = max
�

M1 = |u0(x )|L∞(�)
, M2 = | f |

L∞(Q)

�
.

We prove also that the sequence {un,x (x , t)} is convergent to ux (x , t) in L2(Q).
For simplicity we consider the homogeneous Burgers equation.
A weak equivalent form of the problem:

(2.3)






(ut , v)+
1

Re
(ux , vx) + (uux , v) = 0, ∀v ∈ H 1

0 (�), a.e. t ∈ [0, T ].

u(x , 0) = u0(x ) x ∈ �

u(a, t) = u(b, t) = 0 t ∈ [0, T ]
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can be obtained [7], multiplying the equation of (2.3) by a test function φ ∈

L2(0, T ; H 1
0 (�)) such that φt ∈ L2(0, T ; L2(�)) and φ(T ) = 0 having inte-

grated over Q .

The variational formulation of problem (2.3) is then:

to �nd u ∈ L2(0, T ; H 1
0 (�)) such that

� T

0

�

(−u, φt ) +
1

Re
(ux , vx )+ (uux , φ)

�

dt = (u0(x ), φ(0))(2.4)

∀φ ∈ L2(0, T ; H 1
0 (�)), φt ∈ L2(0, T ; L2(�)), φ(T ) = 0.

The research of an approximation of u is based on a feasible discretization
of the variational form (2.4) given by the space-time �nite element method
that now is described and that was used in ([3], [9], [11]) for linear parabolic
equations and in [12] for the Stefan problem.

Let
�
tn

�S

0
be a �nite sequence of real numbers with t0 = 0, tS = T and

tn < tn+1 for n ≥ 0. Set In = (tn, tn+1] and denote by S
p
h (�) ⊂ H 1

0 (�)
and S

q
k ([0, T ]) two �nite element spaces of continuous piecewise polynomials

respectively of degree less or equal to p in �, that are zero on the boundary of
� and of degree q in time, h e k are the mesh parameters and the uniform time
step respectively. Let Vhk denote the tensor product space

(2.5) Vhk = S
p
h (�)⊗ S

q
k ([0, T ])

The discretization of (2.4) is performed in each slab � × In , assuming the
continuity of the approximate solution in time when moving from one slab to
the successive one. Finally the method is to �nd uhk ∈ Vhk such that

�

In

�
− (uhk, φhk

t )+
1

Re
(uhk

x , φhk
x )+ (uhkuhk

x , φhk )
�
dt =(2.6)

= (uhk|t=tn , φhk |t=tn ) ∀φhk ∈ S
p
h ⊗ Pq(In ), φhk |t=tn+1 = 0 ,

where Pq(In) is the set of polynomials of degree q in time and uhk | t = 0 is
an approximation of u0(x ) in S

p
h (�). In this way an iterative process is built,

which allows to compute the solution at time tn+1 from the knowledge of the
solution at time tn .
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3. Discretization with respect to the space variable.

Let us consider the semidiscrete problemPh , that is:

to �nd uh(t)∈Sh(�) = S
p

h (�) such that

(3.1) Ph :






(uht , vh)+
1

Re
(uhx , vhx )+ (uhuhx , vh) = 0 ,

∀vh ∈Sh(�), t ≥ 0

uh(a, t) = uh(b, t) = 0 , t ∈ [0, T ]

uh(x , 0) = u0h , , x ∈ �

where u0h is an approximation of u0 in Sh(�), with
�
�u0h

�
�

L∞(�)
≤ M =

�
�u0

�
�

L∞(�)
,

that, for example, could be the projection of u0 on Sh (�) for the norm of H .
The family {Sh (�)} of subspaces of H 1

0 (�) of �nite dimension Nh ,
namely the family of the subspaces of the continuous functions that are piece-
wise polynomials of degree ≤ p over any mesh, that are zero on the extremum
point of the interval (a, b), has the following property of approximation for h
small enough:

(3.2) inf
χ∈Sh

{�v − χ� + h�(v − χ )x�} ≤ c hs�v�s

for 1 ≤ s ≤ p + 1 = r , v ∈ H s(�) ∩ H 1
0 (�) where � · � is the norm on

H and � · �s is the norm on H s(�). The problem Ph has at least a solution
uh = uh(t) ∈Sh(�) (Lemma 4.3, p. 52 of [8]). To show the uniqueness of the
solution uh , it is enough to follow the same proof of the continuous case [10].

