ASYMPTOTIC AND OSCILLATORY BEHAVIOUR OF CERTAIN DIFFERENCE EQUATIONS

ALEKSANDRA STERNAL - BŁAŻEJ SZMANDA

Asymptotic and oscillatory behaviour of solution of some class nonlinear difference equations is studied.

1. Introduction.

In this paper we consider a nonlinear difference equation

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(u_{n}+p_{n} u_{n-k}\right)\right)+q_{n} f\left(u_{n-l}\right)=0, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where Δ denotes the forward difference operator, i.e. $\Delta v_{n}=v_{n+1}-v_{n}$ for any sequence $\left(v_{n}\right)$ of real numbers, k and l are nonnegative integers, $\left(p_{n}\right)$ and $\left(q_{n}\right)$ are sequences of real numbers with $q_{n} \geq 0$ eventually, $\left(r_{n}\right)$ is a sequence of positive numbers and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{r_{n}}=\infty \tag{2}
\end{equation*}
$$

The function f is a real valued function satisfying $u f(u)>0$ for $u \neq 0$. In addition, the following assumptions are made without further mention.
(3) $\quad f(u)$ is bounded away from zero, if u is bounded away from zero,

Entrato in Redazione il 28 maggio 1996.

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n}=\infty \tag{4}
\end{equation*}
$$

By a solution of (1) we mean a sequence $\left(u_{n}\right)$ which is defined for $n \geq-\max \{k, l\}$ and satisfies (1) for $n=0,1,2, \ldots$. We consider only such solutions which are nontrivial for all large n. A solution $\left(u_{n}\right)$ of (1) is said to be nonoscillatory if the terms u_{n} of the sequence are eventually positive or eventually negative. Otherwise it is called oscillatory.

Recently, there has been much interest in studying the oscillatory and asymptotic behaviour of difference equations; see, for example [2-5], [7-16] and the references cited therein. For the general theory of difference equations one can refer to [1] and [6].

Our purpose in this paper is to study the asymptotic and oscillatory behaviour of solutions of equations (1).

The difference equation (1) in the case $q_{n} \leq 0$ eventually with the special sequence $\left(r_{n}\right)=(1)$ has been discussed in [15]. The results obtained here supplement those contained in [15].

2. Main results.

Here we give some oscillatory and asymptotic properties of the solutions of (1).
The following lemma describes some asymptotic properties of the sequences $\left(z_{n}\right)$ defined as follows:

$$
z_{n}=u_{n}+p_{n} u_{n-k},
$$

where $\left(u_{n}\right)$ is a nonoscillatory solution of (1).
Lemma. Assume there exists a constant $P_{1}<0$ such that $P_{1} \leq p_{n} \leq 0$.
a) If $\left(u_{n}\right)$ is an eventually positive solution of (1), then the sequences $\left(z_{n}\right)$ and $\left(r_{n} \Delta z_{n}\right)$ are eventually monotonic and either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=-\infty \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=0, \quad \Delta z_{n}>0 \quad \text { and } \quad z_{n}<0 \tag{6}
\end{equation*}
$$

In addition, if $P_{1} \geq-1$, then (6) holds and (u_{n}) is bounded.
b) If $\left(u_{n}\right)$ is an eventually negative solution of (1), then the sequences $\left(z_{n}\right)$ and $\left(r_{n} \Delta z_{n}\right)$ are monotonic and either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=\infty \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=0, \quad \Delta z_{n}<0 \quad \text { and } \quad z_{n}>0 \tag{8}
\end{equation*}
$$

In addition, if $P_{1} \geq-1$, then (8) holds and $\left(u_{n}\right)$ is bounded.
Proof. Let (u_{n}) be an eventually positive solution of (1). From (1) we have that there exists a positive integer n_{1} such that

$$
\begin{equation*}
\Delta\left(r_{n} \Delta z_{n}\right)=-q_{n} f\left(u_{n-l}\right) \leq 0 \quad \text { for } n \geq n_{1} \tag{9}
\end{equation*}
$$

