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ORDINARY DIFFERENTIAL EQUATIONS

IN AFFINE GEOMETRY

SALVADOR GIGENA

The method of qualitative analysis is used, as applied to a class of
fourth order, nonlinear ordinary differential equations, in order to classify,
both locally and globally, two classes of hypersurfaces of decomposable type
in af�ne geometry: those with constant unimodular af�ne mean curvature
L , and those with constant Riemannian scalar curvature R. This allows to
provide a large number of new examples of hypersurfaces in af�ne geometry.

Introduction.

The use of differential equations in questions concerning classi�catory
problems in differential geometry has a long standing history. For example,
the classi�cation of locally strongly convex, complete af�ne hyperspheres,
whose solution was achieved, historically, through the contributions of several
mathematicians: Blaschke [1], in the �rst place, and then Jörgens [9], Calabi
([2],[3]), Schneider ([12],[13]), Pogorelov [10], Cheng-Yau [4], Sasaki [11]
and myself [6]. Another instance of such a use was the previous paper [7],
where the author, by means of qualitative analysis, got both the local and global
classi�cation of all hypersurfaces of decomposable type with constant general
af�ne mean curvature. In this sense, the present article constitutes a follow-up
to that paper. The present objective, however, is much wider because it will
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allow to treat, in a uni�ed way, the cases of various families of hypersurfaces in
unimodular af�ne geometry. The differential equations involved here are of the
following kinds:

yiv

(y ��)r
− s

(y ���)2

(y ��)r+1
= K = constant,

where the constant values of r and s have a dimensional meaning, which shall
vary according to the problem to be considered. In fact, one of the main reasons
for treating the above equation with variable values for those two constants is
its possible future use in order to solve other, diverse geometrical problems.

By performing qualitative analysis to the above differential equation we
shall be able, during the course of the present exposition, to classify those hy-
persurfaces in af�ne space, of decomposable type and with constant (vanishing
and nonvanishing) unimodular af�ne mean curvature; and also those with con-
stant Riemannian scalar curvature. Moreover, since these scalar invariants are
related between them by the Pick invariant (in the so-called Higher Dimensional
Af�ne Theorema Egregium), it is worth considering, too, the third order equa-
tion that represents the latter, also for hypersurfaces of the mentioned type. This
has been previously done in [8] and we shall summarize here those results, both
for the sake of completeness and since they are used in Section 8 ahead.

In the classi�cation of locally strongly convex hypersurfaces, mentioned
above, two different notions of completeness were used:

(1) Unimodular af�ne metric completeness, i.e. completeness with regards to
the Levi-Civita connection determined by the �rst fundamental form Iua .

(2) Geometrical completeness; meaning that X (M) is complete if, ad only if,
it is a closed set with respect to the ambient space topology, induced by the
vector space structure of E . Some authors prefer to refer to this as Euclidian
completeness, i.e. with respect to the (also) Riemannian structure induced on
X (M) from a Euclidian metric assumed to be further de�ned on the ambient
vector space E .

The qualitative analysis practiced in this article includes behavior at limit
points. Thus, it will be quite atraightforward to decide which of the hypersur-
faces presented here are geometrically complete.

This article is organized as follows: in Section 1 we obtain the characteriz-
ing ordinary differential equation of the various subclasses to be considered. In
Section 2, we state two theorems, whose proofs were previously exposed in [8],
concerning the local, as well as global, classi�cation of those hypersurfaces, in
the above class, with constant Pick invariant. The reduction of the above fourth
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order ordinary differential equation: �rst to second order and, immediately af-
ter, to �rst order occupies Section 3, where, besides, the four cases of current
geometrical interest are presented. In Section 4, we perform qualitative analysis
to the inverse function representing the solution to the reduced, second order
equation; while the complete integration and analysis of the direct function is
exposed in Section 5. In Section 6 we present the full classi�cation of hyper-
surfaces of decomposable type with constant unimodular af�ne mean curvature;
while Section 7 is dedicated to those with constant unimodular af�ne scalar cur-
vature. Finally, in Section 8, we consider the case, for hypersurfaces within
the above class, where the three aforementioned scalar invariants are simultane-
ously constant.

1. Characterizing Differential Equations.

We consider in this section hypersurfaces of decomposable type, i.e. those
which are expressible in the form of Monge�s with respect to a suitable af�ne
system of coordinates (t1, t2, . . . t n, t n+1) for the vector space E , by an equa-
tion X (t1, . . . , t n) = (t1, . . . , t n, f (t1, . . . , t n)), with (t1, . . . , t n) varying in
an open, connected subset of Rn , and the map f assumed to be enough dif-
ferentiable; and where besides f can be decomposed into a sum of n terms,
each of them depending on only one of the independent variables t1, . . . , t n :
f (t1, . . . , t n) = f 1(t1) + f 2(t2) + · · · + f n(t n). This family was treated pre-
viously in [7], where, under the viewpoint of general af�ne geometry, we clas-
si�ed those hypersurfaces in the class with constant general af�ne mean curva-
ture. Later in [8], the viewpoint was that of unimodular af�ne geometry, and
the classi�cation regarded to those with constant Pick invariant. We shall use
here most of the calculations developed in those articles. Thus, for example,
the unimodular af�ne principal curvatures k1, k2, . . . , kn are the eigenvalues of
the third fundamental form I I Iga := Li jσ

iσ j , with respect to the unimodular
af�ne �rst fundamental form Iua := gi jσ

iσ j , i.e. determined as the roots of
the equation det (Li j + k gi j ) = 0, and their normalized elementary symmetric
functions L1, L2, . . . , Ln are the unimodular af�ne curvature functions. Hence,
the unimodular af�ne mean curvature is obtained by averaging the contraction
of the third fundamental form with respect to the �rst (unimodular af�ne) fun-
damental form, i.e.

(1.1) L := L1 = −
1

n

�

i, j

gi j Li j = −
1

n

�

k

Lkk .

We can also calculate the scalar curvature. In fact, from Gauss� equation
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it follows that:

(1.2)
�

g jkgiq Rjikq = (1 − n)
�

g jq Ljq +
�

giq Asi j A
j
sq .

Hence, from the last equation we obtain that

(1.3) R = L + J,

this being known as the Higher Dimensional Af�ne Theorema Egregium, where
the �normalized� scalar curvature is de�ned by

(1.4) R :=
1

n(n − 1)

�
g jkgiq Rjikq ,

and the Pick invariant J can be expressed, in terms of the components of the
�rst two fundamental forms by

(1.5) J :=
1

n(n − 1)

�
giq Asik A

k
sq .

It follows that, for hypersurfaces of decomposable type, the scalar compo-
nents of the third fundamental form can be written

(1.6) Lkk = −
1

(n + 2)2

�

(n + 2)
( f k)iv

( f k)��
− (2n + 3)

[( f k )
���

]2

[( f k )�� ]2

�

,

(1.7) Ljk = −
1

(n + 2)2
( f j )

���

( f j )
��

( f k)
���

( f k)��
, if j �= k;

and since the �rst fundamental form is given by Iua = F−1/(n+2)(
�

fi j dt
i dt j ),

with

(1.8) fi j =

�
( f i )

��

if i = j ,

0 if i �= j ,

(1.9) F = |( f 1)
��

· ( f 2)
��

· · · ( f n)
��

|,
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we obtain that the unimodular af�ne mean curvature is computable as

L = L1 = −
1

n
F

1
n+2

n�

k=1

Lkk

( f k )��
=(1.10)

=
1

n

1

(n + 2)2
F

1
n+2

n�

k=1

�

(n + 2)
( f k)iv

[( f k)�� ]2
− (2n + 3)

[( f k )
���

]2

[( f k )�� ]3

�

.

Lemma 1.1. Let X : Mn → En+1 be a nondegenerate hypersurface of
decomposable type. Then, its unimodular af�ne mean curvature vanishes
identically if, and only if, each of its components f k satis�es the ordinary
differential equation

(1.11) (n + 2)
( f k)iv

[( f k)�� ]2
− (2n + 3)

[( f k)
���

]2

[( f k)�� ]3
= Ck = constant,

with the additional condition
�
Ck = 0.

Proof. Immediate from (1.10), since we have that F �= 0, by the nondegener-
acy assumed for X .

By an argument quite similar to that used in [8], (Lemma 2.2) it also
follows

Lemma 1.2. Let X : Mn → En+1 be a nondegenerate hypersurface of
decomposable type. Then, its unimodular af�ne mean curvature is identically
equal to a non-vanishing constant if, and only if, one of its components f k0

satis�es the ordinary differential equation

(1.12) (n + 2)
( f k0 )iv

[( f k0 )�� ]2
− (2n + 3)

[( f k0 )
���

]2

[( f k0 )�� ]3
= Ck0 [( f

k0 )��]−
1

n+2 ,

where Ck0 is a nonvanishing constant; while all of the remaining ones are of
parabolic type.

