SYMMETRIC Q-BESSEL FUNCTIONS

GIUSEPPE DATTOLI - AMALIA TORRE

Abstract

q analog of bessel functions, symmetric under the interchange of q and q^{-1} are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit $q \rightarrow 1$ reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

1. Introduction.

Many special function of mathematical physics have been shown to admit generalizations to a base q, which are usually reported as q-special functions.

Interest in such q functions is motivated by the recent and increasing relevance of q analysis, originally suggested almost a century ago [22], in exactly solvable models in statistical mechanics ([1],[23]). Like ordinary special functions, q-analogs satisfy second order q-differential equations and various identities or recurrence relations.

Basic hypergeometric series are the prototype of q-special functions, their properties and applications have been deeply investigated in ([9],[12]).

Basic analogs of Bessel functions have been introduced by Jackson [13] and Swarthow [21] as q-generalizations of the power series expansions, which

[^0]defines the ordinary cylindrical Bessel functions. Three different types of such q-extension can be recognized, each of them satisfy recurrence relations, second-order q-differential equations and addition theorems, which reduce to those holding for the usual Bessel functions in the limit $q \rightarrow 1$.

In analogy with the usual special functions, q-functions have recently been shown to admit an algebraic interpretation as matrix elements of q-exponentials of quantum-algebra generators on appropriate representation species. In [10], [11], for instance, a quantum-algebraic framework for q-Bessel functions is provided as well as for the basic hypergeometric function. Finally, in [6] the generating function method is proposed as alternative unifying formalism, where the various q-Bessel functions can be framed.

The above quoted investigations use the method of the standard q-analysis.
The discovery of quantum groups and algebras ([14], [8], [24]), characterized by deformed communication relations, which generalize the canonical commutation relations, has led to interest in q-analysis, which is symmetric under the interchange $q \rightarrow q^{-1}$.

Within that context, a lot of attention is devoted to the so-called q oscillators ([2], [18]) and to their possible physical applications in such fields as atomic and nuclear physics [18], quantum optics [4] and superintegrable systems [5]. In this connection, it is natural to investigate the possibility of introducing q-functions, which are symmetric under the interchange of q and $1 / q$. They are called symmetric to distinguish them from the standard ones. Symmetric q-exponential and gamma functions have been extensively studied in [16], [17].

In this paper, we address the problem of defining symmetric q-Bessel functions; in particular we follow the approach developed in [6] using indeed the symmetric q-exponential function to realize the generating functions.

Accordingly, in Section 2 we briefly review the definition and the relevant properties of the symmetric q-exponential function. In Section 3 symmetric q Bessel functions are defined and are shown to satisfy various identities, which, in the limit $q \rightarrow 1$, reproduce the well-known recurrence relation obeyed by the usual cylindrical Bessel functions.

In Section 4 we recognize the possibility of introducing shifting operators, which are then used to obtain the second-order q-differential equations obeyed by the symmetric q-Bessel functions.

Finally, concluding comments on the possible algebraic setting for these functions as well as on the possible modified versions of them are given in Section 5.

2. Symmetric \boldsymbol{q}-exponential functions.

Before entering the specific topic of the paper, let us briefly review the properties of the q-exponential functions, which will be basic to the forthcoming discussion on symmetric q-Bessel functions. Definitions of functions in q-analysis are borrowed from ordinary analysis through an appropriate generalization or " q-deformation". Accordingly, the q-exponential function is introduced as eigenfunction of the q-differentiation.

Hence, since standard and symmetric differentiations can be introduced in q-analysis, standard and symmetric q-exponential functions are defined.
For completeness'sake, we report in the following the definition of standard q derivative, although for a detailed account of the relevant properties the reader is addressed to [16], [17].
Standard q-derivatives is indeed defined as

$$
\begin{equation*}
\frac{d_{q} f(z)}{d_{q} z}=\frac{f(q z)-f(z)}{(q-1) z} \tag{1}
\end{equation*}
$$

which suggests to introducing the differentiation operator

$$
\begin{equation*}
\hat{D}_{q}=[(q-1) z]^{-1}\left\{q^{z d / d z}-1\right\} \tag{2}
\end{equation*}
$$

