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A NON-TRIVIAL SPECIAL CASE OF THE

BICONFLUENT HEUN EQUATION [0, 1, 13]:

ORTHOGONALITY OF ITS SOLUTIONS

HAROLD EXTON

A special case of the bicon�uent Heun equation which is not reducible
to a form of a hypergeometric equation is solved by means of a Laplace trans-
form. The solutions are double series which exhibit a type of orthogonality
comparable in some respects to that of Fourier-Bessel type.

1. Introduction.

The general case of the bicon�uent Heun equation has two singularities:
one regular and the other irregular of the fourth type, written as [0, 1, 14],
using the Ince symbol. For the Ince classi�cation scheme for linear differential
equations, see Ince (1926) page 494. When the con�uent hypergeometric
equation and its special case Bessel�s equation are considered the singularities
may be represented respectively by the symbols [0, 1, 12] and [0, 1, 11]. The
differential equation [0, 1, 13] under consideration here may be similarly related
to the general bicon�uent Heun equation. For a detailed discussion of Heun�s
equation and its con�uent forms, the reader is referred to Ronveaux (1995). See
also Exton (1991) and (1992).
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The differential equation under consideration in this study,

(1.1) xy �� + (ax + 3)y � + ( f x 2 + 2a)y = 0,

(which can be explicitly solved, as will be shown below) is a special case of the
equation

(1.2) xy �� + (ax + b)y � + ( f x 2 + gx + h)y = 0.

The normal form of this latter equation is of the same form as that of

(1.3) xy �� + Ay � + (Fx 2 + Gx + H )y = 0,

which is a generalisation of the equation

(1.4) xy �� + y �/2 + (Fx 2 + Gx + H )y = 0,

characterised by the symbol [1, 0, 13], (Ince (1926), page 504).
Hence, the singularities of (1.1) are represented by the symbol [0, 1, 13].

Non-trivial cases of the type (1.2) are of interest in that they cannot be
reduced to hypergeometric form, and any such instances that can be solved are
clearly worthy of note.
In the case of (1.1), the solution can be effected by means of a Laplace
transformation. The orthogonality properties of this solution are discussed.

Take the general case (1.2), put y = Y � and let

(1.5) Y =

�

C

exp(xt) u(t) dt,

where the contour of integration is to be determined. The modulating function
u(t) is a solution of the equation

(1.6) f tu�� − (t3 + at2 + gt − 2 f )u� + [(b − 3)t2 + (h − 2a)t − g]u = 0.

In general (1.6) cannot conveniently be solved, but if we put b = 3, h = 2a
and g = 0, it reduces effectively to a differential equation of the �rst order
for which a solution can easily be obtained. With these special cases of the
parameters (1.1) is obtained, the normal form of which is

(1.7) w�� + ( f x − a2/4 + ax−1/2 − 3x−2/4)w = 0.

Hence, (1.1) is not reducible to a differential equation of hypergeometric type.
The new variable w is given by

(1.8) w = x−3/2 exp(−ax/2)y.
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2. The solution of (1.1).

In the special case in question, (1.5) becomes

u��/u� = t2/ f + at/ f − 2/t

and

u� = t−2 exp[t3/(3 f ) + at2/(2 f )] =(2.1)

=
�

(3 f )−p(a/(2 f ))qt3p+2q−2/(p!q!).

This series representation converges absolutely and uniformly for all �nite
valves of t , so that integrating term-by term, it follows that

(2.2) u(t) =
� (3 f )−p(a/(2 f )−1)qt3p+2q−1

[p!q!/(3p + 2q − 1)]
.

Throughout this paper, the indices of summation run over all of the non-negative
integers. In order to evaluate the Laplace integral (1.4) as a convergent series,
we write (2.2) in the form

(2.3)
�

(a/(2 f ))qt2q−1
1F1(2q/3 − 1/3; 2q/3 + 2/3; t3/(3 f )),

where 1F1 is a con�uent hypergeometric function; see Slater (1960) for exam-
ple.
By means of Kummer�s �rst theorem for con�uent hypergeometric functions,
we see that

(2.4) u(t) = exp(t3/(3 f ))
� (q/(2 f ))qt2q−1(−t3/(3 f ))3

[q!(2q − 1)(2q/3 + 2/3, p)]
.

The Pochhammer symbol (a, n) is given by

(2.5) (a, n) = a(a + 1) . . . (a + n − 1) = �(a + n)/�(a); (a, 0) = 1.

We then have

Y =

�

exp(xt)u(t) dt =(2.6)

=
� (a/(2 f )))q(−3 f )−p

[q!(2q − 1)(2q/3 + 2/3, p)]

�

exp(t3/(3 f ) + xt)t3p+2q−1 dt .
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In order that the inner integral should be meaningful in the present context, put
t = s1/3, when the integral becomes proportional to

(2.7)

�

exp(s/(3 f ) + xs1/3)s p+2q/3−1 ds

and the contour of integration in the s-plane is taken to be a simple loop
beginning and ending at −∞ and encircling the origin once in the positive
direction. The integral (2.7) may be written in the form

�
xr/r!

�

exp(s/(3 f ))s p+2q/3+r/3−1ds =(2.8)

= (3 f )p+2q/3
� (x (3 f )−1/3)r

[r!G(1 − p − 2q/3 − r/3)
.