that is $\left(r_{n} \Delta z_{n}\right)$ is nonincreasing, which implies that $\left(\Delta z_{n}\right)$ is eventually of constant sign and in consequence $\left(z_{n}\right)$ is monotonic.
First let there exists $n_{2} \geq n_{1}$ such that $\Delta z_{n_{2}} \leq 0$, then since $\left(q_{n}\right) \neq(0)$ eventually, there exists $n_{3}>n_{2}$ such that $r_{n} \Delta z_{n} \leq r_{n_{3}} \Delta z_{n_{3}}=c<0$ for $n \geq n_{3}$.
Summing the above inequality, by (2), we have

$$
\begin{equation*}
z_{n} \leq z_{n_{3}}+c \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}} \rightarrow-\infty \quad \text { as } \quad n \rightarrow \infty \tag{10}
\end{equation*}
$$

hence $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.
Since $\left(r_{n} \Delta z_{n}\right)$ is nonincreasing, so $r_{n} \Delta z_{n} \rightarrow L \geq-\infty$. If $-\infty<L<0$, summing (9) we get

$$
r_{n+1} \Delta z_{n+1}=r_{n_{3}} \Delta z_{n_{3}}-\sum_{i=n_{3}}^{n} q_{i} f\left(u_{i-l}\right)
$$

and then let $n \rightarrow \infty$ to obtain

$$
\sum_{i=n_{3}}^{\infty} q_{i} f\left(u_{i-l}\right)=r_{n_{3}} \Delta z_{n_{3}}-L<\infty
$$

The last inequality together with (3) and (4) implies $\liminf _{n \rightarrow \infty} u_{n}=0$.
Since $\left(z_{n}\right)$ is eventually negative, hence we can choose $n_{4}>n_{3}$ such that $r_{n} \Delta z_{n}<\frac{L}{2}$ for $n \geq n_{4}$ and $z_{n_{4}}<0$. Summing the above inequality we have

$$
z_{n}<z_{n_{4}}+\frac{L}{2} \sum_{i=n_{4}}^{n-1} \frac{1}{r_{i}}<\frac{L}{2} \sum_{i=n_{4}}^{n-1} \frac{1}{r_{i}}, \quad \text { for } \quad n>n_{4}
$$

By the assumptions, we obtain

$$
P_{1} u_{n-k} \leq p_{n} u_{n-k}<z_{n}<\frac{L}{2} \sum_{i=n_{4}}^{n-1} \frac{1}{r_{i}}, \quad n>n_{4}
$$

and

$$
u_{n-k}>\frac{L}{2 P_{1}} \sum_{i=n_{4}}^{n-1} \frac{1}{r_{i}} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

which contradicts $\liminf _{n \rightarrow \infty} u_{n}=0$. Thus $\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=-\infty$.
Now if $\Delta z_{n}>0$ for $n \geq n_{1}$, then $r_{n} \Delta z_{n} \rightarrow L_{1} \geq 0$ as $n \rightarrow \infty$. As before, summing (9) from $n \geq n_{1}$ to m and letting $m \rightarrow \infty$ gives

$$
r_{n} \Delta z_{n}=L_{1}+\sum_{i=n}^{\infty} q_{i} f\left(u_{i-l}\right)
$$

which again implies that $\liminf _{n \rightarrow \infty} u_{n}=0$.
Suppose that $L_{1}>0$. Then we have $r_{n} \Delta z_{n} \geq L_{1}>0$ and a summation shows that $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Since $u_{n} \geq z_{n}$ hence $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction. Therefore $L_{1}=0$. Furthermore, if there exists $n_{2} \geq n_{1}$ such that $z_{n_{2}} \geq 0$, then $\Delta z_{n}>0$ implies that $z_{n} \geq z_{n_{3}}>0$ for all $n \geq n_{3}$ and some $n_{3}>n_{2}$, which again contradicts $\liminf _{n \rightarrow \infty} u_{n}=0$. Therefore we have $z_{n}<0$ for $n \geq n_{1}$. Thus $z_{n} \rightarrow L_{2} \leq 0$. If $L_{2}<0$, then

$$
P_{1} u_{n-k} \leq u_{n}+p_{n} u_{n-k}=z_{n} \leq L_{2}<0 \quad \text { for } \quad n \geq n_{1}
$$