On the other hand, as noticed, in quantum groups significant role is played by operators or functions, which are symmetric under the interchange of q with $1 / q$. Symmetric q-derivative of an entire analytical function $f(z), z \in C$, is indeed introduced through the definition ([16], [17], [20])

$$
\begin{equation*}
\frac{d_{q}}{d(z: q)} f(z)=\frac{f(q z)-f\left(q^{-1} z\right)}{\left(q-q^{-1}\right) z} \tag{3}
\end{equation*}
$$

which in analogy with the standard q-differentiation suggests to introducing the operator

$$
\begin{equation*}
\hat{D}_{(z: q)} \equiv \frac{q}{\left(q^{2}-1\right) z}\left[q^{z d / d z}-q^{-z d / d z}\right] \tag{4}
\end{equation*}
$$

The following link with the standard q-differentiation operator \hat{D}_{q} is immediately recognized:

$$
\begin{equation*}
\hat{D}_{(z: q)}=\frac{q}{q+1}\left[\hat{D}_{q}+\frac{1}{q} \hat{D}_{1 / q}\right] \tag{5}
\end{equation*}
$$

and the more direct relation with $\hat{D}_{q^{2}}$ can be stated

$$
\begin{equation*}
\hat{D}_{(z: q)} f(z)=q \hat{D}_{q^{2}} q^{-z d / d z} f(z)=q \hat{D}_{q^{2}} f\left(q^{-1} z\right) . \tag{6}
\end{equation*}
$$

It is also evident that the operator (5) is invariant with respect to the interchange $q \rightarrow 1 / q$; explicitly

$$
\begin{equation*}
\hat{D}_{(z: q)}=\hat{D}_{(z: 1 / q)} . \tag{7}
\end{equation*}
$$

Let us briefly review the main properties of the operator (5). Acting on powers of z, the operator $\hat{D}_{(z: q)}$ gives

$$
\begin{equation*}
\hat{D}_{(z: q)} z^{n}=[n]_{q} z^{n-1} \tag{8}
\end{equation*}
$$

where the symbol $[n]_{q}$ denotes the number

$$
\begin{equation*}
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \tag{9}
\end{equation*}
$$

frequently occurring in the study of q-deformed quantum mechanical simple harmonic oscillator where $0<q<1$ ([2], [18]).

We list some relations satisfies by $[n]_{q}$, since they will be used in the following. It is easy to prove that

$$
\begin{align*}
& {[n]_{q}=[n]_{1 / q}=-[-n]_{q}} \\
& {[m+n]_{q}=q^{n}[m]_{q}+q^{-m}[n]_{q}=q^{m}[n]_{q}+q^{-n}[m]_{q}} \tag{10}\\
& {[0]_{q}=0 \quad[1]_{q}=1 .}
\end{align*}
$$

It is also useful to report the properties of the symmetric q-differentiation, which satisfies a sum rule, a product rule and, in special cases, a chain rule as follows

$$
\begin{align*}
\hat{D}_{(z: q)}[f(z)+g(z)] & =D_{(z: q)} f(z)+\hat{D}_{(z: q)} g(z) \\
\hat{D}_{(z: q)}[f(z) g(z)] & =g\left(q^{-1} z\right) \hat{D}_{(z: q)} f(z)+f(q z) \hat{D}_{(z: q)} g(z)= \\
& =g(q z) \hat{D}_{(z: q)} f(z)+f\left(q^{-1} z\right) \hat{D}_{(z: q)} g(z) \tag{11}\\
\hat{D}_{(z: q)}[f(\alpha z)] & =\alpha \hat{D}_{(\alpha z: q)} f(\alpha z) \\
\hat{D}_{(z: q)} f\left(z^{n}\right) & =[n]_{q} z^{n-1} \hat{D}_{\left(z^{n}: q^{n}\right)} f\left(z^{n}\right) .
\end{align*}
$$

As already noticed, q-analogs of exponential functions are defined as eigenfunctions of differentiation operators. Consequently, standard and symmetric q-exponential functions can be introduced according to whether the operators \hat{D}_{q} or $\hat{D}_{(z: q)}$ are considered.

Limiting ourselves to the operator $\hat{D}_{(z: q)}$, symmetric q-exponential function $E_{q}(z)$ can be introduced according to

$$
\begin{equation*}
\hat{D}_{(z ; q)} E_{q}(z)=E_{q}(z) \tag{12}
\end{equation*}
$$

with furthermore $E_{q}(z)$ being requested to be regular at $z=0$ and $E q(0)=1$.
If $q \in C, q \neq 0$ and $|q| \neq 1$, there is a unique function satisfying the required conditions. Hence, since $E_{1 / q}(z)$ satisfies (12) as well, we have that $E_{q}(z)=E_{1 / q}(z)$, thus confirming that E_{q} is symmetric in the parameter q with respect to the interchange of q and q^{-1}.

