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MANY IDENTITIES FROM ONE
CHU WENCHANG

We specialise an ingeniously contrived identity to obtain a plethora
of startling combinatorial identities. Limiting cases include well known
evaluations of ¢(2), ¢(4) and ¢(6).

Let x, y, u and v be formal parameters and {a;};>0, {b;}j>0 be two
sequences taken from a commutative ring. Define the a-rising factorial forn > 0
by

() iap=1, ay=[]c+a) @=>0.

k=1
Then we have the following algebraic identity.

Theorem. Suppose that 0 < m < n and r be natural numbers. There holds
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Proof. Notice that the summand on the left of (2) can be split as
O W1 (Vs Drpier1 g (Y D)rgic g

(3 @y 1(V3 D)y (u; @) (Vs b)rri
Then the theorem follows immediately from the diagonal cancellation. ]

In what follows, we shall demonstrate a number of interesting identities
from (2) which could be served as the reason for the present paper’s title.

Firstof all, take ay = by = -k, u = —x,v=—y,m =+l andr =0 in
(2). Then z = %1 correspond to the following identities.

Proposition 1.
WG xy { (nil)(nil)}
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Taking y = v =0and z = by = 1 in (2) yields

Proposition 2.
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When m = 0, this reduces to [2]
Corollary 3.
n k n
X+a—-1 u+a X +a;
5 I+ = 1—
©) ;E u-+a; u—Xx jljou—i-aj

This identity contains two formulae of Gould (see [3], Eq.(2.1-2.2) and
(4.1-4.2)) as special cases:

(6a) é;@lfé?)::uix{l_gé%]’
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Next, let {w;} 1<k<, be the p-th roots of unity. The substitution of
x —> —xP,u - —uP,and a — a” in (4) gives that
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Proposition 4.
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When m = 0, this reduces to an identity due to Chu [2]. In the latter case,
setting a; = y — k would generate the following

Proposition 5.

y w,x yp _uP 14 (y;:){x)
(8) Zl—[ (y wju— 1) xP —up 1_1_[<y—wju)
k=0 j=1 J=\ gl
For y = —1 and y = u = 0, Eq.(8) corresponding to two interesting
special formulas [4] displayed below:
Corollary 6.
(k w/x) 1 » p (n—wjx+1)
—u n+1
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In fact, the last formulae is the limit, as y — 0, of

T O Y r ()
(=D == ,
,; E (o) ,11 (1)

which is a reformulation of Eq.(8) under u = 0.
For p = 2r, an even integer, we have

{wjhi<j<or ={wj}1<j< U{_wj}lfjfr-

From the infinite product

sin 7t =
10) Tt :H<l_ﬁ)’

we can derive limiting forms of (9a—9b):
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Proposition 7.
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These contain the following simple but interesting examples:

Corollary 8.
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When r = 1, 2, 3, taking the limits as ¥ — 0 and x — 0 successively in
(11a), we obtain the celebrated Eulerian formulae:

(13a) > 02 =x7/6,
n>0
(13b) > nt=m"/90,
n>0
(13¢) > 00 =n5/945.
n>0
Finally, put ¢y = by = —k, x > x —t,y > —x —t,u — u — 1,

v — —u —t and z = 1 in (2). We get the following nice result.

Proposition 9.
~(OGE)
t—utk\ [ t+utr+k\
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After a trival manipulation in the casesof u =t =0andx =¢r—-1=0,
we have the respective consequences:

Corollary 10.

" /x —X .X x—1 —x —1
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(15b) — =
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In view of (10), their limiting forms are produced as follows:

Corollary 11.

= /X —X sin wx
aw () =y

> 1 u? —1 1 Tu
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For r = 0, these reduce to (12a) and (12b) respectively.

Before closing this short paper, I would like to sketch an application of the
theorem to basic hypergeometric series.

Recall that the g-factorial is defined by

(17) iglo=1, [xgl=]]d-x¢"" >0).
k=1

Then the replacement a; = g ¥t in (7) gives rise to

Proposition 12.

n P . .
ay Y g []endk
k=0 j=1

L lgoju/t; gl xP —uP

tp_up

. ﬁ [wjx/t; qlnt1

[wju/t; qlav1

j=1



118 CHU WENCHANG

When ¢t = p = 1, its limiting form reduces to an elegant result [1]:

Corollary 13.

00 k[x;q]k _u—l _[X,(I]oo
) gq lqu; gk~ u—x {1 [”;q]oo}'

From the examples listed above, it can be noted that identity (2) in the
theorem contains a plentitude of combinatorial identities. The writer believes
that it should do more significant ones as its special cases. For the interested
readers, there is no harm to try.
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