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EIGENVECTORS AND FIXED POINTS
OF NON-LINEAR OPERATORS

GIULIO TROMBETTA

Let X be a real infinite-dimensional Banach space and ψ a measure
of noncompactness on X. Let Ω be a bounded open subset of X and
A : Ω → X a ψ-condensing operator, which has no fixed points on ∂Ω.
Then the fixed point index, ind(A,Ω), of A on Ω is defined (see, for ex-
ample, ([1] and [18]). In particular, if A is a compact operator ind(A,Ω)
agrees with the classical Leray-Schauder degree of I −A on Ω relative
to the point 0, deg(I −A,Ω,0). The main aim of this note is to inves-
tigate boundary conditions, under which the fixed point index of strict-
ψ-contractive or ψ-condensing operators A : Ω → X is equal to zero.
Correspondingly, results on eigenvectors and nonzero fixed points of k-
ψ-contractive and ψ-condensing operators are obtained. In particular we
generalize the Birkhoff-Kellog theorem [4] and Guo’s domain compres-
sion and expansion theorem [17]. The note is based mainly on the results
contained in [7] and [8].

1. Preliminaries and notation.

Throughout X is a real infinite-dimensional Banach space. We denote by Br(X)
= {x ∈ X : ‖x‖ ≤ r} the closed ball centered in 0 of radius r > 0, we write
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briefly B(X) instead of B1(X). For a set M in X we denote by intM, M and ∂M
the interior, the closure and the boundary of M, respectively. All the operators
considered in what follows are supposed to be continuous.

We recall that for a bounded set M in X : the Kuratowski measure of noncom-
pactness α(M) is the infimum of all ε > 0 such that M admits a finite covering
by sets of diameter at most ε; the lattice measure of noncompactness β (M) is the
supremum of all ε > 0 such that M contains a sequence {xn}with ||xm−xn|| ≥ ε ,
for m 6= n; the Hausdorff measure of noncompactness γ(M) is the infimum of
all ε > 0 such that M admits a finite ε-net in X .
We refer to [3] for all details. In the following ψ will stand for either α , β or γ .

An operator F : dom(F) ⊆ X → X is called a k-ψ-contraction if there is
k ≥ 0 such that ψ(FM) ≤ kψ(M) for each bounded M ⊆ dom(F), in particu-
lar F is called a strict-ψ-contraction if it is a k-ψ-contraction for some k < 1.
The operator F is called ψ-condensing if ψ(FM) < ψ(M) for each bounded
M ⊆ dom(F) which is not relatively compact. Clearly every strict-ψ-contractive
operator is ψ-condensing.

Throughout Ω is a bounded open subset containing the origin 0 of the space
X .

In [16], D. Guo has proved the following

Theorem 1.1. Let A : Ω → X be a compact operator. Suppose that
(i) infx∈∂Ω ||A(x)||> 0 and (ii) A(x) 6= λx for x ∈ ∂Ω and 0 < λ ≤ 1.
Then the Leray-Schauder degree deg(I−A,Ω,0) = 0

Assuming that A : Ω→ X is a strict-ψ-contraction, condition (i) of Theorem
1.1 is no more sufficient to yield ind(I−A,Ω,0) = 0, as the following example
shows.

Example 1.2. ([5]) Let A : B(X) → X be defined by A = −kI where I is the
identity operator and k < 1. Then infx∈∂B(X) ‖A(x)‖> 0, but on the other hand

ind(I−A, intB(X),0) = ind((1+ k)I, intB(X),0) = 1.

The following generalizations of Theorem 1.1 have been obtained for strict-
α-contractions.

Theorem 1.1. ([21]) Let A : Br(X)→ X be a k-α-contraction (k < 1). Suppose
that
(i) infx∈∂Br(X) ||Ax||> kr and (ii) A(x) 6= λx for x ∈ ∂Br(X) and 0 < λ ≤ 1.
Then ind(A, intBr(X)) = 0.

