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SYMMETRIC Q-BESSEL FUNCTIONS

GIUSEPPE DATTOLI - AMALIA TORRE

q analog of bessel functions, symmetric under the interchange of ¢ and
g~ ! are introduced. The definition is based on the generating function real-
ized as product of symmetric g-exponential functions with appropriate argu-
ments. Symmetric g-Bessel function are shown to satisfy various identities
as well as second-order g-differential equations, which in the limit ¢ — 1
reproduce those obeyed by the usual cylindrical Bessel functions. A brief dis-
cussion on the possible algebraic setting for symmetric g-Bessel functions is

also provided.

1. Introduction.

Many special function of mathematical physics have been shown to admit
generalizations to a base ¢, which are usually reported as g-special functions.

Interest in such g functions is motivated by the recent and increasing
relevance of g analysis, originally suggested almost a century ago [22], in
exactly solvable models in statistical mechanics ([1],[23]). Like ordinary special
functions, g-analogs satisfy second order g-differential equations and various
identities or recurrence relations.

Basic hypergeometric series are the prototype of g-special functions, their
properties and applications have been deeply investigated in ([9],[12]).

Basic analogs of Bessel functions have been introduced by Jackson [13]
and Swarthow [21] as g-generalizations of the power series expansions , which
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defines the ordinary cylindrical Bessel functions. Three different types of
such g-extension can be recognized, each of them satisfy recurrence relations,
second-order ¢g-differential equations and addition theorems, which reduce to
those holding for the usual Bessel functions in the limit ¢ — 1.

In analogy with the usual special functions, g -functions have recently been
shown to admit an algebraic interpretation as matrix elements of g-exponentials
of quantum-algebra generators on appropriate representation species. In [10],
[11], for instance, a quantum-algebraic framework for g-Bessel functions is
provided as well as for the basic hypergeometric function. Finally, in [6]
the generating function method is proposed as alternative unifying formalism,
where the various g-Bessel functions can be framed.

The above quoted investigations use the method of the standard g -analysis.

The discovery of quantum groups and algebras ([14], [8], [24]), charac-
terized by deformed communication relations, which generalize the canonical
commutation relations, has led to interest in g-analysis, which is symmetric
under the interchange ¢ — ¢~!.

Within that context, a lot of attention is devoted to the so-called ¢-
oscillators ([2], [18]) and to their possible physical applications in such fields
as atomic and nuclear physics [18], quantum optics [4] and superintegrable
systems [5]. In this connection, it is natural to investigate the possibility of
introducing g -functions, which are symmetric under the interchange of ¢ and
1/g. They are called symmetric to distinguish them from the standard ones.
Symmetric g-exponential and gamma functions have been extensively studied
in [16], [17].

In this paper, we address the problem of defining symmetric g-Bessel
functions; in particular we follow the approach developed in [6] using indeed
the symmetric g-exponential function to realize the generating functions.

Accordingly, in Section 2 we briefly review the definition and the relevant
properties of the symmetric g-exponential function. In Section 3 symmetric g-
Bessel functions are defined and are shown to satisfy various identities, which,
in the limit ¢ — 1, reproduce the well-known recurrence relation obeyed by the
usual cylindrical Bessel functions.

In Section 4 we recognize the possibility of introducing shifting operators,
which are then used to obtain the second-order ¢-differential equations obeyed
by the symmetric g-Bessel functions.

Finally, concluding comments on the possible algebraic setting for these
functions as well as on the possible modified versions of them are given in
Section 5.
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2. Symmetric g-exponential functions.

Before entering the specific topic of the paper, let us briefly review the
properties of the g-exponential functions, which will be basic to the forthcom-
ing discussion on symmetric g-Bessel functions. Definitions of functions in
g -analysis are borrowed from ordinary analysis through an appropriate gener-
alization or “g-deformation”. Accordingly, the g-exponential function is intro-
duced as eigenfunction of the g-differentiation.

Hence, since standard and symmetric differentiations can be introduced in
g -analysis, standard and symmetric g-exponential functions are defined.

For completeness’sake, we report in the following the definition of standard ¢-
derivative, although for a detailed account of the relevant properties the reader
is addressed to [16], [17].