So, apart from any constant factors, we have, formally after some algebra,

Y =
�

(9a3/(8 f ))q/3(31/3 f 1/3x )r (−1/2, q)(2q/3 + r/3, p) ·(2.9)

·[q!r!(1/2, q)(2q/3 + 2/3, p)�(1 − 2q/3 − r/3)]−1 =

=
� (9a3/(8 f ))q/3(31/3 f 1/3x )r (−1/2, q)

[(1/2, q)�(1 − 2q/3 − r/3)q!r!]−1
·

· 2F1(1, 2q/3 + r/3; 2q/3 + 2/3; 1).

Formally, summing the function 2F1 by means of Gauss�s summation theorem,
we obtain after some manipulation

(2.10) Y =
� (2q − 1)(−1/2, q)(9a3/(8 f ))q/3(31/3 f 1/3)r

[(r + 1)(1/2, q)�(1 − 2q/3 − r/3)q!r!]
.

This formal manipulation can be justi�ed if the series in the index of summation
r is replaced by a Barnes integral representation of exp(xt). See MacRobert
(1962) page 151 ex.3.

Noting that we have put y = Y � , it may easily be shown that, apart from
any constant factors,

(2.11) y =
� (2, r)(9a3/(8 f ))q/3(31/3 f 1/3x )r

[(3, r)�(2/3 − 2q/3 − r/3)q!r!]
,

which involves a linear combination of several series similar to

(2.12)
� (1/3, 2q + r)(9a3/(8 f ))q (−3 f x 3)r

[(2/3, r)(1/3, r)(2/3, r)q!r!]
.

In order to develop further orthogonality properties of the solutions of (2.1),
their oscillatory properties are sketched.
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3. The oscillatory behaviour of y in the real domain.

Firstly, put a = 0 in (1.1), when the solution of the resulting equation

(3.1) xy �� + 3y � + f x 2y = 0

may be shown to be

(3.2) y = x−1Z−2/3(2 f
1/2x 3/2),

where Z is a linear combination of Bessel functions of the �rst kind. See Mur-
phi (1960), page 329.
Apply the Sturmian oscillation theorems (as discussed by Ince (1926), Chap-
ter 10) to the full equation (1.1) in the real domain, namely

(3.3) xy �� + (ax + 3)y � + ( f x 2 + 2a)y = 0

with self-adjoint form

(3.4) [x 3 exp(ax )y �]� + x 2 exp(ax )( f x 2 + 2a)y = 0.

Using Ince�s notation, we have

(3.5) K = x 3 exp(ax ) and G = −x 2 exp(ax )( f x 2 + 2a),

so that

(3.6) −G/K = f x + 2a/x .

The solutions of (1.1) are oscillatory in character with at least m zeros on the
interval (0, B) if

(3.7) f x + 2a/x >= m2π2B−2.

It is thus clear that there are an in�nite number of real zeros for positive values
of f and x .
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4. The orthogonality of the solutions of (1.1).

The self-adjoint form of (1.1), (3.3) above,

(4.1) [x 3 exp(ax )y �]� + x 2 exp(ax )( f x 2 + 2a)y = 0,

indicates the possibility of orthogonality of its solutions by appealing to the
principles of Sturm-Liouville systems outlined by Ince (1926).

For eigenvalues f1, f2, . . ., the orthogonality relation may be written

(4.2)

� 1

0

x 4 exp(ax )y( fm, a; x )y( fn, a; x ) dx = hnδm,n,

where the quantities { fm} are the positive zeros of y( f, a; 1) and δm,n is the
Kronecker delta and

(4.3) hn =

� 1

0

x 4 exp(ax ){y( fn, a; x )}2 dx .

From the general Sturm-Liouville theorem, we have
� 1

0

x 4 exp(ax )y( fi , a; x )y( f j, a; x ) dx =(4.4)

= ( fi − fj )
−1[y( fi , a; x )dy( f j, a; x )/dx − y( f j , a; x )dy( f i, a; x )]x=1.

If fi and fj are distinct, we obtain the usual orthogonality relation, when the
integral vanishes. On letting fi = fj , the de l�H�opital limit must be taken as
fj → fj . That is d( fi − fj )/d fj = −1 and

d[y( fi , a; x )dy( f j, a; x )/dx − y( fj , a; x )dy( f i, a; x )/dx ] =(4.5)

= y( fi , a; x )δ2y( f j , a; x )/δ f jδx ] − δy( fj , a; x )δ f jδy( fi, a; x )/dx .

If fj → fi , this expression becomes

(4.6) y( fi, a; x )δ2y( fi , a; x )/δ fiδx − δy( fi, a; x )δ fiδy( fi , a; x )/δx

so that, bearing in mind that the { fi } are the zeros of y( f, a; 1)

hn =

� 1

0

x 4 exp(ax )[y( fi , a; x )]2dx =(4.7)

= −[δy( fi , a; x )/δ fi × δy( fi, a; x )/δx ]x=1 .

The zeros in f of y( f, a; 1) can be obtained numerically quite easily using
a small computer with a fast modern processor. The type of orthogonality
considered above is comparable in some respects with the Fourier-Bessel type
of orthogonality characteristic of Bessel functions.
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