Theorem 1.2. ([22]) Let A : Ω→ X be a k-α-contraction (k < 1). Suppose that
(i) infx∈∂Ω ‖Ax‖> k

(
supx∈∂Ω ‖x‖+α(∂Ω)

)
and (ii) A(x) 6= λx for x∈ ∂Ω and

0 < λ ≤ 1. Then ind(A,Br(X)) = 0.
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We generalize Theorem 1.1 to strict-ψ-contractive (and analogously to ψ-
condensing) operators under a condition which arises in a natural way from the
geometry of the space X . Precisely, If A : Ω → X ia a strict-ψ-contraction, we
replace condition (i) of Theorem 1.1 by the following Birkhoff-Kellogg type
condition

inf
x∈∂Ω

‖Ax‖> kkψ sup
x∈∂Ω

‖x‖ (1)

which depends on the Wośko constant kψ of the space X and is optimal when
kψ = 1.

2. The characteristics kψ and cρ,β

It is well known that in any infinite dimensional Banach space X there is always
a retraction R from B(X) onto ∂B(X) (for details and references see [15]). Then
the quantitative characteristic

kψ = inf{k ≥ 1 : ∃ a k-ψ-contractive retraction R : B(X)→ ∂B(X)}

has been introduced by introduced by Wośko in [20]. We point out however that
the problem was first studied in [13, 14].

The estimate of kψ is of interest in problems of nonlinear analysis (see, for
example, [2, 7, 12]). Concerning general results, in [19] it was proved that
kψ ≤ 6 for any infinite dimensional Banach space X , reaching the value 4 or
3 depending on the geometry of the space. Moreover it has been proved that
kγ = 1 in some Banach spaces of continuous functions ([9–11, 20]) and in some
classical Banach spaces of measurable functions ([6]). In [2] it is proved that
kψ = 1 in Banach spaces whose norm is monotone with respect to some basis.

Though it has been shown that kψ = 1 in some Banach spaces, the problem
whether or not this is true in any Banach space X is open. We observe that most
of the evaluations of kψ have required individual constructions in each space X .
However a standard way to construct a retraction from B(X) onto S(X) is that
of normalizing a map which coincide with the identity on S(X) and maps B(X)
out of a ball Br(X) of radius r < 1 (or possibly maps B(X) into X \ 0). In this
connection it is of some interest for any 0 < ρ ≤ β to define the geometrical
characteristic

cψ(ρ,β ,X) := inf
Gρ,β∈Sρ,β

ψ(Gρ,β ),

where Sρ,β denotes the set of all continuous maps Gρ,β : Bβ (X)→ X such that
Gρ,β x = x for all x ∈ Sβ (X), and ‖Gρ,β x‖ ≥ ρ for all x ∈ Bβ (X).
We briefly write cρ,β instead of cψ(ρ,β ,X). The map ρ → cρ,β is nondecreasing
and right-continuous. Moreover for 0 < ρ ≤ β we have 1 ≤ cρ,β ≤ kψ(X) and
cβ ,β = kψ(X) in any infinite-dimensional Banach space X .
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Using such a parameter we can give a formulation of Guo’s theorem for
strict-ψ-contractive operators under an hypothesis that looks weaker than (1) in
Banach spaces X in which the known estimate of kψ is greater than 1.

3. Results

The following theorems generalizes Guo’s result (Theorem 1.1) to strict-ψ-
contractive and ψ-condensing operators, respectively.

Theorem 3.1. Let A : Ω → X be a k-ψ-contraction (k < 1), satisfying

inf
x∈∂Ω

‖Ax‖> kkψ sup
x∈∂Ω

‖x‖. (2)

Assume that one of the following conditions holds:

(a) kkψ < 1 and Ax 6= λx for x ∈ ∂Ω and kkψ < λ ≤ 1;

(b) kkψ ≥ 1.

Then ind(A,Ω) = 0.

Theorem 3.2. Let A : Ω → X be a ψ-condensing mapping, suppose that

inf
x∈∂Ω

||Ax||> kψ sup
x∈∂Ω

||x||. (3)

Then ind(A,Ω) = 0.

