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SYMMETRIC Q-BESSEL FUNCTIONS

GIUSEPPE DATTOLI - AMALIA TORRE

q analog of bessel functions, symmetric under the interchange of q and
q−1 are introduced. The de�nition is based on the generating function real-
ized as product of symmetric q-exponential functions with appropriate argu-
ments. Symmetric q-Bessel function are shown to satisfy various identities
as well as second-order q-differential equations, which in the limit q → 1
reproduce those obeyed by the usual cylindrical Bessel functions. A brief dis-
cussion on the possible algebraic setting for symmetric q-Bessel functions is
also provided.

1. Introduction.

Many special function of mathematical physics have been shown to admit
generalizations to a base q , which are usually reported as q -special functions.

Interest in such q functions is motivated by the recent and increasing
relevance of q analysis, originally suggested almost a century ago [22], in
exactly solvablemodels in statisticalmechanics ([1],[23]). Like ordinary special
functions, q -analogs satisfy second order q -differential equations and various
identities or recurrence relations.

Basic hypergeometric series are the prototype of q -special functions, their
properties and applications have been deeply investigated in ([9],[12]).

Basic analogs of Bessel functions have been introduced by Jackson [13]
and Swarthow [21] as q -generalizations of the power series expansions , which
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de�nes the ordinary cylindrical Bessel functions. Three different types of
such q -extension can be recognized, each of them satisfy recurrence relations,
second-order q -differential equations and addition theorems, which reduce to
those holding for the usual Bessel functions in the limit q → 1.

In analogy with the usual special functions, q -functions have recently been
shown to admit an algebraic interpretation as matrix elements of q -exponentials
of quantum-algebra generators on appropriate representation species. In [10],
[11], for instance, a quantum-algebraic framework for q -Bessel functions is
provided as well as for the basic hypergeometric function. Finally, in [6]
the generating function method is proposed as alternative unifying formalism,
where the various q -Bessel functions can be framed.

The above quoted investigations use the method of the standard q -analysis.
The discovery of quantum groups and algebras ([14], [8], [24]), charac-

terized by deformed communication relations, which generalize the canonical
commutation relations, has led to interest in q -analysis, which is symmetric
under the interchange q → q−1.

Within that context, a lot of attention is devoted to the so-called q -
oscillators ([2], [18]) and to their possible physical applications in such �elds
as atomic and nuclear physics [18], quantum optics [4] and superintegrable
systems [5]. In this connection, it is natural to investigate the possibility of
introducing q -functions, which are symmetric under the interchange of q and
1/q . They are called symmetric to distinguish them from the standard ones.
Symmetric q -exponential and gamma functions have been extensively studied
in [16], [17].

In this paper, we address the problem of de�ning symmetric q -Bessel
functions; in particular we follow the approach developed in [6] using indeed
the symmetric q -exponential function to realize the generating functions.

Accordingly, in Section 2 we brie�y review the de�nition and the relevant
properties of the symmetric q -exponential function. In Section 3 symmetric q -
Bessel functions are de�ned and are shown to satisfy various identities, which,
in the limit q → 1, reproduce the well-known recurrence relation obeyed by the
usual cylindrical Bessel functions.

In Section 4 we recognize the possibility of introducing shifting operators,
which are then used to obtain the second-order q -differential equations obeyed
by the symmetric q -Bessel functions.

Finally, concluding comments on the possible algebraic setting for these
functions as well as on the possible modi�ed versions of them are given in
Section 5.
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2. Symmetric q -exponential functions.

Before entering the speci�c topic of the paper, let us brie�y review the
properties of the q -exponential functions, which will be basic to the forthcom-
ing discussion on symmetric q -Bessel functions. De�nitions of functions in
q -analysis are borrowed from ordinary analysis through an appropriate gener-
alization or �q -deformation�. Accordingly, the q -exponential function is intro-
duced as eigenfunction of the q -differentiation.