Standard g-derivatives is indeed defined as

def(2) _ f(q2) = f(2)

1
M qu (g — 1)z

which suggests to introducing the differentiation operator
@) Dy = (g — 2l {g*/* — 1},

On the other hand, as noticed, in quantum groups significant role is played by
operators or functions, which are symmetric under the interchange of ¢ with
1/g. Symmetric g-derivative of an entire analytical function f(z),z € C, is
indeed introduced through the definition ([16], [17], [20])

d flgz) — flg™'2)
3 — =
©) T M e

which in analogy with the standard g -differentiation suggests to introducing the
operator

A _ q d/d —zd/dz
4 Dy = ——[¢“% — .
“ = 2= 1) lq q ]

The following link with the standard g-differentiation operator ﬁq is immedi-
ately recognized:

~ q ~ 1 A
5 D(z:q) = m[l)q + ;Dl/q]
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and the more direct relation with ﬁqz can be stated

(6) D(z:q)f(z) = q[)qu—zd/de(Z) = qﬁq2 f(q_lz)-

It is also evident that the operator (5) is invariant with respect to the interchange
q — 1/q; explicitly

(7 D(z.q) = Diz1/g)-

Let us briefly review the main properties of the operator (5). Acting on powers
of z, the operator Dy, gives

3) D(z:q)zn = [n]qzn—l

where the symbol [r], denotes the number
n —n
) [n]y = ————
T g—q7!

frequently occurring in the study of g-deformed quantum mechanical simple
harmonic oscillator where 0 < g < 1 ([2], [18]).

We list some relations satisfies by [n],, since they will be used in the
following. It is easy to prove that

[n]q = [n]l/q = _[_n]q
(10) [m +nly = q"[ml, +q "[nly = q"[n]l, + ¢ "[m],
[0, =0 [1], = 1.

It is also useful to report the properties of the symmetric g -differentiation, which
satisfies a sum rule, a product rule and, in special cases, a chain rule as follows

D)l f(2) + 8(2)] = Dizg) f(2) + Dz 8(2)
Do) f(2)8(D] = 8(q™'DDieg f(2) + [(q2)Dicgy8(2) =
(11 = 2(q2)Dig) f() + (@' DD 8(2)
Dol f@2)] = aDiazg) f (@2)

Doy f(Z") = [n1g2" " Diargn £(2).
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As already noticed, g-analogs of exponential functions are defined as eigen-
functions of differentiation operators. Consequently, standard and symmetric
g -exponential functions can be introduced according to whether the operators
D, or Dy, are considered.

Limiting ourselves to the operator IA)(Z;q), symmetric g-exponential func-
tion E,(z) can be introduced according to

(12) D E,(2) = E,(2)

with furthermore E,(z) being requested to be regular at z = 0 and Eq(0) = 1.
If geC, g # 0 and |g| # 1, there is a unique function satisfying the
required conditions. Hence, since E;,,(z) satisfies (12) as well, we have that
E,(z) = Ey/4(2), thus confirming that E, is symmetric in the parameter g with
respect to the interchange of ¢ and ¢ .

The power series expansion of E, is given as

o0

(13) E@=) —

s [n],!

n

with the g-factorial [n],! being defined as

1 n=

(14) (et = 1 1711, n>l.

The condition (12) is easily verified to hold according to the rule (8). The
power series (13) has infinite radius of convergence, and hence E,(z) is an entire
function for all ¢ # 0, |g| # 1.

It is worth stressing that the exponential function E,(z) does not satisfy the
semigroup property, i.e. E,(x)E,(y) # E;(x + y).

Using indeed the power series expansion (13), we can write

oo
xr

00 k
(15) Emmw=ZUMZéﬂ

r=0 " k=0

An appropriate rehandling of the sums entering the above expression allows to
recast the product E,(x)E,(y) in the form

o0

Z(x,
(16) E,(0)E () = 3 2 )

n=0 [n]q !
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where Z,(x, y) denotes the function

n

(17) <%ww=21ﬂx“%h

h=0 q

and [Z]q can be understood as the g-analog of the binomial coefficient:

(18) ["] _ et
h), ~ Thl,\n — hl,!

However, the function 2, (x, y) is not the g-analog of binomial formula, giving
the n-th power of the sum x + y, which is indeed understood in the form

" n
(19) [x + y]; = Z [h]xn—hth—h(n-i-l)'

h=0

Accordingly, the product (15) does not turn into g-exponential of x + y :
Eq(Z)Eq(y) # Eq(x + ).

It might be interesting to derive the link between 2, and [x + y]7, which
indeed reads

(20) [x + V1) = Z(x, yg ).

In addition, let us notice that the g-binomial formula (19) satisfies the product
rule:

21 [x + yIlx + g "yl =[x + yI;™

and the following formulae for the g-derivatives with respect to x and y can be
derived

Dgylx + y11 = [nlylx + y/q1%"
(22)

Diyigplx + 31y = [nlg ¢ *"lgx + y1; !

which give the usual formulae in the limit ¢ — 1. Finally, it is worth stressing
that the g-analogue of the binomial formula is not symmetric in the parameter
g under the interchange ¢ <> ¢~ '.