We obtain the existence of positive and negative eigenvalues with corre-
sponding eigenvectors on the boundary for k-ψ-contractive operators (for any
k ≥ 0), generalizing the Birkhoff-Kellogg theorem ([4]).

Corollary 3.1. Let A : Ω → X be a k-ψ-contraction (for any k > 0). Suppose
that

inf
x∈∂Ω

||Ax||> kkψ sup
x∈∂Ω

||x||.

Then there exist λ > kkψ and xλ ∈ ∂Ω such that λxλ = Axλ , and also there exist
µ <−kψk and xµ ∈ ∂Ω such that µxµ = Axµ .

The next two corollaries extend Guo’s domain compression and expansion
fixed point theorems [17].
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Corollary 3.2. Let Ω1 and Ω2 be bounded open sets in X, such that 0 ∈Ω1 and
Ω1 ⊂Ω2, and let A : Ω2 → X be a strict-ψ-contraction. Suppose that one of the
following conditions holds:
(a) kkψ < 1 and one of the following is satisfied

infx∈∂Ω1 ||Ax||> kkψ supx∈∂Ω1
||x||

Ax 6= λx x ∈ ∂Ω1, kkψ < λ < 1

Ax 6= νx x ∈ ∂Ω2, ν > 1

or 
infx∈∂Ω2 ||Ax||> kkψ supx∈∂Ω2

||x||

Ax 6= λx x ∈ ∂Ω2, kkψ < λ < 1

Ax 6= νx x ∈ ∂Ω1, ν > 1

(b) kkψ ≥ 1 and one of the following is satisfied{
infx∈∂Ω1 ||Ax||> kkψ supx∈∂Ω1

||x||

Ax 6= νx x ∈ ∂Ω2, ν > 1

or {
infx∈∂Ω2 ||Ax||> kkψ supx∈∂Ω2

||x||

Ax 6= νx x ∈ ∂Ω1, ν > 1

Then A has at least a fixed point on Ω2 \Ω1.

Corollary 3.3. Let Ω1 and Ω2 be bounded open sets in X, such that 0 ∈Ω1 and
Ω1 ⊂Ω2. Let A : Ω2 → X be a ψ-condensing mapping. Suppose that one of the
following conditions holds{

infx∈∂Ω1 ||Ax||> kψ supx∈∂Ω1
||x||

Ax 6= νx x ∈ ∂Ω2, ν > 1

or {
infx∈∂Ω2 ||Ax||> kψ supx∈∂Ω2

||x||

Ax 6= νx x ∈ ∂Ω1, ν > 1.

Then A has at least a fixed point in Ω2 \Ω1.

Finally, we restate Theorem 3.1 using the parameter cα,β , all the other re-
sults can be reformulated similarly (see [8]).

Theorem 3.3. Let A : Ω → X with ψ(A) = k < 1. Let α = infx∈∂Ω ||Ax|| and
β = supx∈∂Ω ||x||. Assume that one of the following conditions holds:
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(i) kcα,β < 1 and
inf

x∈∂Ω

‖Ax‖> kcα,β sup
x∈∂Ω

‖x‖.

In addition, Ax 6= λx for x ∈ ∂Ω and kcα,β < λ ≤ 1

(ii) kcα,β ≥ 1 and there is an α ′ such that

inf
x∈∂Ω

‖Ax‖ ≥ α
′ > kcα ′,β sup

x∈∂Ω

‖x‖.

Then ind(A,Ω) = 0.

The results of this note, including their proofs, are contained in [7] and [8].
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[20] J. Wośko, An example related to the retraction problem, Ann. Univ. Mariae
Curie-Skłodowska 45 (1991), 127–130.

[21] Sun Jing Xian, A generalization of Guo’s theorem and applications, J.
Math. Anal. Appl. 126 (1987), 566–573.

[22] Sun Yong, An extension of Guo’s Theorem on domain compression and
expansion, Numer. Funct. Anal. Optimiz. 10 (1989), 607–617.

GIULIO TROMBETTA
Department of Mathematics

University of Calabria, 87036 Rende (CS), Italy
e-mail: trombetta@unical.it