and

$$
u_{n-k}>\frac{L_{2}}{P_{1}}>0, \quad n \geq n_{1}
$$

which contradicts $\liminf _{n \rightarrow \infty} u_{n}=0$. Therefore $L_{2}=0$.
Now we assume that $P_{1} \geq-1$. Suppose that (6) does not hold. Then (5) holds, so $z_{n}<0$ for all large n and we have

$$
u_{n}<-p_{n} u_{n-k} \leq-P_{1} u_{n-k} \leq u_{n-k}
$$

for all large n. But the last inequality implies that $\left(u_{n}\right)$ is bounded which contradicts (5). Therefore (6) holds and (u_{n}) is bounded solution of (1).
The proof of b) is similar to that of a) and hence will be omitted.

Theorem 1. If there exists a constant P_{1} such that

$$
\begin{equation*}
-1<P_{1} \leq p_{n} \leq 0, \tag{11}
\end{equation*}
$$

then every nonoscillatory solution $\left(u_{n}\right)$ of (1) tends to zero as $n \rightarrow \infty$.
Proof. If $\left(u_{n}\right)$ is eventually positive solution of (1), then by part a) of Lemma we see that $\left(u_{n}\right)$ is bounded solution of (1).
Now suppose that $\lim \sup u_{n}=a>0$. Then there exists a subsequence of $\left(u_{n}\right)$, say $\left(u_{n_{i}}\right)$ such that $u_{n_{i}}^{n \rightarrow \infty} \rightarrow a$ as $i \rightarrow \infty$. Then for all large i we have

$$
0>z_{n_{i}} \geq u_{n_{i}}+P_{1} u_{n_{i}-k} \quad \text { so } \quad u_{n_{i}-k}>-\frac{u_{n_{i}}}{P_{1}} .
$$

But this implies that $\lim _{i \rightarrow \infty} u_{n_{i}-k} \geq-\frac{a}{P_{1}}>a$, contradicting the choice of a. Therefore $u_{n} \rightarrow 0$ as $n \rightarrow \infty$. The proof when $\left(u_{n}\right)$ is eventually negative is similar.

Theorem 2. If $-1 \leq p_{n} \leq 0$, then every unbounded solution of (1) is oscillatory.

Next theorem shows that if $\left(p_{n}\right)$ is bounded with upper bound less then -1 , then all bounded nonoscillatory solutions of (1) tend to zero as $n \rightarrow \infty$.
Theorem 3. If there exist constants P_{1} and P_{2} such that

$$
\begin{equation*}
P_{1} \leq p_{n} \leq P_{2}<-1 \tag{12}
\end{equation*}
$$

then every bounded solution $\left(u_{n}\right)$ of (1) is either oscillatory or satisfies $u_{n} \rightarrow 0$ as $n \rightarrow 0$.
Proof. Assume that (1) has a bounded nonoscillatory solution $\left(u_{n}\right)$ and let $\left(u_{n}\right)$ be eventually positive. By part a) of Lemma either (5) or (6) holds. Clearly (5) cannot hold in view of (12) and the fact that $\left(u_{n}\right)$ is bounded. From (6) we have $z_{n}<0$ and $z_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, for any number $\varepsilon>0$ there exists n_{1} so that for $n \geq n_{1}$ we have

$$
-\varepsilon<z_{n} \leq u_{n}+P_{2} u_{n-k}
$$

or

$$
u_{n-k}<-\frac{u_{n}+\varepsilon}{P_{2}} .
$$

So

$$
\begin{equation*}
u_{n}<-\frac{1}{P_{2}} u_{n+k}-\frac{1}{P_{2}} \varepsilon \tag{13}
\end{equation*}
$$

and further

$$
\begin{equation*}
u_{n+k}<-\frac{1}{P_{2}} u_{n+2 k}-\frac{1}{P_{2}} \varepsilon . \tag{14}
\end{equation*}
$$

From (13) and (14) we get

$$
u_{n}<\left(-\frac{1}{P_{2}}\right)^{2} u_{n+2 k}+\left(-\frac{1}{P_{2}}\right)^{2} \varepsilon+\left(-\frac{1}{P_{2}}\right) \varepsilon .
$$