Finally, and by the same token, we record the characterization of hyper-
surfaces of decomposable type and constant scalar curvature. This invariant
can be obtained either from the higher dimensional Af�ne Theorema Egregium,
represented by equation (1.3), or by direct calculation.

Lemma 1.3. Let X : Mn → En+1 be a nondegenerate hypersurface of
decomposable type. Then, its unimodular af�ne scalar curvature vanishes
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identically if, and only if, each of its components f k satis�es the ordinary
differential equation

(1.13) (n + 2)
( f k)iv

[( f k)
��
]2

−
7n + 10

4

[( f k)
���

]2

[( f k)
��
]3

= Ck = constant,

with the additional condition
�
Ck = 0.

Lemma 1.4. Let X : MN → En+1 be a nondegenerate hypersurface of
decomposable type. Then, its unimodular af�ne scalar curvature is identically
equal to a nonvanishing constant if, and only if, one of its components f k0

satis�es the ordinary differential equation

(1.14) (n + 2)
( f k0 )iv

[( f k0 )�� ]2
−

7n + 10

4

[( f k0 )
���

]2

[( f k0 )�� ]3
= Ck0 [( f

k0 )
��

]−
1

n+2 ,

where Ck0 is a nonvanishing constant; while all of the remaining ones are of
parabolic type.

2. Decomposable Hypersurfaces with constant Pick Invariant.

In this section we state, without proofs, two theorems regarding the classi-
�cation of those hypersurfaces of decomposable type with constant Pick Invari-
ant. See [8] for full details.

Theorem 2.1. Let X : Mn → En+1 be a nondegenerate hypersurface of
decomposable type, with vanishing unimodular af�ne Pick invariant J = 0.
Then, each of its components f 1, f 2, . . . , f n , must be of either parabolic or
logarithmic type, or the three more kinds of types that are obtained from those
two original types by suitable re�ections in the x− and y-axis. All of the
solutions belonging to the original types share the common feature that their
second derivatives, ( f k)

��

= y > 0, satisfy, in each case, the classifying non-
linear, ordinary differential equation y � = K̃ y3/2, with K̃ := Ck = 0 for the
parabolic type and K̃ > 0 for the remaining, logarithmic type.

Theorem 2.2. Let X : Mn → En+1 be a nondegenerate hypersurface of de-
composable type, with constant, nonvanishing unimodular af�ne Pick invariant,
J = constant �= 0. Then, one of the components must be of the type described
by the equation ( f k0 )(t k0 ) = (t k0 )−2/(n+1), or the corresponding ones which are
obtained from the latter by suitable re�ections on the x− and y-axis. All of the
remaining components fj , with j �= k0 , must be of parabolic type.
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3. Reduction of Mean Curvature and Scalar Curvature Equations.

As in [7], we can reduce in a uni�ed way equations (1.11) through (1.14)
by the substitution x = t k, ( f k )

��

= y = g(x ). This gives the following second
order, nonlinear ordinary differential equation, common to all mentioned cases,

(3.1)
y

��

yr
− s

(y �)2

yr+1
= K ,

where we have renamed, for convenience, the constant Ck by K .
Let us recall that there is a standardmethod for calculating a �rst integral of

the last equation by means of the change of variables (y �)2 = z. This furnishes
for (3.1)

(3.2)
1

2
y dz − [sz + K yr+1]dy = 0.

We shall consider four cases of current geometrical interest regarding the
constant values of r and s :

1) r = 2, s = 2n+3
n+2

; (Lemma 1.1: vanishing unimodular af�ne mean
curvature);

2) r = 2 − 1
n+2

, s = 2n+3
n+2

, (Lemma 1.2: constant nonvanishing equiaf�ne
mean curvature);

3) r = 2, s = 7n+10
4(n+2)

; (Lemma 1.3: vanishing scalar curvature);

4) r = 2 − 1
n+2

, s = 7n+10
4(n+2)

; (Lemma 1.4: constant nonvanishing scalar
curvature).

We can assume y > 0 and take µ = y−(1+2s) as integrating factor. Thus
(3.2) becomes

(3.3)
1

2
y−2sdz − [szy−(1+2s) + K yr−2s ]dy = 0,

which is an exact equation.

Now, in order to integrate the latter equation we have to separate two cases:

A) This comprises the above geometrical cases 1), 2), 4), and 3) with n > 2.
(Observe that here r + 1− 2s > 0).

B) Corresponds to the remaining, limiting case 3) with n = 2.
(Now, we have r + 1 − 2s = 0).

In order not to make our arguments too involved, during the course of the
present exposition we shall only consider case A), leaving case B) for future
development.
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We obtain that, in the �rst case, the solution is given by

(3.4) y � = y
r+1
2

�

Cy2s−r−1 −
2K

2s − r − 1

�1/2

.

Again, by analyzing all of possible cases of current geometrical interest, it
is easy to show that the complete set of integral curves of the last two numbered
equations is obtained by assuming �rst y > 0, and symmetrizing afterwards
with respect to the x− and y-axis.

We record the above considerations in a lemma.

Lemma 3.1. The analysis of solutions of the nonlinear, second order ordinary
differential equation (3.1), including further integration, can be reduced to the
analysis of positive solutions of the nonlinear, �rst order ordinary differential
equations (3.4). There exist three remaining classes of solutions, whose corre-
sponding properties, including further integration, can be obtained by re�ec-
tions on the x− and y-axis.

4. Qualitative analysis for the inverse function.

Type I: C = 0, K = 0. This is the most simple of solutions: we obtain
immediately y = C̃ . Hence, after two more integrations we get for the
corresponding component the solution of the form f k (t k) = Ck (t

k)2 + Dkt
k +

Ek , (k not summed), and, by an af�ne change of coordinates, we further write

(4.1) f k(t k) = (t k)2, (parabolic type).

Type II: C = 0, K < 0. We have to separate two subcases: r = 2; r = 2− 1
n+2

.

If r = 2, it follows that y = 4
��

− 2K
2s−3

�1/2
x + C̃

�−2

. After two

more integrations, and normalization of the corresponding constants by means
of suitable af�ne changes of coordinates, one gets for the component of the
hypersurface the expression

(4.2) f k (t k) = − log(t k), (logarithmic type).

Similarly, if r = 2 − 1
n+2

, we obtain

(4.3) f k(t k) = (t k)−
2

n+1 .
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Type III: C > 0, K = 0. Here it is again possible to integrate explicitly. We
observe that s > 1 and obtain, after a suitable af�ne change of coordinates the
expression

(4.4) ( f k)
��

(t k) = (t k)
1

1−s .

Here, let us consider �rst geometrical cases 1) and 2), so that s �= 3/2.
Hence, if we perform two more integrations and normalize the constants, we
obtain the solution

(4.5) f k(t k) =
(1 − s)2

(2 − s)(3− 2s)
(t k)

3−2s
1−s .

In geometrical cases 3) and 4), we have that s = 3/2 only for dimension
n = 2. Thus, if n > 2, we obtain again the function represented by equation
(4.5) as solution. On the other hand, for the subcase n = 2 the solution becomes

(4.6) f k (t k) = − log t k .

Now, for the remaining of cases, where no longer explicit solutions can be
computed in an immediate way, we are in pursue of analyzing the local, as well
as global, behaviour of y as a function of x : y = g(x ), when this represents a
solution to equation (3.4). However, it is more convenient, �rst, to look at x as a
function of y . For this purpose we consider this equation in its equivalent form

(4.7)
dx

dy
=

1

y
r+1
2

�
Cy2s−r−1 − 2K

2s−r−1

�1/2 .

By �xing a point (x0, y0), with y0 > 0, as initial condition, we can describe a
solution to the latter equation by

(4.8) x = x0 +

� y

y0

dt

t
r+1
2

�
Ct2s−r−1 − 2K

2s−r−1

�1/2 .

We shall use this last expression in order to accomplish our goal of
analyzing the behaviour of solutions for the remaining of cases. Prior to that,
we make a couple of observations that shall be of help.