The power series expansion of E_{q} is given as

$$
\begin{equation*}
E_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!} \tag{13}
\end{equation*}
$$

with the q-factorial $[n]_{q}$! being defined as

$$
[n]_{q}!= \begin{cases}1 & n=0 \tag{14}\\ \prod_{r=1}^{n}[r]_{q} & n \geq 1\end{cases}
$$

The condition (12) is easily verified to hold according to the rule (8). The power series (13) has infinite radius of convergence, and hence $E_{q}(z)$ is an entire function for all $q \neq 0,|q| \neq 1$.

It is worth stressing that the exponential function $E_{q}(z)$ does not satisfy the semigroup property, i.e. $E_{q}(x) E_{q}(y) \neq E_{q}(x+y)$.

Using indeed the power series expansion (13), we can write

$$
\begin{equation*}
E_{q}(x) E_{q}(y)=\sum_{r=0}^{\infty} \frac{x^{r}}{[r]_{q}!} \sum_{k=0}^{\infty} \frac{y^{k}}{[k]_{q}!} . \tag{15}
\end{equation*}
$$

An appropriate rehandling of the sums entering the above expression allows to recast the product $E_{q}(x) E_{q}(y)$ in the form

$$
\begin{equation*}
E_{q}(x) E_{q}(y)=\sum_{n=0}^{\infty} \frac{\mathscr{Z}_{n}(x, y)}{[n]_{q}!} \tag{16}
\end{equation*}
$$

where $\mathscr{Z}_{n}(x, y)$ denotes the function

$$
\mathscr{Z}_{n}(x, y)=\sum_{h=0}^{n}\left[\begin{array}{l}
n \tag{17}\\
h
\end{array}\right]_{q} x^{n-h} y^{h}
$$

and $\left[\begin{array}{l}n \\ h\end{array}\right]_{q}$ can be understood as the q-analog of the binomial coefficient:

$$
\left[\begin{array}{l}
n \tag{18}\\
h
\end{array}\right]_{q} \equiv \frac{[n]_{q}!}{[h]_{q}![n-h]_{q}!} .
$$

However, the function $\mathscr{Z}_{n}(x, y)$ is not the q-analog of binomial formula, giving the n-th power of the sum $x+y$, which is indeed understood in the form

$$
[x+y]_{q}^{n} \equiv \sum_{h=0}^{n}\left[\begin{array}{l}
n \tag{19}\\
h
\end{array}\right] x^{n-h} y^{h} q^{-h(n+1)}
$$

Accordingly, the product (15) does not turn into q-exponential of $x+y$: $E_{q}(z) E_{q}(y) \neq E_{q}(x+y)$.

It might be interesting to derive the link between \mathscr{Z}_{n} and $[x+y]_{q}^{n}$, which indeed reads

$$
\begin{equation*}
[x+y]_{q}^{n} \equiv \mathscr{Z}_{n}\left(x, y q^{-n+1}\right) . \tag{20}
\end{equation*}
$$

In addition, let us notice that the q-binomial formula (19) satisfies the product rule:

$$
\begin{equation*}
[x+y]_{q}^{n}\left[x+q^{-2 n} y\right]_{q}^{m}=[x+y]_{q}^{n+m} \tag{21}
\end{equation*}
$$

and the following formulae for the q-derivatives with respect to x and y can be derived

$$
\begin{align*}
& \hat{D}_{(x: q)}[x+y]_{q}^{n}=[n]_{q}[x+y / q]_{q}^{n-1} \tag{22}\\
& \hat{D}_{(y: q)}[x+y]_{q}^{n}=[n]_{q} q^{-2 n}[q x+y]_{q}^{n-1}
\end{align*}
$$

which give the usual formulae in the limit $q \rightarrow 1$. Finally, it is worth stressing that the q-analogue of the binomial formula is not symmetric in the parameter q under the interchange $q \leftrightarrow q^{-1}$.

In the next section we use the symmetric q-exponential function $E_{q}(z)$ to generate symmetric q-Bessel functions.