After m iterations, we obtain

$$
u_{n}<\left(-\frac{1}{P_{2}}\right)^{m} u_{n+m k}+\varepsilon \sum_{i=1}^{m}\left(-\frac{1}{P_{2}}\right)^{i}
$$

Let $\lambda=1+\frac{1}{P_{2}}>0$ and $u_{n}<M$. Now choose m large enough so that $\left(-\frac{1}{P_{2}}\right)^{m}<\frac{\varepsilon}{\lambda M}$. Thus for every $\varepsilon>0$ there exists $n_{2} \geq n_{1}$ such that for $n \geq n_{2}$ we have

$$
u_{n}<\frac{\varepsilon}{\lambda}+\varepsilon\left(-\frac{1}{P_{2}}\right) \frac{1-\left(-\frac{1}{P_{2}}\right)^{m}}{1+\frac{1}{P_{2}}}<2 \frac{\varepsilon}{\lambda}
$$

That is $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.
The proof when $\left(u_{n}\right)$ is eventually negative is similar.
Theorem 4. If $\left(p_{n}\right)$ is eventually nonnegative, then any solution $\left(u_{n}\right)$ of (1) is either oscillatory or satisfies $\liminf _{n \rightarrow \infty}\left|u_{n}\right|=0$.
Proof. Let $\left(u_{n}\right)$ be a nonoscillatory solution of (1) and assume that $\left(u_{n}\right)$ is eventually positive. Then as before (9) implies that $\left(r_{n} \Delta z_{n}\right)$ is nonincreasing and also we have $z_{n}>0$ eventually, say for $n \geq n_{1}$. It is easy to see that $\Delta z_{n}>0$ for $n \geq n_{1}$. Indeed, if there exists $n_{2} \geq n_{1}$ such that $\Delta z_{n_{2}} \leq 0$, then there exists $n_{3} \geq n_{2}$ such that $r_{n} \Delta z_{n} \leq r_{n_{3}} \Delta z_{n_{3}}=c<0$ since $\left(r_{n} \Delta z_{n}\right)$ is nonincreasing and $q_{n} \equiv 0$ eventually. By (2), we get

$$
z_{n} \leq z_{n_{3}}+c \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}} \rightarrow-\infty \quad \text { as } \quad n \rightarrow \infty
$$

which contradicts that $z_{n}>0$ for $n \geq n_{1}$.
Therefore $r_{n} \Delta z_{n} \rightarrow L \geq 0$ as $n \rightarrow \infty$. Summing (9) from n to $m>n$ with n sufficiently large and then letting $m \rightarrow \infty$ we obtain

$$
\begin{equation*}
\sum_{i=n}^{\infty} q_{i} f\left(u_{i-l}\right)=r_{n} \Delta z_{n}-L<\infty \tag{15}
\end{equation*}
$$

which, by (3) and (4), implies that $\liminf _{n \rightarrow \infty} u_{n}=0$.
The proof for $\left(u_{n}\right)$ eventually negative is similar.
Theorem 5. If $0 \leq p_{n} \leq p, q_{n} \geq q>0$ and there exists a constant $A>0$ such that $|f(u)| \geq A|u|$ for all u, then all solutions of (1) are oscillatory.
Proof. We observe that assumptions of theorem imply the assumptions of Theorem 4. Therefore arguing as in the proof of Theorem 4 for an eventually positive solution $\left(u_{n}\right)$ of (1) we get the equality (15).
Further, by assumptions, (15) gives

$$
A q \sum_{i=n}^{\infty} u_{i-l} \leq r_{n} \Delta z_{n}-L<\infty
$$

which implies that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$ and so $z_{n} \rightarrow 0$ as $n \rightarrow \infty$. But it is impossible, since $z_{n}>0$ and $\Delta z_{n}>0$ eventually. The proof is complete.

Theorem 6. Let $p_{n} \geq 0$. Then every nonoscillatory solution $\left(u_{n}\right)$ of (1) satisfies the following:
(i) $\left|u_{n}\right| \leq b R_{n}$ for some constant $b>0$ and all large n,
(ii) if $\left(\frac{R_{n}}{p_{n}}\right)$ is bounded, then $\left(u_{n}\right)$ is bounded,
(iii) if $\frac{R_{n}}{p_{n}} \rightarrow 0$ as $n \rightarrow \infty$, then $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, where $R_{n}=\sum_{i=0}^{n-1} \frac{1}{r_{i}}$.

