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ASYMPTOTIC AND OSCILLATORY BEHAVIOUR

OF CERTAIN DIFFERENCE EQUATIONS

ALEKSANDRA STERNAL - B�A �ZEJ SZMANDA

Asymptotic and oscillatory behaviour of solution of some class nonlin-
ear difference equations is studied.

1. Introduction.

In this paper we consider a nonlinear difference equation

(1) � (rn� (un + pnun−k)) + qn f (un−l ) = 0, n = 0, 1, 2, . . .

where � denotes the forward difference operator, i.e. �vn = vn+1 − vn for
any sequence (vn) of real numbers, k and l are nonnegative integers, (pn) and
(qn) are sequences of real numbers with qn ≥ 0 eventually, (rn ) is a sequence of
positive numbers and

(2)

∞�

n=0

1

rn
= ∞.

The function f is a real valued function satisfying u f (u) > 0 for u �= 0.
In addition, the following assumptions are made without further mention.

(3) f (u) is bounded away from zero, if u is bounded away from zero,
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(4)

∞�

n=0

qn = ∞.

By a solution of (1) we mean a sequence (un) which is de�ned for
n ≥ −max{k, l} and satis�es (1) for n = 0, 1, 2, . . .. We consider only such
solutions which are nontrivial for all large n. A solution (un) of (1) is said
to be nonoscillatory if the terms un of the sequence are eventually positive or
eventually negative. Otherwise it is called oscillatory.

Recently, there has been much interest in studying the oscillatory and
asymptotic behaviour of difference equations; see, for example [2-5], [7-16]
and the references cited therein. For the general theory of difference equations
one can refer to [1] and [6].

Our purpose in this paper is to study the asymptotic and oscillatory be-
haviour of solutions of equations (1).

The difference equation (1) in the case qn ≤ 0 eventually with the special
sequence (rn ) = (1) has been discussed in [15]. The results obtained here
supplement those contained in [15].

2. Main results.

Here we give some oscillatory and asymptotic properties of the solutions
of (1).
The following lemma describes some asymptotic properties of the sequences
(zn ) de�ned as follows:

zn = un + pnun−k ,

where (un) is a nonoscillatory solution of (1).

Lemma. Assume there exists a constant P1 < 0 such that P1 ≤ pn ≤ 0.
a) If (un) is an eventually positive solution of (1), then the sequences (zn ) and
(rn�zn ) are eventually monotonic and either

(5) lim
n→∞

zn = lim
n→∞

rn�zn = −∞

or

(6) lim
n→∞

zn = lim
n→∞

rn�zn = 0, �zn > 0 and zn < 0.

In addition, if P1 ≥ −1, then (6) holds and (un) is bounded.
b) If (un) is an eventually negative solution of (1), then the sequences (zn ) and
(rn�zn ) are monotonic and either

(7) lim
n→∞

zn = lim
n→∞

rn�zn = ∞
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or

(8) lim
n→∞

zn = lim
n→∞

rn�zn = 0, �zn < 0 and zn > 0.

In addition, if P1 ≥ −1, then (8) holds and (un) is bounded.

Proof. Let (un) be an eventually positive solution of (1). From (1) we have that
there exists a positive integer n1 such that

(9) �(rn�zn) = −qn f (un−l ) ≤ 0 for n ≥ n1,

that is (rn�zn ) is nonincreasing, which implies that (�zn) is eventually of
constant sign and in consequence (zn ) is monotonic.
First let there exists n2 ≥ n1 such that �zn2

≤ 0, then since (qn) �= (0)
eventually, there exists n3 > n2 such that rn�zn ≤ rn3

�zn3
= c < 0 for

n ≥ n3.
Summing the above inequality, by (2), we have

(10) zn ≤ zn3
+ c

n−1�

i=n3

1

ri
→ −∞ as n → ∞,

hence zn → −∞ as n → ∞.
Since (rn�zn ) is nonincreasing, so rn�zn → L ≥ −∞. If −∞ < L < 0,
summing (9) we get

rn+1�zn+1 = rn3
�zn3

−

n�

i=n3

qi f (ui−l )

and then let n → ∞ to obtain

∞�

i=n3

qi f (ui−l ) = rn3
�zn3

− L < ∞.

The last inequality together with (3) and (4) implies lim inf
n→∞

un = 0.

Since (zn ) is eventually negative, hence we can choose n4 > n3 such that
rn�zn < L

2
for n ≥ n4 and zn4

< 0. Summing the above inequality we have

zn < zn4
+

L

2

n−1�

i=n4

1

ri
<

L

2

n−1�

i=n4

1

ri
, for n > n4.
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By the assumptions, we obtain

P1un−k ≤ pnun−k < zn <
L

2

n−1�

i=n4

1

ri
, n > n4

and

un−k >
L

2P1

n−1�

i=n4

1

ri
→ ∞ as n → ∞,

which contradicts lim inf
n→∞

un = 0. Thus lim
n→∞

rn�zn = −∞.