3. Symmetric \boldsymbol{q}-Bessel functions.

Let us consider the product of symmetric q-exponential functions as

$$
\begin{equation*}
\mathscr{G}(x ; t: q)=E_{q}\left(\frac{x t}{2}\right) E_{q}\left(-\frac{x t}{2}\right) \tag{23}
\end{equation*}
$$

whose expression as series of t-powers can be easily obtained using the power series expansion of E_{q} given in (13). Explicitly, we have

$$
\begin{equation*}
\mathscr{G}(x ; t: q)=\sum_{n=-\infty}^{+\infty} t^{n} \sum_{k=0}^{\infty} \frac{(-1)^{s}(x / 2)^{n+2 k}}{[n+k]_{q}![k]_{q}!} \tag{24}
\end{equation*}
$$

Introducing symmetric q-Bessel functions $J_{n}(x: q)$ in full analogy with the standard case [10], that is as the coefficients of the expansion

$$
\begin{equation*}
\mathscr{G}(x ; t: q) \equiv \sum_{n=-\infty}^{+\infty} t^{n} J_{n}(x: q) \tag{25}
\end{equation*}
$$

it is immediate to get the explicit expression of $J_{n}(x: q)$ as x-power series

$$
\begin{equation*}
J_{n}(x: q)=\sum_{k=0}^{+\infty} \frac{(-1)^{k}(x / 2)^{n+2 k}}{[n+k]_{q}![k]_{q}!} . \tag{26}
\end{equation*}
$$

It is evident that $J_{n}(x: q)$ is symmetric under the interchange $q \leftrightarrow q^{-1}$

$$
\begin{equation*}
J_{n}(x: q)=J_{n}(x: 1 / q) \tag{27}
\end{equation*}
$$

Using the relation

$$
\begin{equation*}
[n]_{q}!=(n)_{q^{2}}!q^{-2 / n(n-1)} \tag{28}
\end{equation*}
$$

we can write (26) as

$$
\begin{array}{r}
J_{n}(x: q)=q^{n^{2} / 2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{x}{2 \sqrt{q}}\right)^{n+2 k} q^{k(n+k)}}{(k)_{q^{2}}!(n+k)_{q^{2}}!}= \\
q^{-n^{2} / 2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{x \sqrt{q}}{2}\right)^{n+2 k} q^{k(n+k)}}{(k)_{1 / q^{2}}!(n+k)_{1 / q^{2}}!} \tag{29}
\end{array}
$$

where the symbol $(n)_{q}$ means

$$
\begin{equation*}
(n)_{q}=\frac{1-q^{n}}{1-q} \tag{30a}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
(n)_{q}!=\prod_{k=1}^{n}(k)_{q} . \tag{30b}
\end{equation*}
$$

The functions (26) are characterized by recurrence relations, which can be easily obtained by taking the derivative of \mathscr{G} with respect to x. In fact, an account of the two possible expression for the symmetric q-derivative of a product as reported in (11), we obtain the two relations involving the q-derivative $J_{n}(x$: $q) \equiv \hat{D}_{(x: q)} J_{n}(x: q)$, and the contiguous functions $J_{n-1}(x: q), J_{n+1}(x: q)$, namely

$$
\begin{align*}
& 2 J_{n}^{\prime}(x: q)=q^{\frac{n-1}{2}} J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right)-q^{\frac{n+1}{2}} J_{n+1}(x \sqrt{q}: q) \\
& 2 J_{n}^{\prime}(x: q)=q^{-\frac{n-1}{2}} J_{n-1}(x \sqrt{q}: q)-q^{-\frac{n+1}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right) \tag{31}
\end{align*}
$$

which can be obtained from each other by changing $q \rightarrow 1 / q$. On the other hand, by multiplying the expression (26) by $[n]_{q}$ and exploiting the property of $[n]_{q}$, according to which (see Eq. (10))

$$
[n]_{q}=q^{s}[n+s]_{q}-q^{n+s}[s]_{q}
$$

the further relation can be inferred
(32a) $\frac{2[n]_{q}}{x} J_{n}(x: q)=q^{-\frac{(n-1)}{2}} J_{n-1}(x \sqrt{q}: q)+q^{\frac{n+1}{2}} J_{n+1}(x \sqrt{q}: q)$
which by changing $q \rightarrow 1 / q$ turns into

$$
\begin{equation*}
\frac{2}{x}[n]_{q} J_{n}(x: q)=q^{\frac{n-1}{2}} J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right)+q^{-\frac{(n+1)}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right) . \tag{32b}
\end{equation*}
$$

Useful relations can be obtained by combining the above equations or directly exploiting the series expansion (26).