Proof. Let (u_{n}) be an eventually positive solution of (1). As before, from (1) we have $\Delta\left(r_{n} \Delta z_{n}\right) \leq 0$ for $n \geq n_{1}$, so summing twice we get

$$
z_{n} \leq z_{n_{1}}+r_{n_{1}} \Delta z_{n_{1}} \sum_{i=n_{i}}^{n-1} \frac{1}{r_{i}}, \quad n>n_{1}
$$

By condition (2), we conclude that there is a constant $b>0$ such that $z_{n} \leq b R_{n}$, $n \geq n_{2}>n_{1}$. Clearly $u_{n} \leq b R_{n}$, so (i) holds. Moreover $p_{n} u_{n-k} \leq b R_{n}$ for
$n \geq n_{2}$, and hence (ii) and (iii) follow.
The proof when $\left(u_{n}\right)$ is eventually negative is similar.
We conclude with an oscillation theorem for (1) in the case $r_{n} \equiv 1$ and $p_{n} \equiv p>0$ that is (1) takes the form

$$
\begin{equation*}
\Delta^{2}\left(u_{n}+p u_{n-k}\right)+q_{n} f\left(u_{n-l}\right)=0, \quad n=0,1,2, \ldots \tag{1'}
\end{equation*}
$$

Theorem 7. Suppose that $\left(q_{n}\right)$ is k-periodic and f is nondecreasing and satisfies

$$
\begin{aligned}
& f(u+v) \leq f(u)+f(v) \quad \text { if } u, v>0, \\
& f(u+v) \geq f(u)+f(v) \quad \text { if } u, v<0, \\
& f(c u) \leq c f(u) \quad \text { if } c>0 \quad \text { and } u>0 \\
& f(c u) \geq c f(u) \quad \text { if } c>0 \quad \text { and } u<0 .
\end{aligned}
$$

Then every solution of $\left(1^{\prime}\right)$ is oscillatory.
Proof. Assume that (1^{\prime}) has a nonoscillatory solution and let $\left(u_{n}\right)$ be eventually positive. Then $z_{n}=u_{n}+p u_{n-k}>0$ eventually, say for $n \geq n_{1}$. From (1') we have $\Delta^{2} z_{n} \leq 0$ for $n \geq n_{2} \geq n_{1}$. We claim that $\Delta z_{n}>0$ for $n \geq n_{2}$. In fact, if for some $n_{3} \geq n_{2} \Delta n_{3} \leq 0$ then since $\left(q_{n}\right) \neq(0)$ there exists $n_{4}>n_{3}$ such that $\Delta z_{n} \leq \Delta z_{n_{4}}<0$ and by summation we see that $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. This contradicts the fact that $z_{n}>0$ eventually.

Let $w_{n}=z_{n}+p z_{n-k}$. Since from (1^{\prime}) we have $\Delta^{2} z_{n}=-q_{n} f\left(u_{n-l}\right)$, so, by the assumptions, we get

$$
\begin{gathered}
\Delta^{2} w_{n}+p \Delta^{2} w_{n-k}+q_{n} f\left(w_{n-l}\right)=-q_{n} f\left(u_{n-l}\right)-2 p q_{n-k} f\left(u_{n-k-l}\right)- \\
p^{2} q_{n-2 k} f\left(u_{n-2 k-l}\right)+q_{n} f\left[u_{n-l}+p u_{n-l-k}+p\left(u_{n-l-k}+p u_{n-l-2 k}\right)\right] \\
\leq-q_{n}\left[f\left(u_{n-l}\right)+2 p f\left(u_{n-l-k}\right)+p^{2} f\left(u_{n-l-2 k}\right)\right]+ \\
q_{n}\left[f\left(u_{n-l}\right)+2 p f\left(u_{n-l-k}\right)+p^{2} f\left(u_{n-l-2 k}\right)\right]=0 .
\end{gathered}
$$