Firstly, we observe that the local behaviour shall depend mainly on the �rst
two derivatives of x , with respect to y . So we now calculate the second one,
and put together with the �rst, in the following equations

(4.9)

dx

dy
= y− r+1

2

�

Cy2s−r−1 −
2K

2s − r − 1

�−1/2

,

d2x

dy2
=

−sCy2s−r−1 + (r+1)K
2s−r−1

y
r+3
2

�
Cy2s−r−1 − 2K

2s−r−1

�3/2 .
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Secondly, we observe, too, that the global behaviour of the solutions shall
also depend on the analysis in the neighbourhood of singular points, as well as
on the questions of convergence, or divergence, of the integral in (4.8).

Type IV: C > 0, K > 0. The graph of x versus y , de�ned by equation (4.8), is
fully characterized by the following conditions: there exist real numbers x̄1, x1
(with x̄1 < x0 < x1) such that:

(4.10) lim
y→∞

x (y) = x1,

(4.11) lim
y→ȳ0

x (y) = x̄1;

(4.12)
dx

dy
> 0,

d2x

dy2
< 0, ∀ y ∈ (ȳ0, ∞).

In fact, we observe �rst that, in order for the square root to make sense
in (4.8), we must have that w := Cy2s−r−1 − (2K )/(2s − r − 1) > 0. We
choose y0 > ȳ0 := ((2K )/[(2s − r − 1)C])1/(2s−r−1), and make the substitution
u = ([(2s − r − 1)C]/(2K ))1/(2s−r−1) t = ( ȳ0)

−1 t , in order to write (4.8) in the
form

(4.13) x = x0 +
ȳ1−s0

C1/2

� z

z0

du

u(r+1)/2
�
u2s−r−1 − 1

�1/2 ,

with z = ( ȳ0)
−1 y , and corresponding value for z0 in terms of y0.

It then follows that the integral in (4.13) can be estimated. In fact, there
exists u0(> z0) such that u2s−r−1 − 1 > 1, for all u > u0, and hence, for
n ≥ 2, we have that r+1

2
≥ 11/8. Therefore, since the integral

� ∞

z0
u−11/8du is

convergent, it follows that there exists a real number x1(> x0) such that (4.10)
holds.

On the other hand, if we write p = 2s − r − 1 and v := u p − 1, for the
integral in (4.13) we have

� z

z0

du

u
r+1
2 (u p − 1)1/2

=
1

p

� s

s0

dv

(v + 1)
1
p (

r+1
2 +p−1)

v1/2

with s = zp −1, s0 = z
p
0 −1. Then, for 1 < z < z0 , and since

r+1
2

+ p−1 > 0,
it holds the inequality

0 <

� s

s0

dv

(v + 1)
1
p (

r+1
2 +p−1)

v1/2
<

� s0

s

dv

v1/2
.
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This last proves (4.11) holds. Finally, (4.12) follows by direct calculation from
(4.9).

Type V: C > 0, K < 0. Equation (4.8) de�nes x as a function of y with the
following properties: there exists a real number x2 > 0 such that

(4.14) lim
y→∞

x (y) = x2 ,

(4.15) lim
y→0

x (y) = −∞,

(4.16)
dx

dy
> 0,

d2x

dy2
< 0.

We take as initial point (x0, y0), such that y0 > 0. Then we can write equation
(4.8) in the form

(4.17) x = x0 +
1

C1/2

� y

y0

dt

t (r+1)/2(t p − a)1/2
,

where a = 2K
(2s−r−1)C

(< 0), and p = 2s − r − 1. Hence, since t p − a > t p for
every t > 0, it follows easily that there exists x2 > 0 such that (4.14) holds.

On the other hand, 0 < t < y0 implies that 0 < t p − a < y
p
0 − a, and

hence the integral above can again be estimated, in this case by taking y < y0,
as follows
� y0

y

dt

t (r+1)/2(t p − a)1/2
>

1

(y
p
0 − a)1/2

� y0

y

dt

t (r+1)/2
≥

1

(y
p
0 − a)1/2

� y0

y

dt

t3/2
,

and since the right-hand member diverges to +∞ as y converges to 0, equation
(4.15) holds. Finally, (4.16) follows directly from (4.9).

Type VI: C < 0, K < 0. We have in this case the following properties:

(4.18) lim
y→0

x (y) = −∞,

(4.19) lim
y→ȳ0

x (y) = x3 > x0,

(4.20)
dx

dy
> 0,
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(4.21)
d2x

dy2
< 0, in (0, y#0);

d2x

dy2
(y#0 ) = 0;

d2x

dy2
> 0, in (y#0 , ȳ0),

where y#0 :=
�

(r+1)K
(2s−r−1)sC

�1/(2s−r−1)

.

We take, in this last case, (x0, y0) in such a way that 0 < y0 < ȳ0, with the
right limit ȳ0 := ((2K )/[2s − r − 1)C])1/(2s−r−1) being one of the singularities
of (4.8). Hence , it follows that

(4.22) x = x0 +
1

(−C)1/2

� y

y0

dt

t (r+1)/2(b − t p)1/2
,

where, similarly to the previous case, b = (2K )/[(2s − r − 1)C] > 0,
p = 2s − r − 1.

Now, since the inequality (b − t p)1/2 < b1/2 implies the estimate

� y0

y

dt

t (r+1)/2(b − t p)1/2
>

1

b1/2

� y0

y

dt

t (r+1)/2
≥

1

b1/2

� y0

y

dt

t3/2
,

for y < y0, then, equation (4.18) follows at once.
Next, we make the substitution 0 < u = b − t p in order to obtain, for

y > y0 the estimate

� y

y0

dt

t (r+1)/2(b − t p)1/2
= −

1

p

� b−y p

b−y
p

0

du

(b − u)1+
r−1
2p u1/2

<

< −
1

py
p+ r−1

2

0

� b−y p

b−y
p

0

du

u1/2
,

from which it follows (4.19).
Finally, equation (4.9) implies directly (4.20) and (4.21).

5. Further integration of the direct function.

We have computed in the previous section explicit solutions for three of
the types under consideration. Moreover, from the analysis practiced on the
remaining cases, which furnish the inverse functions of the solutions, x = x (y),
one gets the uni�ed conclusion that the latter are always invertible, allowing to
de�ne y as a function of x : say y = g(x ), for all possible cases. Thus, in
order to obtain the components of the functions de�ning the hypersurfaces we
need, in accordance with (3.1), to further integrate y = g(x ) two more times.
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This can be done for all of types, as we shall see in the current section. A
fundamental tool for accomplishing that goal will be the non-linear, ordinary
differential equations (3.4), which we now rewrite as

(5.1)
dy

dx
= g�(x ) = [g(x )](r+1)/2

�

C[g(x )]2s−r−1 −
2K

2s − r − 1

�1/2

.

We shall use this expression in order to analyze separately the diverse remaining
cases, and shall agree in denoting by G(x ), F(x ) the �rst and, respectively, the
second integral of g(x ) in all of possible cases.

Type IV: C > 0, K > 0. We easily obtain that, as a consequence of (4.10),
(4.11) and (4.12), the function y = g(x ), where g : (x̄1, x1) → R, is
characterized by the three following conditions

(5.2) lim
x→x1

g(x ) = +∞ ,

(5.3) lim
x→x̄1

g(x ) = ȳ0 :=

�
2K

2s − r − 1)C

�1/(2s−r−1)

> 0 ,

(5.4)
dg

dx
> 0,

d2g

dx 2
> 0, ∀x ∈ (x̄1, x1).

Lemma 5.1. The �rst integral of g(x ),G : (x̄1, x1) → R, satis�es the following
conditions:

(5.5) lim
x→x1

G(x ) = +∞ ,

(5.6) lim
x→x̄1

G(x ) = G1 ∈ R ,

(5.7) G �(x ) = g(x ) > 0, G ��(x ) = g�(x ) > 0, ∀x ∈ (x̄1, x1).



132 SALVADOR GIGENA

Proof. By taking (x̃0, ỹ0), with x̃0 ∈ (x̄1, x1), a typical integral of the function
g can be written

(5.8) G(x ) = ỹ0 +

� x

x̃0

g(t) dt .

Hence, if we de�ne a := [(2s − r − 1)C]/(2K ), the use of (5.1) allows to
write the latter as

(5.9) G(x ) = ỹ0 +

�
2s − r − 1

2K

�1/2 � x

x̃0

g�(t) dt

[g(t)](r−1)/2
�
a[g(t)]2s−r−1 − 1

�1/2 .

Next, by integrating by parts one obtains

G(x ) = ỹ0 +

�
2s − r − 1

2K

�1/2 2

3 − r

�
[g(t)](3−r)/2

�
a[g(t)]2s−r−1 − 1

�1/2

�x

x̃0

+(5.10)

+
a(2s − r − 1)3/2

(2K )1/2(3 − r)

� x

x̃0

[g(t)]2s−
3
2 r−

1
2 g�(t) dt

�
a[g(t)]2s−r−1 − 1

�3/2 .