For instance, from (31) and (32) one gets

$$
\begin{align*}
& q^{\frac{n-1}{2}} J_{n}\left(\frac{x}{\sqrt{q}}: q\right)-q^{-\frac{(n-1)}{2}} J_{n-1}(x \sqrt{q}: q)= \tag{33}\\
& \quad=q^{\frac{n+1}{2}} J_{n+1}(x \sqrt{q}: q)-q^{-\frac{(n+1)}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right)
\end{align*}
$$

by putting $x \rightarrow x / \sqrt{q}$ and $x \rightarrow x \sqrt{q}$ in the above equation, the further relations follows

$$
\begin{align*}
\frac{q^{2}-1}{q}[n]_{q} J_{n+1}(x: q) & =q^{-1}\left[J_{n+1}\left(\frac{x}{q}: q\right)+q^{n} J_{n-1}\left(\frac{x}{q}: q\right)\right]- \tag{34}\\
& -q\left[J_{n+1}(x q: q)+q^{-n} J_{n-1}(x q: q)\right]
\end{align*}
$$

and

$$
\begin{align*}
\frac{q^{2}-1}{q}[n]_{q} J_{n-1}(x: q) & =q\left[J_{n-1}(x q: q)+q^{n} J_{n+1}(x q: q)\right]- \tag{35}\\
& -q^{-1}\left[J_{n-1}\left(\frac{x}{q}: q\right)+q^{-n} J_{n+1}\left(\frac{x}{q}: q\right)\right]
\end{align*}
$$

Correspondingly, by using the expression (26) the following relations can be proved

$$
\begin{gather*}
q^{-\frac{(n-1)}{2}} J_{n-1}(x \sqrt{q}: q)=\frac{x}{2 q}\left(1-q^{2}\right) J_{n}(x: q)+q^{\frac{n-1}{2}} J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right) \\
q^{-\frac{(n+1)}{2}} J_{n+1}(x \sqrt{q}: q)=\frac{x}{2 q}\left(1-q^{2}\right) J_{n+2}(x: q)+q^{\frac{n+1}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right) \tag{36}
\end{gather*}
$$

which state a further link between the contiguous functions $J_{n}(\bullet: q), J_{n-1}(\bullet$: $q)$ and $J_{n+1}(\bullet: q)$. It is worth stressing that there does not exist the analog for the ordinary functions. Let us not that in the relations (31) the functions J_{n-1} and J_{n+1} appear with different arguments x / \sqrt{q} and $x \sqrt{q}$ respectively or viceversa. Conversely, in the relations (32) the functions J_{n-1} and J_{n+1} have the same argument, namely $x \sqrt{q}$ and x / \sqrt{q}. Exploiting the relations (36), one can rewrite the basic recurrences (31) in a form symmetric with respect to the arguments of J_{n-1} and J_{n+1}; and correspondingly one can turn (32) in a fashion where J_{n-1} and J_{n+1} have different arguments.

Explicitly, we have

$$
\begin{align*}
{\left[2 \hat{D}_{(x: q)}\right.} & \left.-\left(1-q^{2}\right) \frac{x}{2 q}\right] J_{n}(x: q)= \tag{37a}\\
& =q^{\frac{n-1}{2}} J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right)-q^{-\frac{(n+1)}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right)
\end{align*}
$$

which changing q into $1 / q$ gives

$$
\begin{align*}
& {\left[2 \hat{D}_{(x: q)}+\left(1-q^{2}\right) \frac{x}{2 q}\right] J_{n}(x: q)=} \tag{37b}\\
& \quad=q^{-\frac{(n-1)}{2}} J_{n-1}(x \sqrt{q}: q)-q^{\frac{n+1}{2}} J_{n+1}(x \sqrt{q}: q) .
\end{align*}
$$

Similarly, combining (32) and (36) one gets

$$
\begin{align*}
{\left[\frac{2[n]_{q}}{x}\right.} & \left.-\frac{x}{2 q}\left(1-q^{2}\right)\right] J_{n}(x: q)= \tag{38a}\\
& =q^{\frac{(n-1)}{2}} J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right)+q^{\frac{n+1}{2}} J_{n+1}(x \sqrt{q}: q)
\end{align*}
$$

$$
\begin{align*}
{\left[\frac{2[n]_{q}}{x}\right.} & \left.+\frac{x}{2 q}\left(1-q^{2}\right)\right] J_{n}(x: q)= \tag{38b}\\
& =q^{-\frac{(n-1)}{2}} J_{n-1}(x \sqrt{q}: q)+q^{-\frac{n+1}{2}} J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right) .
\end{align*}
$$

The brief discussion clearly display the wealth of possible relations, which can be drawn, involving $J_{n}(\bullet: q)$, the contiguous functions $J_{n-1}(\bullet: q), J_{n+1}(\bullet: q)$ and the derivative $J_{n}^{\prime}(\bullet: q)$. This is a direct consequence of that the base q differs from unity: $q \neq 1$; in fact, as noticed in connection with (36), some of these relations do not have the analog in the limit $q \rightarrow 1$, i.e. for the ordinary Bessel functions.