Hence, since standard and symmetric differentiations can be introduced in
q -analysis, standard and symmetric q -exponential functions are de�ned.
For completeness�sake, we report in the following the de�nition of standard q -
derivative, although for a detailed account of the relevant properties the reader
is addressed to [16], [17].
Standard q -derivatives is indeed de�ned as

(1)
dq f (z)

dq z
=

f (qz) − f (z)

(q − 1)z

which suggests to introducing the differentiation operator

(2) D̂q = [(q − 1)z]−1{qzd/dz − 1}.

On the other hand, as noticed, in quantum groups signi�cant role is played by
operators or functions, which are symmetric under the interchange of q with
1/q . Symmetric q -derivative of an entire analytical function f (z), z ∈ C , is
indeed introduced through the de�nition ([16], [17], [20])

(3)
dq

d(z : q)
f (z) =

f (qz) − f (q−1z)

(q − q−1)z

which in analogy with the standard q -differentiation suggests to introducing the
operator

(4) D̂(z:q) ≡
q

(q2 − 1)z
[qzd/dz − q−zd/dz ].

The following link with the standard q -differentiation operator D̂q is immedi-
ately recognized:

(5) D̂(z:q) =
q

q + 1
[D̂q +

1

q
D̂1/q ]
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and the more direct relation with D̂q2 can be stated

(6) D̂(z:q) f (z) = q D̂q2q
−zd/dz f (z) = q D̂q2 f (q−1z).

It is also evident that the operator (5) is invariant with respect to the interchange
q → 1/q ; explicitly

(7) D̂(z:q) = D̂(z:1/q).

Let us brie�y review the main properties of the operator (5). Acting on powers
of z, the operator D̂(z:q) gives

(8) D̂(z:q)z
n = [n]q zn−1

where the symbol [n]q denotes the number

(9) [n]q =
qn − q−n

q − q−1

frequently occurring in the study of q -deformed quantum mechanical simple
harmonic oscillator where 0 < q < 1 ([2], [18]).

We list some relations satis�es by [n]q , since they will be used in the
following. It is easy to prove that

(10)

[n]q = [n]1/q = −[−n]q

[m + n]q = qn[m]q + q−m[n]q = qm [n]q + q−n[m]q

[0]q = 0 [1]q = 1.

It is also useful to report the properties of the symmetric q -differentiation,which
satis�es a sum rule, a product rule and, in special cases, a chain rule as follows

(11)

D̂(z:q)[ f (z) + g(z)] = D(z:q) f (z) + D̂(z:q)g(z)

D̂(z:q) [ f (z)g(z)] = g(q−1z)D̂(z:q) f (z) + f (qz)D̂(z:q)g(z) =

= g(qz)D̂(z:q) f (z) + f (q−1z)D̂(z:q)g(z)

D̂(z:q)[ f (αz)] = α D̂(αz:q) f (αz)

D̂(z:q) f (zn ) = [n]q zn−1 D̂(zn :qn) f (zn ) .
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As already noticed, q -analogs of exponential functions are de�ned as eigen-
functions of differentiation operators. Consequently, standard and symmetric
q -exponential functions can be introduced according to whether the operators
D̂q or D̂(z:q) are considered.

Limiting ourselves to the operator D̂(z:q) , symmetric q -exponential func-
tion Eq (z) can be introduced according to

(12) D̂(z:q)Eq(z) = Eq (z)

with furthermore Eq(z) being requested to be regular at z = 0 and Eq(0) = 1.
If q ∈ C , q �= 0 and |q| �= 1, there is a unique function satisfying the

required conditions. Hence, since E1/q(z) satis�es (12) as well, we have that
Eq(z) = E1/q(z), thus con�rming that Eq is symmetric in the parameter q with
respect to the interchange of q and q−1.

The power series expansion of Eq is given as

(13) Eq (z) =

∞�

n=0

zn

[n]q!

with the q -factorial [n]q! being de�ned as

(14) [n]q ! =






1 n = 0
n�

r=1

[r]q n ≥ 1.