The spatial discretization is stable, since taking vh = uh in (3.1), one has:

1

2

d

dt
�uh�

2 +
1

Re
�uhx�

2 = 0.

By the fact that the second term is non-negative, the �rst term has to be non-
positive, therefore �uh�

2 is non-increasing and

�uh(t)� ≤ �u0h�.

It is possible to prove, as done in [10], that the semidiscrete solution uh too
comply with the maximum principle, i.e.

�
�uh

�
�

L∞(Q)
≤ M .

We shall prove the following estimate for the error between the solutions
of the semidiscrete and for the continuous problem.
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Theorem 3.1. Let uh and u be the solutions of (3.1) and (2.3), respectively.
Then

�uh(t)− u(t)� ≤ C
�
�u0h − u0� + hr−1

�

with C = C(u).

Proof. We require, of course, that the solution of the continuous problem has
the necessary regularity. For the purpose of the proof, we introduce the Ritz
projection P1 into Sh as the orthogonal projection with respect to the inner
product (vx , ux ) so that:

(3.3)
�
(P1u)x , χx

�
= (ux , χx) ∀χ ∈Sh .

For the projection P1 the following lemma holds (see [14]):

Lemma 3.1. With P1 de�ned by (3.3) we have

�(P1v − v)x� ≤ Chs−1�v�s

�P1v − v� ≤ Chs�v�s

for 1 ≤ s ≤ r and v ∈ H s(�) ∩ H 1
0 (�).

We write

(3.4) uh − u = (uh − P1u) + (P1u − u) = ϑ + ρ.

The second term is easily bounded by Lemma 3.1 and obvious estimates:

�ρ(t)� ≤ C1h
r �u(t)�r = C1h

r

�
�
�
�u0 +

� t

0

utds

�
�
�
�

r

≤ C1h
r

�

�u0�r +

� t

0

�ut�r ds

�

≤ C1(u)h
r

�ρx� ≤ C1(u)h
r−1 .

In order to estimate ϑ , we note that

(3.5)

(ϑt , χ )+
1

Re
(ϑx , χx )

= (uh,t, χ )+
1

Re
(uh,x , χx )− (P1ut , χ )−

1

Re

�
(P1u)x , χx

�

= −(uhuh,x , χ )+ (ut − P1ut , χ )+ (uux , χ )

= −(ρt , χ )+ (uux − uhuh,x, χ )
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for χ ∈Sh . In this derivations we have used the de�nition of P1 and the easily
established fact that this operator commutes with time differentiations. Since ϑ

belongs to Sh , we may choose χ = ϑ in (3.5) and conclude

(3.6)

1

2

d

dt
�ϑ�2 +

1

Re
�ϑx�

2

= −(ρt , ϑ)+ (uux − uhuh,x, ϑ)

= −(ρt , ϑ)+ (u(u − uh)x , ϑ)+ (uhx (u − uh ), ϑ)

≤ �ρt��ϑ� + C2
�
�ρ� + �ρx� + �ϑ� + �ϑx�

�
�ϑ�

≤
1

Re
�ϑx�

2 + C3
�
�ρ�2 + �ρx�

2 + �ρt�
2 + �ϑ�2

�
.