4. Shifting operators and differential equations.

In the theory of ordinary Bessel functions the relevant recurrence relations allow to recognize shifting operators \hat{E}_{-}and \hat{E}_{+}, which turn the functions of order n into the functions of the order $n-1$ and $n+1$, respectively. They play a significant role within the framework of group-theoretical interpretation of ordinary Bessel functions. In a purely mathematical context they allow to derive the differential equation obeyed by the Bessel functions in a straightforward way. Similarly, shifting operators can be introduced for q-Bessel functions as well, although in this case on turning the function of order n into that of order $n-1$ or $n+1$ they also rescale the argument by the factor \sqrt{q} or $1 / \sqrt{q}$. Accordingly, four types of shifting operators can be defined. Indeed, combining
appropriately the recurrence relations (32) and (37), it is easy to obtain

$$
\begin{align*}
& \hat{E}_{-}^{(q, n)}(x)=q^{\frac{n-1}{2}}\left\{\frac{[n]_{q}}{x}+\hat{D}_{(x: q)}+\left(1-q^{2}\right) \frac{x}{4 q}\right\} \tag{39}\\
& \hat{E}_{+}^{(q, n)}(x)=q^{-\frac{(n+1)}{2}}\left\{\frac{[n]_{q}}{x}-\hat{D}_{(x: q)}-\left(1-q^{2}\right) \frac{x}{4 q}\right\}
\end{align*}
$$

which act on $J_{n}(x: q)$ according to

$$
\begin{align*}
& \hat{E}_{-}^{(q, n)}(x) J_{n}(x: q)=J_{n-1}(x \sqrt{q}: q) \\
& \hat{E}_{+}^{(q, n)}(x) J_{n}(x: q)=J_{n+1}(x \sqrt{q}: q) \tag{40}
\end{align*}
$$

the argument of the functions J_{n-1} and J_{n+1} being rescaled by the factor \sqrt{q}.
Correspondingly, the further operators $\hat{E}_{-}^{(1 / q, n)}(x), \hat{E}_{+}^{(1 / q, n)}(x)$ explicitly given by

$$
\begin{align*}
& \hat{E}_{-}^{(1 / q, n)}(x)=q^{-\frac{(n-1)}{2}}\left\{\frac{[n]_{q}}{x}+\hat{D}_{(x: q)}-\left(1-q^{2}\right) \frac{x}{4 q}\right\} \\
& \hat{E}_{+}^{(1 / q, n)}(x)=q^{\frac{n+1}{2}}\left\{\frac{[n]_{q}}{x}-\hat{D}_{(x: q)}+\left(1-q^{2}\right) \frac{x}{4 q}\right\} \tag{41}
\end{align*}
$$

can be recognized, which differ from the above (39) since the argument of the functions J_{n-1} and J_{n+1} is rescaled by $1 / \sqrt{q}$; namely

$$
\begin{align*}
& \hat{E}_{-}^{(1 / q, n)}(x) J_{n}(x: q)=J_{n-1}\left(\frac{x}{\sqrt{q}}: q\right) \\
& \hat{E}_{+}^{(1 / q, n)}(x) J_{n}(x: q)=J_{n+1}\left(\frac{x}{\sqrt{q}}: q\right) \tag{42}
\end{align*}
$$

It is needless to say that the operators (41) can be obtained from (39) by simply changing q into $1 / q$. However they are crucial in deriving the differential equation obeyed by $J_{n}(x: q)$.

Indeed, it is evident the following identity

$$
\begin{equation*}
\hat{E}_{-}^{(1 / q, n+1)}(x \sqrt{q}) \hat{E}_{+}^{(q, n)}(x) J_{n}(x: q)=J_{n}(x: q) \tag{43}
\end{equation*}
$$

where it has been explicitly indicated that the operator $\hat{E}_{+}^{(q, n)}$ acts on a function of order n and argument x, whilst $\hat{E}_{-}^{(1 / q, n+1)}$ acts on the function of order $n+1$ and with rescaled argument $x \sqrt{q}$.