The condition (12) is easily veri�ed to hold according to the rule (8). The
power series (13) has in�nite radius of convergence, and hence Eq(z) is an entire
function for all q �= 0, |q| �= 1.

It is worth stressing that the exponential function Eq (z) does not satisfy the
semigroup property, i.e. Eq(x )Eq(y) �= Eq (x + y).

Using indeed the power series expansion (13), we can write

(15) Eq(x )Eq(y) =

∞�

r=0

xr

[r]q !

∞�

k=0

yk

[k]q !
.

An appropriate rehandling of the sums entering the above expression allows to
recast the product Eq(x )Eq(y) in the form

(16) Eq (x )Eq(y) =

∞�

n=0

Zn(x , y)

[n]q !
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where Zn(x , y) denotes the function

(17) Zn(x , y) =

n�

h=0

�
n

h

�

q

x n−h yh

and
�

n
h

�
q
can be understood as the q -analog of the binomial coef�cient:

(18)

�
n

h

�

q

≡
[n]q !

[h]q ![n − h]q !
.

However, the function Zn(x , y) is not the q -analog of binomial formula, giving
the n-th power of the sum x + y , which is indeed understood in the form

(19) [x + y]nq ≡

n�

h=0

�
n

h

�

x n−h yhq−h(n+1).

Accordingly, the product (15) does not turn into q -exponential of x + y :
Eq(z)Eq (y) �= Eq(x + y).

It might be interesting to derive the link between Zn and [x + y]nq , which
indeed reads

(20) [x + y]nq ≡ Zn(x , yq−n+1).

In addition, let us notice that the q -binomial formula (19) satis�es the product
rule:

(21) [x + y]nq[x + q−2n y]mq = [x + y]n+m
q

and the following formulae for the q -derivatives with respect to x and y can be
derived

(22)
D̂(x:q)[x + y]nq = [n]q[x + y/q]n−1

q

D̂(y:q)[x + y]nq = [n]q q−2n[qx + y]n−1
q

which give the usual formulae in the limit q → 1. Finally, it is worth stressing
that the q -analogue of the binomial formula is not symmetric in the parameter
q under the interchange q ↔ q−1.

In the next section we use the symmetric q -exponential function Eq (z) to
generate symmetric q -Bessel functions.
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3. Symmetric q -Bessel functions.

Let us consider the product of symmetric q -exponential functions as

(23) G (x; t : q) = Eq

� xt

2

�
Eq

�
−

xt

2

�

whose expression as series of t -powers can be easily obtained using the power
series expansion of Eq given in (13). Explicitly, we have

(24) G (x; t : q) =

+∞�

n=−∞

t n
∞�

k=0

(−1)s (x/2)n+2k

[n + k]q ![k]q !
.

Introducing symmetric q -Bessel functions Jn(x : q) in full analogy with the
standard case [10], that is as the coef�cients of the expansion

(25) G (x; t : q) ≡

+∞�

n=−∞

t n Jn(x : q)

it is immediate to get the explicit expression of Jn(x : q) as x -power series

(26) Jn(x : q) =

+∞�

k=0

(−1)k (x/2)n+2k

[n + k]q ![k]q !
.

It is evident that Jn(x : q) is symmetric under the interchange q ↔ q−1

(27) Jn(x : q) = Jn(x : 1/q).

Using the relation

(28) [n]q! = (n)q2 !q
−2/n(n−1)

we can write (26) as

(29)

Jn(x : q) = qn2/2
∞�

k=0

(−1)k
�

x
2
√

q

�n+2k

qk(n+k)

(k)q2 !(n + k)q2 !
=

q−n2/2
∞�

k=0

(−1)k
�

x
√

q

2

�n+2k

qk(n+k)

(k)1/q2 !(n + k)1/q2 !
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where the symbol (n)q means

(30a) (n)q =
1− qn

1− q

and correspondingly

(30b) (n)q! =

n�

k=1

(k)q .