Now, since for x > x̃0 the third term in the right-hand side of this identity is
greater that 0, while the second one diverges to +∞ as x converges to x1, it
follows that equation (5.5) holds.

(5.6) follows directly from (5.3) and (5.8); (5.7) is a consequence of (5.2)
through (5.4).

Lemma 5.2. The second integral of g(x ), F : (x̄1, x1) → R, satis�es the
following conditions:

(5.11)
F �(x ) = G(x ) ranges from G1 to + ∞,

F ��(x ) = G �(x ) > 0, ∀x ∈ (x̄1, x1) ,

(5.12) lim
x→x̄1

F(x ) = F1 ∈ R.

The other limit behaves as follows: in geometrical cases 1) r = 2, s = 2n+3
n+2

;

2) r = 2 − 1
n+2

, s = 2n+3
n+2

; 3) r = 2, s = 7n+10
4(n+2)

, (here it holds n > 2), 4)

r = 2 − 1
n+2

, s = 7n+10
4(n+2)

, with n > 2, we have that

(5.13) lim
x→x1

F(x ) = F1 ∈ R;

while in case 4) with n = 2,

(5.14) lim
x→x1

F(x ) = +∞.
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Proof. We write for F : (x̄1, x1) → R, and x̂0 ∈ (x̄1, x1),

(5.15) F(x ) = ŷ0 +

� x

x̂0

G(t) dt .

It is immediate to obtain, from Lemma 5.1 above, that the �rst two
derivatives of F behave as indicated in (5.11), while it is also easy to see, on the
other hand, that (5.12) holds.

To complete the study on the global behaviour of F we need to determine
lim
x→x1

F(x ), and to achieve this we have to analyze in more detail G(x ) near that

limit point. Let us consider the integral part in equation (5.9). We shall treat
separately two cases, namely:

A1 )
1

n+2
< 2s − r − 1; A2 )

1
n+2

≥ 2s − r − 1.

In case A1 ), if we �x a real number q such that 1
n+2

< q < 2s − r − 1, it
follows from (5.2) that there exists t1 in the open interval (x̃0, x1) such that for
every t ∈ (t1, x1) it holds

(5.16) [g(t)]q < a[g(t)]2s−r−1 − 1.

From this we obtain the estimate
� x

t1

g�(t) dt

[g(t)](r−1)/2
�
a[g(t)]2s−r−1 − 1

�1/2 <

� x

t1

g�(t) dt

[g(t)](r+q−1)/2
=(5.17)

=
2

3− r − q

�
[g(x )](3−r−q)/2 − [g(t1)]

(3−r−q)/2
�
,

for every x in the open interval (t1, x1). Next, we estimate the integral of [g(t)]p ,
with p = (3 − r − q)/2. We can write, by using (5.1) and (5.16), that

� x

t1

[g(t)]p dt =

�
2s − r − 1

2K

�1/2 � x

t1

[g(t)]p−
r+1
2 g�(t) dt

�
a[g(t)]2s−r−1 − 1

�1/2 <

<

�
2s − r − 1

2K

�1/2 � x

t1

[g(t)]p−
q
2 − r+1

2 g�(t) dt =

=

�
2s − r − 1

2K

�1/2 1

p − r−1
2

− q
2

�
[g(x )]p−(r+q−1)/2 − [g(t1)]

p−(r+q−1)/2
�
.

The last member has a �nite limit as x → x1, because for both cases of
current geometrical interest, namely r = 2 and r = 2 − 1

n+2
, we have that

p − (r + q − 1)/2 = 2 − (r + q) =

�
−q, if r = 2
1

n+2
− q, if r = 2 − 1

n+2

�
< 0.
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Hence, it follows in case A1) that

(5.18) lim
x→x1

F(x ) = F1 ∈ R.

To treat now case A2), we �x a real number q in the closed interval
[2s − r − 1, 1

n+2
]. Then it follows from (5.2) that there exists t1 in the open

interval (x̃0, x1) such that for every t ∈ (t1, x1) it holds

(5.19) a[g(t)]q > a[g(t)]q − 1 ≥ a[g(t)]2s−r−1 − 1.

From this we obtain the estimate

� x

t1

g�(t) dt

[g(t)](r−1)/2
�
a[g(t)]2s−r−1 − 1

�1/2 >
1

a1/2

� x

t1

g�(t) dt

[g(t)](r+q−1)/2
=(5.20)

=
1

a1/2
2

3 − r − q

�
[g(x )](3−r−q)/2) − [g(t1)]

(3−r−q)/2
�
,

for every x in the open interval (t1, x1). Next, we estimate the integral of [g(t)]p ,
with p = (3 − r − q)/2. We can write, by using (5.1) and (5.19), that

� x

t1

[g(t)]p dt =

�
2s − r − 1

2K

�1/2 � x

t1

[g(t)]p−
r+1
2 g�(t) dt

�
a[g(t)]2s−r−1 − 1

�1/2 >

>

�
2s − r − 1

2K

�1/2 1

a1/2

� x

t1

[g(t)]p−
q
2 − r+1

2 g�(t) dt =

=

�
2s − r − 1

2K

�1/2 a−1/2

p − r−1
2

− q
2

�
[g(x )]p−(r+q−1)/2) − [g(t1)]

p−(r+q−1)/2
�
.

Now, we have, as before, that

p − (r + q − 1)/2 = 2 − (r + q) =

�
−q, if r = 2,
1

n+2
− q, if r = 2 − 1

n+2
.

Hence, if r = 2 there is no conclusion. But, if r = 2− 1
n+2

and if, besides,

one can choose q < 1
n+2

, then it follows that lim
x→x1

F(x ) = +∞.

Thus, let us analyze next, the diverse cases 1) through 4) of current
geometrical interest:
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1) If r = 2, s = 2n+3
n+2

. It follows that 2s − r − 1 = n
n+2

> 1
n+2

, since n ≥ 2,
(case A1) ), and hence (5.13) holds.

2) If r = 2 − 1
n+2

, s = 2n+3
n+2

. It follows that 2s − r − 1 = n+1
n+2

> 1
n+2

, and
hence, again, (5.13) holds.

3) If r = 2, s = 7n+10
4(n+2)

. Recall that in the present case we also have n > 2.
Thus

2s − r − 1 =
n − 2

2(n + 2)
=

�
> 1

n+2
if n > 4,

≤ 1
n+2

if n ≤ 4 (i.e. n = 3, 4).

We are in case A1 ), if n > 4, and obtain that (5.13) holds.
On the other hand, if n = 3, 4 we can take q such that 0 < q < 2s−r −1,

repeat the argument as in case A1 ) and obtain, that (5.13) holds.

4) If r = 2 − 1
n+2

, s = 7n+10
4(n+2)

. It follows that

2s − r − 1 =
n

2(n + 2)
=

�
> 1

n+2
if n > 2, (A1))

≤ 1
n+2

if n ≤ 2 (i.e. n = 2) (A2)).

Thus, if n > 2, we have proven once again (5.13).
If n = 2, we can take q ∈ (2s− r −1, 1

n+2
) =

�
1
8
, 1
4

�
(case A2)) and obtain

(5.14).
The lemma is proved.

Type V: C > 0, K < 0. In this case, and according to (4.14) through (4.16)
we have for the direct function y = g(x ), with g : (−∞, x2) → R, the three
characterizing conditions described next

(5.21) lim
x→x2

g(x ) = +∞ ,

(5.22) lim
x→−∞

g(x ) = 0 ,

(5.23)
dg

dx
> 0,

d2g

dx 2
> 0, ∀x ∈ (−∞, x2).

Lemma 5.3. The �rst integral of g(x ), G : (−∞, x2) → R, satis�es the
following conditions:

(5.24) lim
x→x2

G(x ) = +∞ ,

(5.25) G �(x ) = g(x ) > 0, G ��(x ) = g�(x ) > 0, ∀x ∈ (−∞, x2) ,

(5.26) lim
x→−∞

G(x ) = G−∞ ∈ R.
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Proof. Let us choose a point (x̃0, ỹ0), with x̃0 < x2. Then, by (5.1), a �rst
integral of g is written

(5.27) G(x ) = ỹ0 +
1

C1/2

� x

x̃0

g�(t) dt

[g(t)]
r−1
2

�
[g(t)]2s−r−1 + b

�1/2 ,

with b = −(2K )/[(2s − r − 1)C] > 0.
Next, we integrate again by parts, in order to obtain that

G(x ) = ỹ0 +
1

C1/2

�
2

3 − r

[g(t)]
3−r
2

�
[g(t)]2s−r−1 + b

�1/2

�x

x̃0

+(5.28)

+
1

C1/2

2s − r − 1

3 − r

� x

x̃0

[g(t)]2s−
3r+1
2 g�((t) dt

�
[g(t)]2s−r−1 + b

�3/2 .