Since

$$
\begin{equation*}
\hat{E}_{-}^{(1, / q, n+1)}(x \sqrt{q})=q^{-\frac{n+1}{2}}\left\{\frac{[n+1]_{q}}{x}+\hat{D}_{(x: q)}-\frac{x}{4}\left(1-q^{2}\right)\right\} \tag{44}
\end{equation*}
$$

after some algebra we end up with

$$
\begin{equation*}
\hat{\mathscr{Z}}_{q}^{(n)}(x) J_{n}(x: q)=0 \tag{45}
\end{equation*}
$$

where the q-Bessel operator $\hat{\mathscr{L}}_{q}^{(n)}$ has the rather complicated expression

$$
\begin{align*}
\hat{\mathscr{Z}}_{q}^{(n)}(x) & =\frac{[n]_{q}^{2}}{2 q x^{2}}\left(1+q^{2}\right)-\frac{1-q^{2}}{4 q}\left(q^{n}+q^{-n}\right)-\frac{1-q^{2}}{2}[n]_{q}+ \tag{46}\\
& +\frac{x^{2}}{32 q^{3}}\left(1+q^{2}\right)\left(1-q^{2}\right)^{2}-\left(q^{n}+q^{-n}\right) \frac{1}{2 x} \hat{D}_{(x: q)}- \\
& -\hat{D}_{(x: q)}^{2}-q^{n+1}
\end{align*}
$$

which reduces to the ordinary Bessel operator in the limit $q \rightarrow 1$.
The above operator is not symmetric under the interchange of q and q^{-1}, thus providing a further q-differential equation obeyed by $J_{n}(x: q)$

$$
\begin{align*}
\hat{\mathscr{Z}}_{1 / q}^{(n)}(x) & =\frac{[n]_{q}^{2}}{2 q x^{2}}\left(1+q^{2}\right)+\frac{1}{4 q}\left(1-q^{2}\right)\left(q^{n}+q^{-n}\right)+ \tag{47}\\
& +\frac{1-q^{2}}{2 q^{2}}[n]_{q}+\frac{x^{2}}{32 q^{3}}\left(1+q^{2}\right)\left(1-q^{2}\right)^{2}- \\
& -\left(q^{n}+q^{-n}\right) \frac{1}{2 x} \hat{D}_{(x: q)}-\hat{D}_{(x: q)}^{2}-q^{-(n+1)} .
\end{align*}
$$

Before closing the section, let us discuss the symmetric properties of $J_{n}(x: q)$ with respect to the index n and the argument x, multiplication and addition formulas being discussed in [23].

It is easy to prove that

$$
\begin{align*}
& J_{n}(-x: q)=(-1)^{n} J_{n}(x: q) \\
& J_{n}(x: q)=J_{n}(-x: q) \tag{48}
\end{align*}
$$

strongly reminiscent of the corresponding relations obeyed by the usual Bessel functions.

5. Concluding remarks.

The analysis performed in the previous section confirms the possibility of introducing q-analogs of Bessel function, which are symmetric in the parameter q with respect to the interchange of q and $1 / q$. In full analogy with the ordinary case, recurrence relations, shifting operators and q-differential equations can be obtained.

The approach we follow is based on the generating function; which is defined as the product of symmetric q-exponential functions with appropriate arguments.

As already noticed, q-Bessel functions linked to the standard q-exponential function $e_{q}(z)$ have been introduced ([13], [21], [6]); three different types of functions can be recognized in this case as a consequence of the noninvariance of the exponential e_{q} with respect to the interchange $q \leftrightarrow q^{-1}$. The properties of these functions have been deeply investigated, also within the context of the theory of group representation. In [10],[11] it has been shown that q-generalizations of Bessel functions appear in the realization of the twodimensional Euclidean quantum algebra $\mathscr{E}(2)$. Similarly, symmetric q-Bessel functions can be understood as matrix elements of the representation of $\mathscr{E}(2)$ on the Hilbert space of all the linear combinations of the functions $z^{n}, z \in C$ and $n \in N$. The group elements are realized as product of exponentials of the three generators, the symmetric q-exponential function E_{q} being involved. In this connection, it is needless to say that the generating function method can be immediately recovered within the group representation framework, as shown in [7]. As a conclusion, let us stress that symmetric q-analog of modified Bessel functions can be defined quite straightforwardly.

In particular we note that they are specified by the generating function

$$
\begin{equation*}
E_{q}\left(\frac{x t}{2}\right) E_{q}\left(-\frac{x t}{2}\right)=\sum_{-\infty}^{+\infty} t^{n} I_{n}(x: q) \tag{49}
\end{equation*}
$$

The analytical continuation formula

$$
\begin{equation*}
i^{n} I_{n}(x: q)=J_{n}(i x: q) \tag{50}
\end{equation*}
$$

is a consequence of the identity

$$
\begin{equation*}
E_{q}\left(\frac{i x t}{2}\right) E_{q}\left(-\frac{i x}{2 t}\right)=E_{q}\left(\frac{x(i t)}{2}\right) E_{q}\left(\frac{x}{2(i t)}\right) \tag{51}
\end{equation*}
$$

The q-differential equation satisfied by $I_{n}(x: q)$ can be obtained from Eq. (47), by replacing x with $i x$.