The functions (26) are characterized by recurrence relations, which can be easily
obtained by taking the derivative of G with respect to x . In fact, an account
of the two possible expression for the symmetric q -derivative of a product as
reported in (11), we obtain the two relations involving the q -derivative Jn(x :
q) ≡ D̂(x:q) Jn(x : q), and the contiguous functions Jn−1(x : q), Jn+1(x : q),
namely

(31)

2J �
n(x : q) = q

n−1
2 Jn−1

� x
√

q
: q

�
− q

n+1
2 Jn+1(x

√
q : q)

2J �
n(x : q) = q− n−1

2 Jn−1(x
√

q : q)− q− n+1
2 Jn+1

� x
√

q
: q

�

which can be obtained from each other by changing q → 1/q . On the other
hand, by multiplying the expression (26) by [n]q and exploiting the property of
[n]q , according to which (see Eq. (10))

[n]q = qs[n + s]q − qn+s [s]q

the further relation can be inferred

(32a)
2[n]q

x
Jn(x : q) = q− (n−1)

2 Jn−1(x
√

q : q)+ q
n+1
2 Jn+1(x

√
q : q)

which by changing q → 1/q turns into

(32b)
2

x
[n]q Jn(x : q) = q

n−1
2 Jn−1

� x
√

q
: q

�
+ q− (n+1)

2 Jn+1

� x
√

q
: q

�
.

Useful relations can be obtained by combining the above equations or directly
exploiting the series expansion (26).
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For instance, from (31) and (32) one gets

q
n−1
2 Jn

� x
√

q
: q

�
− q− (n−1)

2 Jn−1(x
√

q : q) =(33)

= q
n+1
2 Jn+1(x

√
q : q)− q− (n+1)

2 Jn+1

� x
√

q
: q

�

by putting x → x/
√

q and x → x
√

q in the above equation, the further
relations follows

q2 − 1

q
[n]q Jn+1(x : q) = q−1

�

Jn+1

� x

q
: q

�
+ qn Jn−1

� x

q
: q

��

−(34)

− q
�
Jn+1(xq : q)+ q−n Jn−1(xq : q)

�

and

q2 − 1

q
[n]q Jn−1(x : q) = q

�
Jn−1 (xq : q) + qn Jn+1(xq : q)

�
−(35)

− q−1

�

Jn−1

� x

q
: q

�
+ q−n Jn+1

� x

q
: q

��

.

Correspondingly, by using the expression (26) the following relations can be
proved

(36)

q− (n−1)
2 Jn−1

�
x
√

q : q
�

=
x

2q
(1− q2)Jn(x : q)+ q

n−1
2 Jn−1

� x
√

q
: q

�

q− (n+1)
2 Jn+1

�
x
√

q : q
�

=
x

2q
(1− q2)Jn+2(x : q)+ q

n+1
2 Jn+1

� x
√

q
: q

�

which state a further link between the contiguous functions Jn(• : q), Jn−1(• :
q) and Jn+1(• : q). It is worth stressing that there does not exist the analog
for the ordinary functions. Let us not that in the relations (31) the functions
Jn−1 and Jn+1 appear with different arguments x/

√
q and x

√
q respectively or

viceversa. Conversely, in the relations (32) the functions Jn−1 and Jn+1 have
the same argument, namely x

√
q and x/

√
q . Exploiting the relations (36), one

can rewrite the basic recurrences (31) in a form symmetric with respect to the
arguments of Jn−1 and Jn+1; and correspondingly one can turn (32) in a fashion
where Jn−1 and Jn+1 have different arguments.