Hence, using Gronwall�s lemma,

�ϑ(t)�2 ≤ C3�ϑ(0)�2 + C3

� t

0

�
�ρ�2 + �ρx�

2 + �ρt�
2
�

dt

�ρt� = �P1ut − ut� ≤ C4h
r�ut�r ≤ C4(u)h

r

and further

�ϑ(0)� = �u0h − P1u0� ≤ �u0h − u0� + �P1u0 − u0�

≤ �u0h − u0� + Chr�u0�r .

In view of Lemma 3.1 and together with these estimates, we show

�ϑ(t)� ≤ C
�
�u0h − u0� + hr−1

�

and this completes the proof.

4. Numerical method via �nite elements.

Let us take q = 1 (linear polynomials in time are the ones more often

used in calculations) and let
�
�j (x )

�Nh

1
be the basis functions of S

p
h (�), every

function uhk ∈ Vhk may be written inside the slab � × In as

uhk (x , t) = uhk
n (x )

(tn+1 − t)

k
+ uhk

n+1(x )
(t − tn)

k
,

where

uhk
n (x ) =

Nh�

j=1

uhk(xj , tn)�j =

Nh�

j=1

uhk
n, j �j
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and similarly uhk
n+1(x ) are elements ofS

p
h (�). The test functions are expressed

as

φhk = φhk
n (x )

(tn+1 − t)

k
so that the condition φ(x , tn+1) = 0 holds. Substituting these expressions inside
(2.6), separating the inner product with respect to the space variable from the
integrals in the time variable and noting that φhk

n (x ), being a linear combination
of �j , may be thought as an arbitrary element ofS

p
h (�), we get

Un = uhk
n (x ), Un+1 = uhk

n+1(x ), χ = φhk
n (x )

and the following nonlinear system that gives the nodal values of the approxi-
mate solution at the time tn+1 , when the solution at the preceding time is known:

�
Un+1 − Un

k
, χ

�

+
1

3Re

�
Un+1

x + 2Un
x , χx

�
+(4.1)

+
1

6

�
(Un+1 + Un)(Un+1

x + Un
x ), χ

�
+
1

3
(UnUn

x , χ ) = 0

∀χ ∈S
p

h (�), n ≥ 0 and U 0 = u0h . The numerical process (4.1) is stable, in
fact we have the following theorem:

Theorem 4.1 (Stability). Under the appropriate regularity assumptions, exists
a constant C = C(h) independent of k, the uniform time step, and dependent of
initial data, such that, if

(4.2) k ≤ h2C(h)

then the numerical process (4.1) is stable.

Proof. From (4.1) we get

�
Un+1 − Un, χ

�
−

2k

3Re

�
Un+1

x − Un
x , χx

�
+

k

Re

�
Un+1

x , χx

�
+

+
k

2
(UnUn

x , χ )+
k

6
(UnUn+1

x , χ )+
k

6
(Un+1Un

x , χ )+
k

6
(Un+1Un+1

x , χ ) = 0.

Taking χ = Un+1 we obtain

�
Un+1 − Un, Un+1

�
+

k

Re

�
�Un+1

x

�
�2 −

2k

3Re

�
Un+1

x − Un
x , Un+1

x

�
=

=
k

6

�
(Un+1 − Un)(Un+1

x − Un
x ), Un+1

�
+

k

3

�
UnUn+1

x , Un
�

=

=
k

6

�
(Un+1 − Un)(Un+1

x − Un
x ), Un+1

�
+

k

3

�
UnUn+1

x , Un − Un+1
�
+

+
k

3

�
(Un − Un+1)Un+1

x , Un+1
�
.
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By the boundedness of Un+1 and Un we obtain:

�
Un+1 − Un, Un+1

�
+

k

Re

�
�Un+1

x

�
�2 ≤

≤
2k

3Re
�Un+1

x �
�
�Un+1

x − Un
x

�
� +

C1k

6

�
�Un+1 − Un

�
�

�
�Un+1

x − Un
x

�
� +

+
2C1k

3

�
�Un+1

x

�
�

�
�Un+1 − Un

�
�

and therefore:

�
Un+1 − Un, Un+1

�
≤

k

2Re

�
�Un+1

x − Un
x

�
�2 +

C2
1Rek

4

�
�Un+1 − Un

�
�2 .