In the next section we use the symmetric g-exponential function E,(z) to

generate symmetric g-Bessel functions.
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3. Symmetric ¢-Bessel functions.
Let us consider the product of symmetric g-exponential functions as
Xt Xt
(23) Y(x;t :q):Eq(?)Eq<— 7)

whose expression as series of 1-powers can be easily obtained using the power
series expansion of E, given in (13). Explicitly, we have

1)* 2n+2k
(24) G(xit:q) = Z Z(nl:;/)k]
q q

n=—oo

Introducing symmetric g-Bessel functions J,(x : g) in full analogy with the
standard case [10], that is as the coefficients of the expansion

+00
(25) Gxitiq)= Y 1" Ju(x:q)

n=—o0
it is immediate to get the explicit expression of J,(x : ¢) as x-power series

f (_ 1 )k (.X' /2)n+2k

26 J.(x 1 q) = .
(20) (i) [+ K1, 'IK], !

k=0
It is evident that J,(x : ¢) is symmetric under the interchange ¢ <> ¢!
(27 Ju(x 1 q) = Ju(x 1 1/q).

Using the relation

(28) [n],! = (n)q2!q—2/n(n—l)

we can write (26) as

n+2k
; n /2 00 (_ )k ( X ) qk(n+k)
)= Z g+ 0!

(29) o
0o N EN k(n+k)
—n2/2 Z =D ( ) 1
(k)l/q2 ’(l’l + k)l/qZ !
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where the symbol (n), means

(30a) (m)y = —L
a n g = 1 — 4
and correspondingly
(30b) m)g! = [ [,
k=1

The functions (26) are characterized by recurrence relations, which can be easily
obtained by taking the derivative of ¢ with respect to x. In fact, an account
of the two possible expression for the symmetric g-derivative of a product as
reported in (11), we obtain the two relations involving the g-derivative J,(x :
q) = b(x:q)J,,(x : q), and the contiguous functions J,_;(x : ¢q), Jy1(x : q),
namely

n—1 X ntl
2056 ) =TI (Z=10) = 4T a6V )

NG

n— n x
2 ) =g T J(x T q)—q T n+1<

7

which can be obtained from each other by changing ¢ — 1/¢g. On the other
hand, by multiplying the expression (26) by [n], and exploiting the property of
[n],, according to which (see Eq. (10))

€1y

[n]q = qs[n + s]q _ qn-‘rS[s]q
the further relation can be inferred
2[”](] _=D ntl
(32a) Jnx 1) =q" 7 Lo Vq @)+ q 7 a1 (x/q : q)

X

which by changing ¢ — 1/¢g turns into

G2) 2l ) =T (Zz19)+a 0 (7 0a)

Useful relations can be obtained by combining the above equations or directly
exploiting the series expansion (26).
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For instance, from (31) and (32) one gets

n—1 X _ (=1
(33) aTa(Tzra) =TT 0 =
ntl _ D X
=q 2 Jo1(x/q:9)—q 7 Jn+l<ﬁ : fI)
by putting x — x/./q and x — x./q in the above equation, the further
relations follows

g —1 B X ; X
(34) [y nii(x @) = 7" [Jn+1 (5:a)+amm (5 q)] -
—q[In1(xq @)+ g7 1(xq : )]
and
21
35 Ll i) =q[Jor (g1 @)+ q" T (xq : )] —

—q! |:Jn—1<§ : q) +q " Jus (2 : q)] .

Correspondingly, by using the expression (26) the following relations can be
proved

_ =D X 2 il X
¢TI (17 ) = 50 = g 1)+ 9T Iy (== 14)

( ) 2q NG
(n+1)

¢ e (75 0) = 300 = @ )+ 0 (= 2 4)
which state a further link between the contiguous functions J,(e : g), J,_1(e :
q) and J, (e : g). It is worth stressing that there does not exist the analog
for the ordinary functions. Let us not that in the relations (31) the functions
Ju—1 and J,4; appear with different arguments x/,/q and x ,/q respectively or
viceversa. Conversely, in the relations (32) the functions J,_; and J,;; have
the same argument, namely x,/q and x/,/q. Exploiting the relations (36), one
can rewrite the basic recurrences (31) in a form symmetric with respect to the
arguments of J,_; and J,1; and correspondingly one can turn (32) in a fashion
where J,_; and J,1, have different arguments.