Other special functions like q-Hermite and q-Laguerre polynomials or functions can be introduced and furthermore an algebraic setting for them can be recognized [7].

REFERENCES

[1] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic, London, 1982.
[2] L.C. Biedenharn, The Quantum Group $\operatorname{SU}(2)_{q}$ and a q-Analogue of the Boson Operators, J. Phys., A 22 (1984), pp. L873-L878.
[3] D. Bonatsos - C.Daskaloyannis, Generalized Deformed Oscillator for the Paring Correlations in a Single-J. Shell, Phys. Lett., 278B (1992), pp. 1-6.
[4] M. Chaichian - D. Ellinas - P.P. Kulish, Quantum Algebra as the Dynamical Symmetry of the Deformed Jaynes-Cummings Model, Phys. Rev. Lett., 65 (1990), pp. 980-983.
[5] M. Chaichian - P.P. Kulish, Quantum Lie Superalgebras and q-Oscillators, Phys. Lett., B234 (1990), pp. 72-80.
[6] G. Dattoli - A. Torre, q-Bessel Functions: the Point of View of the Generating Function Method, submitted to Rendiconti di Matematica.
[7] G. Dattoli - A. Torre, in preparation.
[8] V.G. Drinfeld, Quantum Groups, in Proc. ICM Berkely, 1 (1986), pp. 798-820.
[9] H. Exton, Q-Hypergeometric Functions And applications, Ellis Horwood Series In Mathematics and its Application (E. Horwood, Chichester, West Sussex, 1983).
[10] R. Floreanini - L. Vinet, Addition Formulas for q-Bessel Functions, J. Math. Phys., 33 (1992), pp. 2984-2988.
[11] R. Floreanini - L. Vinet, Quantum Algebras and q-Special functions, Ann. Phys., 221 (1993), pp. 53-70.
[12] C. Gasper - M. Rahman, Basic Hypergeomteric Series, Cambridge Univ. Press, Cambridge, UK, 1990.
[13] F.H. Jackson, The Applications of Basic Numbers to Bessel's and Legendre's Functions, Proc. London Math. Soc., 2 (1903-1904), pp. 192-220.
[14] M. Jimbo, A q-Difference Analogue of $U(g)$ and the Yang-Baxter Equation, Lett. Math. Phys., 10 (1985), pp. 63-69.
[15] P.P. Kulish - E.V. Damaskinsky, On the q-Oscillator and the Quantum Algebra $S U_{q}(1,1)$, J. Phys., 23 (1990), pp. L415-L. 419.
[16] D.S. McAnally, q-Exponential and q-Gamma Functions. I. q-Exponential Functions, J. Math. Phys., 36 (1995), pp. 546-473.
[17] D.S. McAnally, q-Exponential and q-Gamma Functions. I. q-Gamma Functions, J. Math. Phys., 36 (1995), pp. 574-595.
[18] R.J. McDermott - A.I. Solomon, Double Squeezing in Generalized q-Coherent States, J. Phys. A:Math. Gen., 27 (1994), pp. L15-L19.
[19] A.J. Mac Farlane, On q-Analogues of the Quantum Harmonic Oscillator and the Quantum Group $S U(2)_{q}$, J. Phys., A 22 (1989), pp. 4581-4588.
[20] P. Nalli, Sopra un procedimento di calcolo analogo all'integrazione, Opere Scelte a cura dell'Unione Matematica Italiana, 1976, pp. 297-334.
[21] R.F. Swarthow, An Addition Theorem and Some Product Formulas for the HahnExton q-Bessel Functions, Can. J. Math., 44 (1992), pp. 867-879.
[22] N.Ja. Vilenkin - A.U. Klymik, Representation of Lie Groups and Special Functions, Kluwer Ac. Publ. Dordrecht, 1992, Chapt. 14, pp. 1-136 and references there in.
[23] M. Wadati - T. Degrechi - Y. Akutsu, Exact Solvable Models and Knot Theory, Phys. Rep., 180 (1989), pp. 248-332.
[24] S.L. Woronowicz, Compact Matrix Pseudogroups, Comm. Math. Phys., 111 (1987), pp. 613-665.

ENEA, Dip. Innovazione,
Divisione Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Roma (ITALY)

[^0]: Entrato in Redazione l'11 settembre 1996.