Explicitly, we have
�

2D̂(x:q) − (1− q2)
x

2q

�

Jn(x : q) =(37a)

= q
n−1
2 Jn−1

� x
√

q
: q

�
− q−

(n+1)
2 Jn+1

� x
√

q
: q

�
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which changing q into 1/q gives

�

2D̂(x:q) + (1− q2)
x

2q

�

Jn(x : q) =(37b)

= q− (n−1)
2 Jn−1

�
x
√

q : q
�

− q
n+1
2 Jn+1

�
x
√

q : q
�
.

Similarly, combining (32) and (36) one gets

�
2[n]q

x
−

x

2q
(1− q2)

�

Jn(x : q) =(38a)

= q
(n−1)
2 Jn−1

� x
√

q
: q

�
+ q

n+1
2 Jn+1

�
x
√

q : q
�

�
2[n]q

x
+

x

2q
(1− q2)

�

Jn(x : q) =(38b)

= q− (n−1)
2 Jn−1

�
x
√

q : q
�

+ q− n+1
2 Jn+1

� x
√

q
: q

�
.

The brief discussion clearly display the wealth of possible relations, which can
be drawn, involving Jn(• : q), the contiguous functions Jn−1(• : q), Jn+1(• : q)
and the derivative J �

n(• : q). This is a direct consequence of that the base q
differs from unity: q �= 1; in fact, as noticed in connection with (36), some of
these relations do not have the analog in the limit q → 1, i.e. for the ordinary
Bessel functions.

4. Shifting operators and differential equations.

In the theory of ordinary Bessel functions the relevant recurrence relations
allow to recognize shifting operators Ê− and Ê+ , which turn the functions of
order n into the functions of the order n − 1 and n + 1, respectively. They play
a signi�cant role within the framework of group-theoretical interpretation of
ordinary Bessel functions. In a purely mathematical context they allow to derive
the differential equation obeyed by the Bessel functions in a straightforward
way. Similarly, shifting operators can be introduced for q -Bessel functions as
well, although in this case on turning the function of order n into that of order
n − 1 or n + 1 they also rescale the argument by the factor

√
q or 1/

√
q .

Accordingly, four types of shifting operators can be de�ned. Indeed, combining
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appropriately the recurrence relations (32) and (37), it is easy to obtain

(39)

Ê
(q,n)
− (x ) = q

n−1
2

�
[n]q

x
+ D̂(x:q) + (1− q2)

x

4q

�

Ê
(q,n)
+ (x ) = q− (n+1)

2

�
[n]q

x
− D̂(x:q) − (1− q2)

x

4q

�

which act on Jn(x : q) according to

(40)
Ê
(q,n)
− (x )Jn(x : q) = Jn−1(x

√
q : q)

Ê
(q,n)
+ (x )Jn(x : q) = Jn+1(x

√
q : q)

the argument of the functions Jn−1 and Jn+1 being rescaled by the factor
√

q .

Correspondingly, the further operators Ê
(1/q,n)
− (x ), Ê

(1/q,n)
+ (x ) explicitly

given by

(41)

Ê
(1/q,n)
− (x ) = q− (n−1)

2

�
[n]q

x
+ D̂(x:q) − (1− q2)

x

4q

�

Ê
(1/q,n)
+ (x ) = q

n+1
2

�
[n]q

x
− D̂(x:q) + (1− q2)

x

4q

�

can be recognized, which differ from the above (39) since the argument of the
functions Jn−1 and Jn+1 is rescaled by 1/

√
q ; namely

(42)

Ê
(1/q,n)
− (x )Jn(x : q) = Jn−1(

x
√

q
: q)

Ê
(1/q,n)
+ (x )Jn(x : q) = Jn+1(

x
√

q
: q).

It is needless to say that the operators (41) can be obtained from (39) by simply
changing q into 1/q . However they are crucial in deriving the differential
equation obeyed by Jn(x : q).