That is

$$
\begin{equation*}
\Delta^{2} w_{n}+p \Delta^{2} w_{n-k}+q_{n} f\left(w_{n-l}\right) \leq 0 \tag{16}
\end{equation*}
$$

and observe that $w_{n}>0$ and $\Delta w_{n}>0$ for $n \geq n_{5}$, for some $n_{5} \geq n_{2}$. Therefore (w_{n-l}) is increasing for $n \geq n_{6}$ for some $n_{6} \geq n_{5}$.
Summing (16) from n_{6} to $n-1$ we have

$$
\Delta w_{n}-\Delta w_{n_{6}}+p \Delta w_{n-k}-p \Delta w_{n_{6}-k}+\sum_{i=n_{6}}^{n-1} q_{i} f\left(w_{i-l}\right) \leq 0
$$

By the monotonicity of $\left(w_{n}\right)$ and f, it follows that

$$
f\left(w_{n_{6}-l}\right) \sum_{i=n_{6}}^{n-1} q_{i} \leq \Delta w_{n_{6}}+p \Delta w_{n_{6}-k}, \quad \text { for } \quad n \geq n_{6}
$$

Hence there exists a constant C such that

$$
\sum_{i=n_{6}}^{n-1} q_{i} \leq C \quad \text { for all } \quad n \geq n_{6}
$$

which contradicts (4). A similar argument can be used in the case an eventually negative solution.
This completes the proof.
Acknowledgment. The authors thank the referee for his useful comments.

REFERENCES

[1] R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Marcel Dekker, New York, 1992.
[2] D.A. Georgiu - E.A. Grove - G. Ladas, Oscillations of neutral difference equations, Appl. Anal., 33 (1989), pp. 234-253.
[3] J.R. Graef - P.W. Spikes, Asymptotic decay of oscillatory solutions of forced nonlinear difference equations, Dyn. Syst. Appl., 3 (1994), pp. 95-102.
[4] J. W. Hooker - W.T. Patula, A second order nonlinear difference equation: Oscillation and asymptotic behaviour, J. Math. Anal. Appl., 91 (1983), pp. 9-29.
[5] G. Ladas - Ch. G. Philos - Y.G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation, 2 (1989), pp. 101-112.
[6] V. Lakshmikantham - D. Trigiante, Theory of Difference Equations, Numerical Methods and Applications, Acad. Press, New York, 1988.
[7] B.S. Lalli - B.G. Zhang, On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl., 166 (1992), pp. 272287.
[8] H.J. Li - S.S. Cheng, Asymptotically monotone solutions of nonlinear difference equation, Tamkang J. Math., 24 (1993), pp. 269-282.
[9] Z. Szafrański - B. Szmanda, A note on the oscillation of some difference equations, Fasc. Math., 21 (1990), pp. 57-63.
[10] Z. Szafrański - B. Szmanda, Oscillations of some linear difference equations, Fasc. Math., 25 (1995), pp. 165-174.
[11] B. Szmanda, Note on the behaviour of solutions of a second order nonlinear difference equation, Atti. Acad. Naz. Lincei, Rend. Sci. Fiz. Mat., 69 (1980), pp. 120-125.
[12] B. Szmanda, Characterization of oscillation of second order nonlinear difference equations, Bull. Polish. Acad. Sci. Math., 34 (1986), pp. 133-141.
[13] B. Szmanda, Oscillatory behaviour of certain difference equations, Fasc. Math., 21 (1990), pp. 65-78.
[14] E. Thandapani, Asymptotic and oscillatory behaviour of solutions on nonlinear second order difference equations, Indian J. Pure Appl. Math., 24 (1993), pp. 365372.
[15] E. Thandapani, Asymptotic and oscillatory behaviour of solutions of a second order nonlinear neutral delay difference equation, Riv. Mat. Univ. Parma, (5) 1 (1992), pp. 105-113.
[16] B.G. Zhang - S.S. Cheng, Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math., 25 (1995), pp. 13-32.

Institute of Mathematics,
Poznań University of Technology, 60-965 Poznań (POLAND)
e-mail: bszmanda@math.put.poznan.pl