Recalling the identity

�
Un+1 − Un, Un+1

�
=
1

2

�
�Un+1

�
�2 −

1

2
�Un�2 +

1

2

�
�Un+1 − Un

�
�2

and using the inequality

�Uh,x�
2 ≤

C2

h2
�Uh�

2 ∀Uh ∈Sh

we have:

�
�Un+1

�
�2 − �Un�2 +

�
�Un+1 − Un

�
�2 ≤

�
kC2

Re h2
+

C2
1 Re k

2

�
�
�Un+1 − Un

�
�2

hence:

�
�Un+1

�
�2 − �Un�2 +

�

1−
kC2

Re h2
−

C2
1 Re k

2

�
�
�Un+1 − Un

�
�2 ≤ 0.

Under the condition

1−
kC2

Re h2
−

C2
1 Re k

2
≥ 0

namely,
k

h2
≤

2Re

2C2 + C2
1 Re2h2

we have �
�Un+1

�
�2 ≤ �Un�2 ≤

�
�U 0

�
�2 ≤ �U0h�

2,

which completes the proof.

We shall prove the following error estimate.
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Theorem 4.2 (Error estimate). Denoting by Un+1 and un+1 = u((n +1)k) the
solutions of (4.1) and (2.3), respectively, we have for n ≥ 0 and for small k

�
�Un+1 − un+1

�
� ≤ C

�
�u0h − u0� + hr−1 + k

�

with C = C(u).

Proof. We denote, us before, by Un+1 and Un the approximations at time
(n + 1)k and nk, respectively, and by un+1, un, un+ 1

2
the solutions of (2.3) at

time (n + 1)k, nk, (n + 1
2
)k. We introduce the notation:

U
n+1

=
Un+1 + Un

2
, un+1 =

un+1 + un

2
, ∂ tU

n+1 =
Un+1 − Un

k
.

As before we have:

Un+1 − un+1 =
�
Un+1 − P1un+1

�
+ (P1un+1 − un+1)

= ϑn+1 + ρn+1

where P1un+1 is the elliptic projection of un+1 de�ned by (3.3). Then

ϑ
n+1

= U
n+1

− P1un+1 =
1

2

�
ϑn+1 + ϑn

�
.

We �rst recall that Lemma 3.1 holds, then

�ρn+1� ≤ C(u)hr

Hence it remains to estimate ϑn+1 . With the above notation we have for χ ∈Sh

�
∂ tϑ

n+1, χ
�

+
2

3Re

�
ϑ

n+1

x , χx

�
=(4.3)

=
�
∂ t (U

n+1 − P1un+1), χ
�
+

2

3Re

�
(U

n+1
− P1un+1)x , χx

�
=

= −
1

3Re
(Un

x , χx) −
2

3

�
U

n+1
U

n+1

x , χ
�

−
1

3

�
U

n
U

n

x , χ
�

−

�
∂ t P1un+1 − ut (tn+ 1

2
), χ

�
−

�
ut (tn+ 1

2
), χ

�
−

2

3Re
((un+1,x,χx )

= −

�
∂ t P1un+1 − ut (tn+ 1

2
), χ

�
−
2

3

�
U

n+1
U

n+1

x − un+ 1
2
(un+ 1

2
)x , χ

�

−
1

3

�
UnUn

x − un+ 1
2
(un+ 1

2
)x , χ

�
−

1

3Re

�
Un

x − (un+ 1
2
)x , χx

�

−
2

3Re

�
(un+1)x − (un+ 1

2
)x , χx

�
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Now
�
�
�
�
U

n+1
U

n+1

x − un+ 1
2
(un+ 1

2
)x , χ

��
�
� ≤

≤

��
�
�U

n+1

x

�
�
�
L∞(Q)