Indeed, it is evident the following identity

(43) Ê
(1/q,n+1)
− (x

√
q)Ê

(q,n)
+ (x )Jn(x : q) = Jn(x : q)

where it has been explicitly indicated that the operator Ê
(q,n)
+ acts on a function

of order n and argument x , whilst Ê
(1/q,n+1)
− acts on the function of order n + 1

and with rescaled argument x
√

q .
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Since

(44) Ê
(1,/q,n+1)
− (x

√
q) = q− n+1

2

�
[n + 1]q

x
+ D̂(x:q) −

x

4
(1− q2)

�

after some algebra we end up with

(45) Ẑ
(n)

q (x )Jn(x : q) = 0

where the q -Bessel operator Ẑ (n)
q has the rather complicated expression

Ẑ
(n)

q (x ) =
[n]2q

2qx 2
(1+ q2)−

1− q2

4q
(qn + q−n)−

1− q2

2
[n]q +(46)

+
x 2

32q3
(1+ q2)(1− q2)2 − (qn + q−n)

1

2x
D̂(x:q) −

− D̂2
(x:q) − qn+1

which reduces to the ordinary Bessel operator in the limit q → 1.
The above operator is not symmetric under the interchange of q and q−1 ,

thus providing a further q -differential equation obeyed by Jn(x : q)

Ẑ
(n)
1/q (x ) =

[n]2q

2qx 2
(1+ q2)+

1

4q
(1− q2)(qn + q−n)+(47)

+
1− q2

2q2
[n]q +

x 2

32q3
(1+ q2)(1− q2)2 −

− (qn + q−n)
1

2x
D̂(x:q) − D̂2

(x:q) − q−(n+1) .

Before closing the section, let us discuss the symmetric properties of Jn(x : q)
with respect to the index n and the argument x , multiplication and addition
formulas being discussed in [23].

It is easy to prove that

(48)
Jn(−x : q) = (−1)n Jn(x : q)

Jn(x : q) = Jn(−x : q)

strongly reminiscent of the corresponding relations obeyed by the usual Bessel
functions.
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5. Concluding remarks.

The analysis performed in the previous section con�rms the possibility of
introducing q -analogs of Bessel function, which are symmetric in the parameter
q with respect to the interchange of q and 1/q . In full analogy with the ordinary
case, recurrence relations, shifting operators and q -differential equations can be
obtained.

The approach we follow is based on the generating function; which is
de�ned as the product of symmetric q -exponential functions with appropriate
arguments.

As already noticed, q -Bessel functions linked to the standard q -expo-
nential function eq (z) have been introduced ([13], [21], [6]); three different
types of functions can be recognized in this case as a consequence of the non-
invariance of the exponential eq with respect to the interchange q ↔ q−1 .
The properties of these functions have been deeply investigated, also within
the context of the theory of group representation. In [10],[11] it has been shown
that q -generalizations of Bessel functions appear in the realization of the two-
dimensional Euclidean quantum algebra E (2). Similarly, symmetric q -Bessel
functions can be understood as matrix elements of the representation of E (2)
on the Hilbert space of all the linear combinations of the functions zn , z ∈ C
and n ∈ N . The group elements are realized as product of exponentials of the
three generators, the symmetric q -exponential function Eq being involved. In
this connection, it is needless to say that the generating function method can be
immediately recovered within the group representation framework, as shown in
[7]. As a conclusion, let us stress that symmetric q -analog of modi�ed Bessel
functions can be de�ned quite straightforwardly.

In particular we note that they are speci�ed by the generating function

(49) Eq

� xt

2

�
Eq(−

xt

2
) =

+∞�

−∞

t n In(x : q).

The analytical continuation formula

(50) in In(x : q) = Jn(ix : q)

is a consequence of the identity

(51) Eq

� ix t

2

�
Eq

�
−

ix

2t

�
= Eq

� x (it)

2

�
Eq

� x

2(it)

�
.

The q -differential equation satis�ed by In(x : q) can be obtained from Eq. (47),
by replacing x with ix .
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Other special functions like q -Hermite and q -Laguerre polynomials or
functions can be introduced and furthermore an algebraic setting for them can
be recognized [7].
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