Thus, by observing that the term containing the integral is greater than zero
while the other diverges to +∞ as x converges to x2, it follows (5.24). It is also
immediate to check (5.25).

Now, if we �x a real number q , with 0 < q < 2s−r−1, we can �nd a real
number t2 ∈ (−∞, x2) such that [g(t)]q < [g(t)]2s−r−1 + b, for every t < t2.
Hence, the integral in the last member of (5.27) can be estimated. In fact, for
x < t2 we have

0 <

� t2

x

g�(t) dt

[g(t)]
r−1
2

�
[g(t)]2s−r−1 + b

�1/2 <

� t2

x

g�(t) dt

[g(t)]
r−1+q

2

=(5.29)

=
2

3 − r − q

�
[g(t)](3−r−q)/2

�t2
x

,

and since this last has a positive limit as x → −∞, it follows that (5.26) holds.

Lemma 5.4. The second integral of g(x ), F : (−∞, x2) → R, satis�es the
following conditions:

(5.30)

dF

dx
= G(x ) ranges from G−∞ to + ∞,

d2F

dx 2
=
dG

dx
= g(x ) > 0.

For r = 2, we have that

(5.31) lim
x→−∞

F(x ) =

�
+∞, if G−∞ < 0,

−∞, if G−∞ ≥ 0;
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and for r = 2 − 1
n+2

, on the other hand, it holds

(5.32) lim
x→−∞

F(x ) = F−∞ ∈ R.

The other limit behaves as follows: in geometrical cases 1), 2), 3) (recall
that here it holds n > 2), and 4) with n > 2, we have that

(5.33) lim
x→x2

F(x ) = F2 ∈ R;

while in case 4) with n = 2,

(5.34) lim
x→x2

F(x ) = +∞.

Proof. We proceed to integrate the function G , by choosing a point (x̂0, ŷ0)
with x̂0 < x2, and de�ne F : (−∞, x2) → R, by

(5.35) F(x ) = ŷ0 +

� x

x̂0

G(t) dt .

It is immediate to verify (5.30).
On the other hand, it is fairly obvious to get conclusions as to behaviour of

F near −∞ in the cases G−∞ > 0, G−∞ < 0. In order to see what happens
in the remaining, limiting case of G−∞ = 0, we observe, by using (5.22), that
there exists a real number t0 ∈ (−∞, x2) such that [g(t)]2s−r−1 + b < 2b, for
every t < t0. Hence, for x < x0 < t0, and by also using (5.1), we can write the
estimate

� x0

x

[g(t)]
3−r
2 dt

�
[g(t)]2s−r−1 + b

�1/2 > (2b)−1/2

� x0

x

[g(t)]
3−r
2 dt =

=
(2b)−1/2

C1/2

� x0

x

[g(t)]1−r g�(t) dt
�
[g(t)]2s−r−1 + b

�1/2 >
(2b)−1

C1/2

� x0

x

[g(t)]1−r g�(t) dt =

=

�
[(2b)−1]/(C1/2) (log g(x0) − log g(x )) , if r = 2,

[(2b)−1(n + 2)]/(C1/2)
�
[g(x0)

1
n+2 − [g(x )]

1
n+2

�
, if r = 2 − 1

n+2
.

Thus, for r = 2, the right-hand side diverges to +∞ when x → −∞ and,
then, (5.31) holds. On the other hand, for r = 2 − 1

n+2
, there is no conclusion

from the above equation. However, in this situation we can write

(5.36) G(x ) =

� x

−∞

g(t) dt,
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and it follows, from (5.1) and (5.29), that 0 < G(x ) < 2
3−r−q

1
C1/2 [g(x )]

3−r−q
2 ,

which implies the estimate

0 <

� t2

x

G(t) dt <
2

3 − r − q

1

C1/2

� t2

x

[g(t)]
3−r−q

2 dt =

=
2

3 − r − q

1

C

� t2

x

g�(t) dt

[g(t)]r−1+q
�
[g(t)]2s−r−1 + b

�1/2 <

<
2

3 − r − q

1

C

� t2

x

g�(t) dt

[g(t)]r−1+q
=

2

3 − r − q

1

C

1

2 − r − q

�
[g(t)]2−r−q

�t2
x

.

But, 2 − r − q = 1
n+2

, and since we can take q such that 0 < q < 1
n+2

, (5.32)
follows.

To �nish the analysis of the function F for this case it remains only to study
its behaviour near x2. For this purpose we consider �rst the integral in the last
member of (5.27). From there, since b > 0, we get for x > x0 the inequality

0 <

� x

x̃0

g�(t) dt

[g(t)](r−1)/2
�
[g(t)]2s−r−1 + b

�1/2 <

<

� x

x̃0

g�(t) dt

[g(t)]s−1
=

1

2 − s

�
[g(x )]2−s − [g(x̃0)]

2−s
�
.

We estimate, next, the integral of the variable part in this last member, by
also using again (5.1), to obtain

� x

x̃

[g(t)]2−s dt =

� x

x̃0

[g(t)]2−s−
r+1
2 g�(t) dt

�
C[g(t)]2s−r−1 − 2K

2s−r−1

�1/2 <

<
1

C1/2

� x

x0

[g(t)]2−2sg�(t) dt =
1

C1/2

1

3− 2s

�
[g(x )]3−2s − [g(x0)]

3−2s
�
.

Now, for s = 2n+3
n+2

we have 3 − 2s = − n
n+2

< 0, and for s = 7n+10
4(n+2)

,

3 − 2s = −n+2
2(n+2)

, which is < 0 if, and only if n ≥ 3.
Thus, in geometrical cases 1), 2), 3) with n > 2, and 4) with n > 2, (5.33)

holds.
We consider next subcase 4) with n = 2 and write

G(x ) = ỹ0 +
1

C1/2

� x

x̃0

g�(t) dt

[g(t)]3/8
�
[g(t)]1/8 + b

�1/2 .
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There exists t3 < x2 such that, for every t ∈ (t3, x2), [g(t)]
1/4 > [g(t)]1/8 +

b, hence
� x

t3

g�(t) dt

[g(t)]3/8
�
[g(t)]1/8 + b

�1/2 >

� x

t3

g�(t) dt

[g(t)]1/2
= 2

�
[g(x )]1/2 − [g(t3)]

1/2
�
.

Now, by integrating again we obtain
� x

t3

[g(t)]1/2 dt =
1

C1/2

� x

t3

g�(t) dt

[g(t)]7/8
�
[g(t)]1/8 + b

�1/2 >

>
1

C1/2

� x

t3

g�(t) dt

[g(t)]
=

1

C1/2
(log g(x )− log g(t3)) ,

and from this we get (5.34) checked.

Type VI: C < 0, K < 0. To trat this last type we make use of (4.18) through
(4.21) and obtain that the direct function y = g(x ), g : (−∞, x3) → R, has the
following properties

(5.37) lim
x→−∞

g(x ) = 0 ,

(5.38) lim
x→x3

g(x ) = y0 :=

�
2K

(2s − r − 1)C

�1/(2s−r−1)

,

(5.39)
dg

dx
> 0, for every x ∈ (−∞, x3) ,

(5.40)
d2g

dx 2
> 0, in (−∞, x #0 );

d2g

dx 2
(x #0) = 0;

d2g

dx 2
< 0, in (x #0 , x3),

where x #0 = g−1(y#0) and y
#
0 =

�
(r+1)K

(2s−r−1)sC

�1/(2s−r−1)

.

Lemma 5.5. The �rst integral of g(x ), G : (−∞, x3) → R, satis�es the
following conditions:

(5.41) lim
x→−∞

G(x ) = G−∞ ∈ R ,

(5.42) lim
x→x3

G(x ) = G3 ∈ R ,

(5.43)
dG

dx
= g(x ) > 0,

d2G

dx 2
=
dg

dx
> 0 .
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Proof. In order to integrate g, in the present case, we choose a point (x̃0, ỹ0),
with x̃0 < x3, and use again (5.1) in order to de�ne a =: 2K

(2s−r−1)C
> 0, and

G : (−∞, x3) → R, by

G(x ) := ỹ0 +

� x

x̃0

g(t) dt(5.44)

= ỹ0 +
1

(−C)1/2

� x

x̃0

g�(t) dt

[g(t)](r−1)/2
�
a − [g(t)]2s−r−1

�1/2 .