�
�
�U

n+1
− un+ 1

2

�
�
� +

�
�
�un+ 1

2

�
�
�
L∞(Q)

�
�
�U

n+1

x − (un+ 1
2
)x

�
�
�

�

�χ�

≤ C(u)
��
�
�U

n+1
− un+ 1

2

�
�
� +

�
�
�U

n+1

x − (un+ 1
2
)x

�
�
�
�

�χ�

and similarly
�
�
�
�
UnUn

x − un+ 1
2
(un+ 1

2
)x , χ

��
�
� ≤

≤ C(u)
��
�
�Un − un+ 1

2

�
�
� +

�
�
�Un

x − (un+ 1
2
)x

�
�
�
�

�χ�.

Setting χ = ϑ
n+1

and noting

�
∂ tϑ

n+1, ϑ
n+1

�
=
1

2
∂ t

�
�ϑn+1

�
�2 ,

we �nd

1

2
∂ t

�
�ϑn+1

�
�2 +

2

3Re

�
�
�ϑ

n+1

x

�
�
�
2

≤ C(u)
�
�ϑ̄n+1

�
�

��
�
�∂ t P1un+1 − ut (tn+ 1

2
)
�
�
� +

�
�
�U

n+1
− un+ 1

2

�
�
�

+

�
�
�
�
U

n+1
− un+ 1

2

�

x

�
�
� +

�
�
�Un − un+ 1

2

�
�
�

+

�
�
�
�
Un − un+ 1

2

�

x

�
�
� +

�
�
�
�
un+1 − un+ 1

2

�

x

�
�
�

�
.

As in [14], we have the estimates:
�
�
�∂ t un+1 − ut (tn+ 1

2
)
�
�
�

= k−1

�
�
�
�
�
�

� t
n+ 1

2

tn

(s − tn)utt (s)ds +

� tn+1

t
n+ 1

2

(s − tn+1)utt (s)ds

�
�
�
�
�
�

≤ C

� tn+1

tn

�utt(s)�ds ≤ C(u) k

�
�
�∂ t P1un+1 − ut (tn+ 1

2
)
�
�
� ≤

�
�∂ tρ

n+1
�
� +

�
�
�∂ t un+1 − ut (tn+ 1

2
)
�
�
�

≤ C(u)(hr + k)
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�
�
�un+1 − un+ 1

2

�
�
� ≤ C

� tn+1

tn

�ut (s)�ds ≤ C(u) k

�
�
�U

n+1
− un+ 1

2

�
�
� ≤

�
�
�ϑ

n+1
�
�
� +

�
�ρ n+1

�
� +

�
�
�u n+1 − un+ 1

2

�
�
�

≤

�
�
�ϑ

n+1
�
�
� + C(u)(hr + k)

�
�
�
�
un+1 − un+ 1

2

�

x

�
�
� =

�
�
�
�

�
1

2
u(tn+1)+

1

2
u(tn) − u(tn+ 1

2
)

�

x

�
�
�
�

≤ C

� tn+1

tn

�
�
�
�

∂

∂x
ut

�
�
�
�ds ≤ C(u) k

�
�
�
�
U

n+1
− un+ 1

2

�

x

�
�
� ≤

�
�
�ϑ

n+1

x

�
�
� +

�
�ρ n+1

x

�
� +

�
�
�
�
un+1 − un+ 1

2

�

x

�
�
�

≤

�
�
�ϑ

n+1

x

�
�
� + C(u)(hr + k)

�
�
�Un − un+ 1

2

�
�
� ≤ �ϑn� + �ρn� +

�
�
�un − un+ 1

2

�
�
�

≤ �ϑn� + C(u)(hr + k)
�
�
�
�
Un − un+ 1

2

�

x

�
�
� ≤ �ϑn

x � + �ρn
x � +

�
�
�un − un+ 1

2

�
�
�

≤ �ϑn
x � + C(u)

�
hr−1 + k

�

Recalling that ϑ
n+1

and ϑn belongs to Sh(�) and that in Sh(�) all the norms
are equivalent, we conclude that

∂ t

�
�ϑn+1

�
�2 ≤ C

�
�
�ϑ

n+1
�
�
�
2

+ C
�
hr−1 + k

�2
.