Now if �zn > 0 for n ≥ n1, then rn�zn → L1 ≥ 0 as n → ∞. As
before, summing (9) from n ≥ n1 to m and letting m → ∞ gives

rn�zn = L1 +

∞�

i=n

qi f (ui−l ),

which again implies that lim inf
n→∞

un = 0.

Suppose that L1 > 0. Then we have rn�zn ≥ L1 > 0 and a summation shows
that zn → ∞ as n → ∞. Since un ≥ zn hence un → ∞ as n → ∞, a
contradiction. Therefore L1 = 0. Furthermore, if there exists n2 ≥ n1 such that
zn2

≥ 0, then �zn > 0 implies that zn ≥ zn3
> 0 for all n ≥ n3 and some

n3 > n2, which again contradicts lim inf
n→∞

un = 0. Therefore we have zn < 0 for

n ≥ n1. Thus zn → L2 ≤ 0. If L2 < 0, then

P1un−k ≤ un + pnun−k = zn ≤ L2 < 0 for n ≥ n1

and

un−k >
L2

P1
> 0 , n ≥ n1,

which contradicts lim inf
n→∞

un = 0. Therefore L2 = 0.

Now we assume that P1 ≥ −1. Suppose that (6) does not hold. Then (5)
holds, so zn < 0 for all large n and we have

un < −pnun−k ≤ −P1un−k ≤ un−k

for all large n. But the last inequality implies that (un) is bounded which
contradicts (5). Therefore (6) holds and (un) is bounded solution of (1).
The proof of b) is similar to that of a) and hence will be omitted.
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Theorem 1. If there exists a constant P1 such that

(11) −1 < P1 ≤ pn ≤ 0,

then every nonoscillatory solution (un) of (1) tends to zero as n → ∞.

Proof. If (un) is eventually positive solution of (1), then by part a) of Lemma
we see that (un) is bounded solution of (1).
Now suppose that lim sup

n→∞

un = a > 0. Then there exists a subsequence of (un),

say (uni ) such that uni → a as i → ∞. Then for all large i we have

0 > zni ≥ uni + P1uni −k so uni −k > −
uni
P1

.

But this implies that lim
i→∞

uni −k ≥ − a
P1

> a, contradicting the choice of a.

Therefore un → 0 as n → ∞. The proof when (un) is eventually negative is
similar.

Theorem 2. If −1 ≤ pn ≤ 0, then every unbounded solution of (1) is
oscillatory.

Next theorem shows that if (pn) is bounded with upper bound less then
−1, then all bounded nonoscillatory solutions of (1) tend to zero as n → ∞.

Theorem 3. If there exist constants P1 and P2 such that

(12) P1 ≤ pn ≤ P2 < −1

then every bounded solution (un) of (1) is either oscillatory or satis�es un → 0
as n → 0.

Proof. Assume that (1) has a bounded nonoscillatory solution (un) and let (un)
be eventually positive. By part a) of Lemma either (5) or (6) holds. Clearly (5)
cannot hold in view of (12) and the fact that (un) is bounded. From (6) we have
zn < 0 and zn → 0 as n → ∞. Therefore, for any number ε > 0 there exists
n1 so that for n ≥ n1 we have

−ε < zn ≤ un + P2un−k

or

un−k < −
un + ε

P2
.
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So

(13) un < −
1

P2
un+k −

1

P2
ε

and further

(14) un+k < −
1

P2
un+2k −

1

P2
ε .

From (13) and (14) we get

un <

�

−
1

P2

�2

un+2k +

�

−
1

P2

�2

ε +

�

−
1

P2

�

ε .

After m iterations, we obtain

un <

�

−
1

P2

�m

un+mk + ε

m�

i=1

�

−
1

P2

�i

Let λ = 1 + 1
P2

> 0 and un < M . Now choose m large enough so that
�
− 1

P2

�m

< ε

λM
. Thus for every ε > 0 there exists n2 ≥ n1 such that for n ≥ n2

we have

un <
ε

λ
+ ε

�

−
1

P2

� 1 −
�
− 1

P2

�m

1 + 1
P2

< 2
ε

λ
.

That is un → 0 as n → ∞.
The proof when (un) is eventually negative is similar.

Theorem 4. If (pn) is eventually nonnegative, then any solution (un) of (1) is
either oscillatory or satis�es lim inf

n→∞
|un| = 0.

Proof. Let (un) be a nonoscillatory solution of (1) and assume that (un) is
eventually positive. Then as before (9) implies that (rn�zn) is nonincreasing
and also we have zn > 0 eventually, say for n ≥ n1. It is easy to see that
�zn > 0 for n ≥ n1. Indeed, if there exists n2 ≥ n1 such that �zn2

≤ 0, then
there exists n3 ≥ n2 such that rn�zn ≤ rn3

�zn3
= c < 0 since (rn�zn) is

nonincreasing and qn ≡ 0 eventually. By (2), we get

zn ≤ zn3
+ c

n−1�

i=n3

1

ri
→ −∞ as n → ∞ ,



ASYMPTOTIC AND OSCILLATORY BEHAVIOUR. . . 83

which contradicts that zn > 0 for n ≥ n1.
Therefore rn�zn → L ≥ 0 as n → ∞. Summing (9) from n to m > n with n
suf�ciently large and then letting m → ∞ we obtain

(15)

∞�

i=n

qi f (ui−l ) = rn�zn − L < ∞

which, by (3) and (4), implies that lim inf
n→∞

un = 0.