Now, there exists some t3 < x3 such that a/2 < a− [g(t)]2s−r−1 , for every
t < t3. Hence, we can write, for x < t3, the estimate

0 <

� t3

x

g�(t) dt

[g(t)]
r−1
2

�
a − [g(t)]2s−r−1

�1/2 <

�
2

a

�1/2 � t3

x

g�(t) dt

[g(t)]
r−1
2

=(5.45)

=

�
2

a

�1/2 2

3 − r

�
[g(t3)]

3−r
2 − [g(x )]

3−r
2

�
,

and since the right-hand side has a �nite limit as x → −∞, (5.41) is proved.
On the other hand, it is obvious that (5.42) follows from (5.38), and also

that (5.43) is a consequence of equations (5.37) through (5.39).

Lemma 5.6. The second integral of g(x ), F : (−∞, x3) → R, satis�es the
following conditions:

(5.46) lim
x→x3

F(x ) = F3 ∈ R,

(5.47)

d f

dx
= G(x ) ranges from G−∞ to G3, while

d2F

dx 2
=
dG

dx
> 0.

For r = 2, the other limit is given by

(5.48) lim
x→−∞

F(x ) =

�
+∞, if G−∞ < 0,

−∞, if G−∞ ≥ 0;

while for r = 2− 1
n+2

it holds

(5.49) lim
x→−∞

F(x ) =






+∞, if G−∞ < 0,

F−∞ ∈ R, if G−∞ = 0,

−∞, if G−∞ > 0.
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Proof. We integrate once again by choosing (x̂0, ŷ0), with x̂ < x3, and de�ne

(5.50) F(x ) = ŷ0 +

� x

x̂0

G(t) dt .

It is obvious that (5.46) follows from (5.42), while (5.43) furnishes (5.47).
We analyze the limit case where G−∞ = 0. Here the function G can be

expressed as

(5.51) G(x ) =

� x

−∞

g(t) dt .

Hence, by using again (5.1), we can further write

(5.52) G(x ) =
1

(−C)1/2

� x

−∞

g�(t) dt

[g(t)](r−1)/2
�
a − [g(t)]2s−r−1

�1/2 ,

and, from the inequality a − [g(t)]2s−r−1 < a, derive the estimate

G(x ) >

�

−
1

aC

�1/2 � x

−∞

[g(t)]
1−r
2 g�(t) dt =(5.53)

=

�

−
1

aC

�1/2 2

3 − r
[g(x )]

3−r
2 .

Hence we get, for x < x̂0,

� x̂0

x

G(t) dt >

�

−
1

aC

�1/2 2

3− r

� x̂0

x

[g(t)]
3−r
2 dt =(5.54)

=

�

−
1

aC

�1/2 2

3 − r

�

−
1

C

�1/2 � x̂0

x

[g(t)]1−r g�(t) dt
�
a − [g(t)]2s−r−1

�1/2 >

> −
1

aC

2

3− r

� x̂0

x

g�(t) dt

[g(t)]r−1
=

=






−
1

aC

2

3 − r

�
log g(x̂0) − log g(x )

�
, if r = 2,

−
(n + 2)

aC

2

3 − r

�
[g(x̂0)]

1
n+2 − [g(x )]

1
n+2

�
, if r = 2 −

1

n + 2
.

Then, for r = 2, since the last right-hand member diverges to +∞ as x
diverges to −∞, it follows that F(x ) itself diverges to −∞ in that case, and this
proves (5.48).
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We also observe that there is no conclusion from the above in the case
where r = 2 − 1

n+2
. Thus, for the latter case, we use inequality (5.45) in order

to write, for x < t3, the estimate

G(x ) =

� x

−∞

g(t) dt <
1

(−C)1/2

�
2

a

�1/2 2

3− r

�
g(x )

� 3−r
2 ,

and from this further obtain that

� t3

x

G(t) dt <

�

−
2

aC

�1/2 2

3 − r

� t3

x

[g(t)]
3−r
2 dt =

= −
1

C

�
2

a

�1/2 2

3− r

� t3

x

[g(t)]1−r g�(t) dt
�
a − [g(t)]2s−r−1

�1/2 <

< −
1

C

2

a

2

3 − r

� t3

x

[g(t)]1−r g�(t) dt =

= −
n + 2

C

2

a

2

3 − r

�
[g(t3)]

1/(n+2) − [g(x )]1/(n+2)
�
.

This proves (5.49), and �nishes the analysis of the function F in this case
and, therefore, in all of possible cases.

6. Unimodular Af�ne Mean Curvature.

We proceed to use the qualitative analysis developed in the two previous
sections in order to accomplish one of our goals: the local and global classi-
�cation of those hypersurfaces of decomposable type whose unimodular af�ne
mean curvature is constant:

Theorem 6.1. Let X : Mn → En+1 be a nondegenerate hypersurface of de-
composable type, with vanishing unimodular af�ne mean curvature (maximal-
minimal hypersurface if X (M) is, besides, locally strongly convex). Then, each
of its components f 1, f 2, . . . , f n , must be of one of the original types I through
VI, whose properties are enumerated below, or the corresponding three more
kinds of types than are obtained from those original types by suitable re�ections
in the x - and y-axis. All of the solutions belonging to the original types share
the common feature that their second derivatives, ( f k)

��

= y > 0, satisfy, in
each case, the classifying, non-linear, ordinary differential equation

y � = y3/2
�

Cyn/(n+2) −
2K

n

�1/2

.
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Type I: C = 0, K = 0: f k : R → R, given by f k (t k) = (t k)2 , (parabolic
type).

Type II: C = 0, K < 0: f k : (0, +∞) → R, given by f k (t k) = − log(t k),
(logarithmic type).

Type III: C > 0, K = 0: f k : (−∞, 0) → R, de�ned by f k(t k) =

−(−t k )n/(n+1) .

Type IV: C > 0, K > 0: f k de�ned on a �nite open interval, i.e. fk :�
t̄ k1 , t

k
1

�
→ R, such that

lim
t k→t̄ k

1

f k(t k ) = f̄ k1 ∈ R, lim
t k→t k

1

f k(t k) = f k1 ∈ R,

lim
t k→t̄ k

1

( f k)�(t k) = ( f̄ k1 )
� ∈ R, lim

t k→t k
1

( f k)�(t k ) = +∞,

lim
t k→t̄ k

1

( f k)��(t k) =

�
2K

nC

�(n+2)/n)

, lim
t k→t k

1

( f k )��(t k ) = +∞,

( f k )���(t k) > 0, ( f k )iv(t k) > 0, for every tk ∈ (t̄ k1 , t
k
1 ).

Type V: C > 0, K < 0: f k de�ned on a semi-in�nite interval, f k :
�
−∞, t k2

�
→

R, such that

lim
t k→−∞

f k(t k) =

�
+∞, if ( f k)�−∞ < 0,

−∞, if ( f k)�−∞ ≥ 0,
lim
t k→t k

2

f k(t k) = f k2 ∈ R,

lim
t k→−∞

( f k )�(t k) = ( f k)�−∞ ∈ R, lim
t k→t k

2

( fk )
�(t k) = +∞,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

2

( f k)��(t k) = +∞,

( f k)���(t k ) > 0, ( f k)iv(t k) > 0, for every tk ∈ (−∞, t k2 ).

Type VI: C < 0, K < 0: f k : (−∞, t k3 ) → R, with the following properties

lim
t k→−∞

f k(t k) =

�
+∞, if ( f k)�−∞ < 0,

−∞ if ( f k)�−∞ ≥ 0,
lim
t k→t k

3

f k(t k) = f k3 ∈ R,

lim
t k→−∞

( f k)�(t k ) = ( f k)�−∞ ∈ R, lim
t k→t k

3

( f k)�(t k ) = ( f k3 )
� ∈ R,
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lim
t k→−∞

( f k )��(t k) = 0, lim
t k→t k

3

( f k)��(t k) = ( f k3 )
�� :=

�
2(n + 2)K

nC

�(n+2)/n

,

( f k)���(t k) > 0, for every tk ∈ (−∞, t k3 ),

( f k)iv(t k) > 0 for t k ∈ (−∞, t k0 ),

( f k)iv(t k0 ) = 0,

( f k )iv(t k ) < 0 for t k ∈ (t k0 , t
k
3 ),

where tk0 =
�
( f k )��

�−1 �
[3(n + 2)2K ]/[n(2n + 3)C]

�(n+2)/n
.