Therefore

(1− Ck)
�
�ϑn+1

�
�2 ≤ (1+ Ck)�ϑn�2 + Ck

�
hr−1 + k

�2

and, for small k,

�
�ϑn+1

�
�2 ≤ C

�
�ϑ0

�
�2 + C(n + 1)k

�
hr−1 + k

�2

which complete the proof.
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5. Numerical examples.

To solve numerically the quasi-linear Burgers problem with homogeneous
boundary Dirichlet conditions, we have implemented an iterative algorithm, that
computes the unknown solutionon the �rst step starting from known initial data,
and it proceeds iteratively.
The domain Q = � × [0, T ] of the problem is partitioned into subdomains
θe = �j × In with 1 ≤ e ≤ J S , where the domain � is partitioned into element
�j , with 1 ≤ j ≤ J where J is the number of the space discretization and
the time domain [0, T ] is partitioned as In = [tn, tn+1], with 0 ≤ n ≤ S − 1,
where S is the number of time-slabs. To obtain an iterative scheme, we express
the unknown functions uhk and φhk of the discrete formulations (2.6) on θe by
uhk = Nue and φhk = Nφe , where N is the matrix of the piecewice bilinear
lagrangian shape functions and ue and φe are the vectors of the nodal values of
u and φ on θe . Therefore the approximation spaces Vhk , that have been used for
the following numerical examples, are both linear in space and time (p = 1 and
q = 1). Apply now at (2.6) on θe the explicit time integration and performing
the classic �nite element assembling process, we obtain the numerical solution
solving iteratively a non-linear system by the modi�ed Jacobi method. The iter-
ative scheme is implemented on VAX 8650 in Fortran 77.
The program is applied to solve one-dimensional test problems with homoge-
neous boundary condition, those show to decay as an arbitrary periodic initial
disturbance as a sine wave (Ex. 1) and the shock waves approaching a steady
state (Ex. 2).

Example 1. In this example we solve in Q = [0, 2] × [0, T ] the quasi-linear
Burgers problem with homogeneous boundary conditions and periodic initial
condition [4] Re = 100, �x = 0.05 and �t = 0.01.

ut − 1
Re

uxx + uux = 0, u(x , t)∈ Q

u(x , 0) = u0 = uex (x , 0), x ∈ [0, 2]

u(0, t) = u(2, t) = 0, t ∈ (0, T ).

The exact solution is

uex (x , t) =
2π

Re

�
1
4
sinπxe−(π/Re)2t + sin 2πxe−4(π/Re)2t

1+ 1
4
cosπxe−(π/Re)2t + 1

2
cos 2πxe−4(π/Re)2t

�

.

In �g. 1a the compared results of iterative scheme and the exact solution at the
time t = 0.01 are plotted and in �g. 1b the numerical solutions at several time-
steps between t = 0.01 and t = 1 are plotted.
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Example 2. In this example the numerical scheme is applied to solve in Q =

[0, 1] × [0, T ] the quasi-linear Burgers problem with homogeneous boundary
conditions and discontinuous initial data [13]

ut − 1
Re

uxx + uux = 0, u(x , t)∈ Q

u(0, t) = u(1, t) = 0, t ∈ (0, T )

u(x , 0) =

�
0 0 < x < 1

1 x = 0 and x = 1

In �g. 2 the results of the numerical scheme at nine time-steps between t =

0.0001 and t = 1 for the Re = 100, for �t = 0.01 and �x = 0.1 are plotted.
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Fig. 2
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