The proof for (un) eventually negative is similar.

Theorem 5. If 0 ≤ pn ≤ p, qn ≥ q > 0 and there exists a constant A > 0
such that | f (u)| ≥ A|u| for all u, then all solutions of (1) are oscillatory.

Proof. We observe that assumptions of theorem imply the assumptions of
Theorem 4. Therefore arguing as in the proof of Theorem 4 for an eventually
positive solution (un) of (1) we get the equality (15).
Further, by assumptions, (15) gives

Aq

∞�

i=n

ui−l ≤ rn�zn − L < ∞,

which implies that un → 0 as n → ∞ and so zn → 0 as n → ∞. But it is
impossible, since zn > 0 and �zn > 0 eventually. The proof is complete.

Theorem 6. Let pn ≥ 0. Then every nonoscillatory solution (un) of (1) satis�es
the following:
(i) |un| ≤ bRn for some constant b > 0 and all large n,

(ii) if

�
Rn

pn

�

is bounded, then (un) is bounded,

(iii) if
Rn

pn
→ 0 as n → ∞, then un → 0 as n → ∞, where Rn =

n−1�

i=0

1

ri
.

Proof. Let (un) be an eventually positive solution of (1). As before, from (1)
we have �(rn�zn ) ≤ 0 for n ≥ n1, so summing twice we get

zn ≤ zn1
+ rn1

�zn1

n−1�

i=ni

1

ri
, n > n1 .

By condition (2), we conclude that there is a constant b > 0 such that zn ≤ bRn ,
n ≥ n2 > n1. Clearly un ≤ bRn , so (i) holds. Moreover pnun−k ≤ bRn for
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n ≥ n2, and hence (ii) and (iii) follow.
The proof when (un) is eventually negative is similar.

We conclude with an oscillation theorem for (1) in the case rn ≡ 1 and
pn ≡ p > 0 that is (1) takes the form

(1�) �2(un + pun−k ) + qn f (un−l ) = 0 , n = 0, 1, 2, . . .

Theorem 7. Suppose that (qn) is k-periodic and f is nondecreasing and
satis�es

f (u + v) ≤ f (u) + f (v) if u, v > 0,

f (u + v) ≥ f (u) + f (v) if u, v < 0,

f (cu) ≤ c f (u) if c > 0 and u > 0

f (cu) ≥ c f (u) if c > 0 and u < 0.

Then every solution of (1�) is oscillatory.

Proof. Assume that (1�) has a nonoscillatory solution and let (un) be eventually
positive. Then zn = un + pun−k > 0 eventually, say for n ≥ n1. From (1�) we
have �2zn ≤ 0 for n ≥ n2 ≥ n1. We claim that �zn > 0 for n ≥ n2. In fact, if
for some n3 ≥ n2 �n3 ≤ 0 then since (qn) �= (0) there exists n4 > n3 such that
�zn ≤ �zn4

< 0 and by summation we see that zn → −∞ as n → ∞. This
contradicts the fact that zn > 0 eventually.

Let wn = zn + pzn−k . Since from (1�) we have �2zn = −qn f (un−l ), so,
by the assumptions, we get

�2wn + p�2wn−k + qn f (wn−l ) = −qn f (un−l ) − 2pqn−k f (un−k−l ) −

p2qn−2k f (un−2k−l ) + qn f [un−l + pun−l−k + p(un−l−k + pun−l−2k )]

≤ −qn[ f (un−l ) + 2pf (un−l−k ) + p2 f (un−l−2k )] +

qn[ f (un−l ) + 2p f (un−l−k ) + p2 f (un−l−2k )] = 0.

That is

(16) �2wn + p�2wn−k + qn f (wn−l ) ≤ 0,

and observe that wn > 0 and �wn > 0 for n ≥ n5, for some n5 ≥ n2. Therefore
(wn−l ) is increasing for n ≥ n6 for some n6 ≥ n5.
Summing (16) from n6 to n − 1 we have

�wn − �wn6
+ p�wn−k − p�wn6−k +

n−1�

i=n6

qi f (wi−l ) ≤ 0.
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By the monotonicity of (wn) and f , it follows that

f (wn6−l )

n−1�

i=n6

qi ≤ �wn6
+ p�wn6−k , for n ≥ n6.

Hence there exists a constant C such that

n−1�

i=n6

qi ≤ C for all n ≥ n6,

which contradicts (4). A similar argument can be used in the case an eventually
negative solution.
This completes the proof.
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e-mail: bszmanda@math.put.poznan.pl