Proof. This follows directly from Lemma 1.1 and the analysis practiced in the
two previous sections, as applied to equation (1.11), geometrical case 1), i.e.
r = 2, s = 2n+3

n+2
; and in particular by equations numbered (4.1) for Type I;

(4.2) for Type II; (4.5) for Type III; (5.2), (5.3), (5.4), Lemmas 5.1 and 5.2,
for Type IV; (5.21), (5.22), (5.23), Lemmas 5.3 and 5.4 for Type V; and (5.37),
(5.38), (5.39), (5.40), Lemmas 5.5 and 5.6 for Type VI.

Theorem 6.2. Let X : Mn → En+1 be a nondegenerate hypersurface of de-
composable type, with constant, nonvanishing unimodular af�ne mean curva-
ture. Then, n − 1 of its components must be of parabolic type; the remaining
one, labeled f k0 , with 1 ≤ k0 ≤ n, must be of one of the original Types II, IV, V,
or VI, whose properties are enumerated below, or the corresponding three more
kinds of types that are obtained from those original types by suitable re�ections
in the x− and y-axis. All of the solutions belonging to the original types share
the common feature that their second derivatives, ( f k)�� = y > 0, satisfy, in
each case, the classifying, non-linear, ordinary differential equation

y � = y
3n+5
2(n+2)

�

Cy
n+1
n+2 −

2(n + 2)K

n + 1

�1/2

.

Type II: C = 0, K < 0: f k : (0, +∞) → R, given by f k (t k) = (t k)−
2

n+1 .

Type IV: C > 0, K > 0: f k de�ned on a �nite open interval, i.e. fk :
(t̄ k1 , t

k
1 ) → R, such that

lim
t k→t̄ k

1

f k (t k) = f̄ k1 ∈ R, lim
t k→t k

1

f k (t k) = f k1 ∈ R,

lim
t k→t̄ k

1

( f k)�(t k) = ( f̄ k1 )
� ∈ R, lim

t k→t k
1

( f k)�(t k) = +∞,

lim
t k→t̄ k

1

( f k)��(t k) =

�
2(n + 2)K

(n + 1)C

� n+2
n+1

, lim
t k→t k

1

( f k)��(t k) = +∞,
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( f k)���(t k) > 0, ( f k)iv(t k) > 0, for every tk ∈
�
t̄ k1 , t k1

�
.

Type V : C > 0, K < 0: f k de�ned on a semi-in�nite interval, f k :
(−∞, t k2 )→ R, such that

lim
t k→−∞

f k (t k) = f k−∞ lim
t k→t k

2

f k (t k) = f k2 ∈ R,

lim
t k→−∞

( f k)�(t k) = ( f k )�−∞ ∈ R, lim
t k→t k

2

( fk )
�(t k) = +∞,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

2

( f k)��(t k) = +∞,

( f k)���(t k ) > 0, ( f k)iv(t k) > 0, for every tk ∈ (−∞, t k2 ).

Type VI: C < 0, K < 0: f k : (−∞, t k3 ) → R, with the following properties

lim
t k→−∞

f k(t k) =






+∞, if ( f k )�−∞ < 0,

f̄ k−∞ ∈ R, if ( f k )�−∞ = 0,

−∞, if ( f k )�−∞ > 0,

lim
t k→t k

3

f k(t k) = f k3 ∈ R,

lim
t k→−∞

( f k )�(t k) = ( f k)�∞ ∈ R, lim
t k→t k

3

( f k)�(t k) = ( f k3 )
� ∈ R,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

3

( f k )��(t k) = ( f k3 )
�� :=

�
2(n + 2)K

(n + 1)C

� n+2
n+1

,

( f k)���(t k) > 0, for every tk ∈ (−∞, t k3 ),

( f k)iv(t k) > 0 for t k ∈ (−∞, t k0 ),

( f k)iv(t k0 ) = 0,

( f k )iv(t k ) < 0 for t k ∈ (t k0 , t
k
3 ),

where tk0 =
�
( f k )��

�−1
([(n + 2)(3n + 5)K ]/[(n + 1)(2n + 3)C])(n+2)/(n+1) .

Proof. The properties described follow directly from Lemma 1.2 and the anal-
ysis practiced in the previous section, as applied to equation (1.12), geometrical
case 2), i.e. r = 2− 1

n+2
, s = 2n+3

n+2
. Observe, too, that the distinguished compo-

nent can not be of either Type I or III, since the constant in equation (1.12) must
be nonvanishing. Thus, excluded those two cases from the analysis, the rest of
the argument is a consequence of equations numbered (4.3), for Type II; (5.2),
(5.3), (5.4), Lemmas 6.1 and 6.2 for Type IV; (6.21), (6.22), (6.23), Lemmas 6.3
and 6.4 for Type V; and (6.37), (6.38), (6.39), (6.40), Lemmas 6.5 and 6.6 for
Type VI.
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7. Unimodular Af�ne Scalar Curvature.

Theorem 7.1. Let X : Mn → En+1 be a nondegenerate hypersurface of
decomposable type, with dimension strictly greater than two, n > 2, and with
vanishing unimodular af�ne scalar curvature. Then, each of its components
f 1, f 2, . . . , f n , must be of one of the original Types I through VI, whose
properties are enumerated below, or the corresponding three more kinds of types
that are obtained from those original types by suitable re�ections in the x - and
y-axis. All of the solutions belonging to the original types share the common
feature that their second derivatives, ( f k)�� = y > 0, satisfy, in each case, the
classifying, non-linear, ordinary differential equation

y � = y3/2
�

Cy
n−2

2(n+2) −
4(n + 2)K

n − 2

�1/2

.

Type I: C = 0, K = 0: f k : R → R, given by f k (t k) = (t k)2 , (parabolic
type).

Type II: C = 0, K < 0: f k : (0, +∞) → R, given by f k (t k) = − log(t k),
(logarithmic type).

Type III: C > 0, K = 0: f k : (−∞, 0) → R, de�ned by f k(t k) =

−(−t k )2(n−2)/(3n+2) .

Type IV: C > 0, K > 0: f k de�ned on a �nite open interval, i.e. fk :
(t̄ k1 , t

k
1 ) → R, such that

lim
t k→t̄ k

1

f k(t k) = f̄ k1 ∈ R, lim
t k→t k

1

f k (t k) = f k1 ∈ R,

lim
t k→t̄ k

1

( f k )�(t k) = ( f̄ k1 )
� ∈ R, lim

t k→t k
1

( f k)�(t k) = +∞,

lim
t k→t̄ k

1

( f k)��(t k) =

�
4(n + 2)K

(n − 2)C

�[2(n+2)]/(n−2)

, lim
t k→t k

1

( f k)��(t k) = +∞,

( f k )���(t k) > 0, ( f k )iv(t k) > 0, for every tk ∈ (t̄ k1 , t
k
1 ).

Type V: C > 0, K < 0: f k de�ned on a semi-in�nite interval, f k : (−∞, t k2 )→
R, such that

lim
t k→−∞

f k(t k) =

�
+∞, if ( f k)�−∞ < 0,

−∞, if ( f k)�−∞ ≥ 0,
lim
t k→t k

2

f k(t k) = f k2 ∈ R,
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lim
t k→−∞

( f k )�(t k) = ( f k)�−∞ ∈ R, lim
t k→t k

2

( fk )
�(t k) = +∞,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

2

( f k)��(t k) = +∞,

( f k)���(t k ) > 0, ( f k)iv(t k) > 0, for every tk ∈ (−∞, t k2 ).

Type VI: C < 0, K < 0: f k : (−∞, t k3 ) → R, with the following properties

lim
t k→−∞

f k(t k) =

�
+∞, if ( f k)�−∞ < 0,

−∞, if ( f k)�−∞ ≥ 0,
lim
t k→t k

3

f k(t k) = f k3 ∈ R,

lim
t k→−∞

( f k)�(t k ) = ( f k)�−∞ ∈ R, lim
t k→t k

3

( f k)�(t k ) = ( f k3 )
� ∈ R,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

3

( f k)��(t k) = ( f k3 )
�� :=

�
4(n + 2)K

(n − 2)C

� 2(n+2)
n−2

,

( f k)���(t k) > 0, for every tk ∈ (−∞, t k3 ),

( f k)iv(t k) > 0 for t k ∈ (−∞, t k0 ),

( f k)iv(t k0 ) = 0,

( f k )iv(t k ) < 0 for t k ∈ (t k0 , t
k
3 ),

where tk0 =
�
( f k )��

�−1 �
[24(n + 2)2K ]/[(n − 2)(7n + 10)C]

�[2(n+2)]/(n−2)
.

Proof. The present theorem follows from Lemma 1.3 and the analysis per-
formed in 4 and 5, as applied to equation (1.13), geometrical case 3), i.e. r = 2,
s = 7n+10

4(n+2)
, with n > 2. In particular, the equations that apply here are the

ones numbered: (5.1) for Type I; (5.2) for Type II; (5.5) for Type III; (5.2),
(5.3), (5.4), Lemmas 5.1 and 5.2 for Type IV; (5.21), (5.22), (5.23), Lemmas 5.3
and 5.4 for Type V; and (5.37), (5.38), (5.39), (5.40), Lemmas 5.5 and 5.6 for
Type VI.

Theorem 7.2. Let X : Mn → En+1 be a nondegenerate hypersurface of de-
composable type, with constant, nonvanishing unimodular af�ne scalar curva-
ture. Then, n − 1 of its components must be of parabolic type; the remaining
one, labeled f k0 , with 1 ≤ k0 ≤ n, must be of one the original Types II, IV, V,
or VI, whose properties are enumerated below, or the corresponding three more
kinds of types that are obtained from those original types by suitable re�ections
in the x− and y-axis. All of the solutions belonging to the original types share
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the common feature that their second derivatives, ( f k)�� = y > 0, satisfy, in
each case, the classifying, non-linear, ordinary differential equation

y � = y
3n+5
2(n+2)

�

Cy
n

2(n+2) −
4(n + 2)K

n

�1/2

.

Type II: C = 0, K < 0: f k : (0, +∞) → R, given by f k (t k) = (t k)−
2

n+1 .

Type IV: C > 0, K > 0: f k de�ned on a �nite open interval, i.e. fk :
(t̄ k1 , t

k
1 ) → R, such that

lim
t k→t̄ k

1

f k(t k) = f̄ k1 ∈ R, lim
t k→t k

1

f k (t k) =

�
+∞, if n = 2,

f k1 ∈ R, if n > 2,

lim
t k→t̄ k

1

( f k )�(t k) = ( f̄ k1 )
� ∈ R, lim

t k→t k
1

( f k)�(t k) = +∞,

lim
t k→t̄ k

1

( f k)��(t k ) =

�
4(n + 2)K

nC

�(n+2)/(n+1)

, lim
t k→t k

1

( f k)��(t k) = +∞,

( f k )���(t k) > 0, ( f k )iv(t k) > 0, for every tk ∈ (t̄ k1 , t
k
1 ).

Type V: C > 0, K < 0: f k de�ned on a semi-in�nite interval, f k : (−∞, t k2 )→
R, such that

lim
t k→−∞

f k (t k) = f k−∞, lim
t k→t k

2

f k(t k ) =

�
+∞, if n = 2,

f k2 ∈ R, if n > 2,

lim
t k→−∞

( f k)�(t k ) = ( f k)�−∞ ∈ R, lim
t k→tk2

( fk )
�(t k) = +∞,

lim
t k→−∞

( f k)��(t k) = 0, lim
t k→t k

2

( f k)��(t k) = +∞,

( f k)���(t k ) > 0, ( f k)iv(t k) > 0, for every tk ∈ (−∞, t k2 ).

Type VI: C < 0, K < 0: f k : (−∞, t k3 ) → R, with the following properties

lim
t k→−∞

f k(t k) =






+∞, if ( f k )�−∞ < 0,

f̄ k−∞ ∈ R, if ( f k )�−∞ = 0,

−∞, if ( f k )�−∞ > 0,

lim
t k→t k

3

f k(t k) = f k3 ∈ R,

lim
t k→−∞

( f k)�(t k ) = ( f k)�−∞ ∈ R, lim
t k→t k

3

( f k)�(t k ) = ( f k3 )
� ∈ R,
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lim
t k→−∞

( f k)��(t k ) = 0, lim
t k→t k

3

( f k )��(t k) = ( f k3 )
�� :=

�
4(n + 2)K

nC

� 2(n+2)
n

,

( f k)���(t k) > 0, for every tk ∈ (−∞, t k3 ),

( f k)iv(t k) > 0 for t k ∈ (−∞, t k0 ),

( f k)iv(t k0 ) = 0,

( f k )iv(t k ) < 0 for t k ∈ (t k0 , t
k
3 ),

where tk0 =
�
( f k )��

�−1
([8(n + 2)(3n + 5)K/[n(7n + 10)C])[2(n+2)]/n .

Proof. In this occasion the properties described follow from Lemma 1.4 and the
analysis practiced in former sections, as applied to equation (1.14), geometrical
case 4), i.e. r = 2 − 1

n+2
, s = 7n+10

4(n+2)
. Again, the distinguished component

can not be of either Type I or III, since the constant in equation (1.14) must
be nonvanishing. Thus, excluded those two cases from the analysis, the rest of
the argument is a consequence of equations numbered (4.3), for Type II; (5.2),
(5.3), (5.4), Lemmas 5.1 and 5.2 for Type IV, (5.21), (5.22), (5.23), Lemmas 5.3
and 5.4 for Type V; and (5.37), (5.38), (5.39), (5.40), Lemmas 5.5 and 5.6 for
Type VI.

8. Final Remarks.

We have studied so far, for hypersurfaces of decomposable type, the
cases when the scalar invariants represented by the Pick Invariant J ([8]), the
Unimodular Af�ne Mean Curvature L (7), and the Scalar Curvature R (8),
are separately constant. One question that arises naturally is the consideration
of the case when those three invariants are simultaneously constant. Let us
recall that these are related among them by the so-called Higher Dimensional
Af�ne Theorema Egregium. For dimension n = 2, i.e. for surfaces in three-
dimensional af�ne space, this problem has been considered in full generality by
Dilllen, Martínez, Milán, García Santos and Vrancken (see [5]). In our case,
the results to be presented are direct consequences of the theory developed in
previous sections and are valid for every dimension n ≥ 2.

Corollary 8.1. Let X : Mn → En+1 be a nondegenerate hypersurface
of decomposable type, with vanishing Pick Invariant J ≡ 0. Then, the
Unimodular Af�ne Mean Curvature and the Riemannian Scalar Curvature are
also, simultaneously, vanishing: L ≡ 0 and R ≡ 0.
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Proof. By Theorem 2.1 all of the components must be of parabolic or logarith-
mic types. Then, by using the characterizing condition represented by equation
(2.31) in [8], with the additional condition that the sum of the constants be zero:�
Ck = 0 (Lemma 2.1), the result follows by direct computations and the use

of the further characterizing conditions described by Lemma 1.1, for vanishing
unimodular af�ne mean curvature, and Lemma 1.3, for vanishing scalar curva-
ture.

Corollary 8.2. Let X : Mn → En+1 be a nondegenerate hypersurface of de-
composable type, with constant, nonvanishing unimodular af�ne Pick Invariant
J �= 0. Then, the Unimodular Af�ne Mean Curvature and the Riemannian
Scalar Curvature are also identically equal to (different) nonvanishing con-
stants: L = constant �= 0 and R = constant �= 0.

Proof. In this occasion, by Theorem 3.2, n − 1 components are of parabolic
type, while the remaining one is of the form ( f k0 )(t

k
0 ) = (t k0 )−2/(n+1) , and this

is exactly the so-called Type II, in both Theorem 6.2, which classi�es hyper-
surfaces of decomposable type with constant, nonvanishing unimodular af�ne
mean curvature L �= 0; and Theorem 7.2, which renders the corresponding re-
sult for constant, nonvanishing scalar curvature R �= 0. The corollary is proved.

In particular, for dimension n = 2, and for J = constant �= 0, we have
essentially the graphs of f (x , y) = x 2 ± y−2/3, while for J ≡ 0, we have,
besides both kinds of paraboloids, the graph of g(x , y) = log x − log y , and
this last can be easily seen to represent a ruled surface, by means of suitable
reparametrization: X (u, v) = (u · v, u/v, 2 logv). Compare to [5].
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[5] F. Dillen - A. Martínez - F. Milán - F. García Santos - L. Vrancken, On the
Pick invariant, the af�ne mean curvature and the Gauss curvature of af�ne sur-
faces, Results in Math., 20 (1991), pp. 622-642.



ORDINARY DIFFERENTIAL EQUATIONS. . . 151

[6] S. Gigena, On a conjecture by E. Calabi, Geom. Dedicata, 11 (1981), pp. 387-
396.

[7] S. Gigena, Constant af�ne mean curvature hypersurfaces of decomposable
type, Proceedings of Symposia in Pure Mathematics, American Mathematical
Society, 54 (1993), Part 3, pp. 289-316.

[8] S. Gigena, El invariante de Pick para hipersuper�cies descomponibles, Math.
Notae, 37 (1993/94), pp. 87-104.
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