Explicitly, we have

(36)

A X
(37a) |:2D(x:q) — (I - 6]2)%] Jn(x 1 q) =
S () - g ()
=4q n—1\—=:49)—4 1\ —/= 4
Va va
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which changing ¢ into 1/q gives

(37b) [250@ +(1 - qz)zx—q] Julx 1 q) =

(n—1)

_ ntl
=q ZJ,,-l(x\/f?:q)—qé n+1(Xﬁ:q)-

Similarly, combining (32) and (36) one gets

(382) [3@ﬁ~—f41—q%]&u:q>=
X 2q
:q(ngl) Jn_l<i Q) +6]”2 n+1( \/_ q)

(38b) [@&+fﬂ—fﬂumw=
X 2q
(

_ =D _ntl X
=q Jn—1<x\/67161)+61 : n+1<EZQ)-

The brief discussion clearly display the wealth of possible relations, which can
be drawn, involving J,(e : g), the contiguous functions J,_i(e : g), Jy11(e : @)
and the derivative J; (e : g). This is a direct consequence of that the base ¢
differs from unity: g # 1; in fact, as noticed in connection with (36), some of
these relations do not have the analog in the limit ¢ — 1, i.e. for the ordinary
Bessel functions.

4. Shifting operators and differential equations.

In the theory of ordinary Bessel functions the relevant recurrence relations
allow to recognize shifting operators E_and E +, which turn the functions of
order n into the functions of the order n — 1 and n + 1, respectively. They play
a significant role within the framework of group-theoretical interpretation of
ordinary Bessel functions. In a purely mathematical context they allow to derive
the differential equation obeyed by the Bessel functions in a straightforward
way. Similarly, shifting operators can be introduced for g-Bessel functions as
well, although in this case on turning the function of order » into that of order
n — 1 or n + 1 they also rescale the argument by the factor /g or 1/./q.
Accordingly, four types of shifting operators can be defined. Indeed, combining
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appropriately the recurrence relations (32) and (37), it is easy to obtain

[n],

F(q,n) n=1 ~ 2 X
E“ =gz {—L 4+ Dy + (1 — g?)—
(x)=gq { P ) (1 —¢q )4q}

(39)

£(q.n) _a [ [n]y A 2 ¥
EP"(x)=q {T—D(x:q)—(l—fI)E}

which act on J,(x : ¢) according to

EC()],(x 1 q) = Ju1(x /7 @)

(40) ((q.n)
B0 I3 1 q) = a1 (63 @)

the argument of the functions J,_; and J,,; | being rescaled by the factor ,/q.
Correspondingly, the further operators £/ (x), E{/4" (x) explicitly
given by

(=D

FO/m () = - { [l

29 4 Dy — (1 — gH—
X (x:q) q 4q
(41)

~(1/q.n) ntl [n]q A N
E =qg 2?2 {— —D.;y + (1 — —
+ x)=g¢q { X (x:q9) ( q )461 }

can be recognized, which differ from the above (39) since the argument of the
functions J,_; and J,1; is rescaled by 1/,/g; namely

EY 00 Ju(x 1 q) = n—l(i 1 q)

NG

X
NG
It is needless to say that the operators (41) can be obtained from (39) by simply
changing ¢ into 1/q. However they are crucial in deriving the differential

equation obeyed by J,,(x : g).
Indeed, it is evident the following identity

(42)

ENTD () Ju(x 1 q) = Jupr(—= 1 q).

(43) EYT D JOES" () Ju(x 2 q) = Ju(x 1 )

where it has been explicitly indicated that the operator E Sf’") acts on a function

of order n and argument x, whilst EY4™D acts on the function of order n + 1
and with rescaled argument x,/q.
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Since

[n+ 1],
X

r~ 7 _ntl A X
@4  EY Vg =g¢ 3{ +D<x;q>—z(1—q2>}

after some algebra we end up with
(45) Z0()Jux 1 q) =0

where the g-Bessel operator D@f](”) has the rather complicated expression

. [n]; 1-¢? 1—4?
M () — 4 2y _ —ny _
46) 2" (x)= 2qx2(1+q) 1 q" +q™" [n], +
§ 2 2\2 1 A
1 1 - —(q@"+q ") =Dy —
+32q3( +q) 1 —-q7) —(@q" +4q )2x (x:q)
_ D(2x:q) _qn+1

which reduces to the ordinary Bessel operator in the limit g — 1.
The above operator is not symmetric under the interchange of ¢ and ¢!,
thus providing a further g -differential equation obeyed by J,(x : q)

2
(47) Z0(x) = Ll (1+¢%)+ La- a)g" +q)+
1/a 2gx? 4q
+1_"2[n] + i (1+¢>)(1 —g*)* —
22 1 3243

n —n 1 A A —(n+1
—(q"+4q )§D<x:q>—D<2x;q>—q D

Before closing the section, let us discuss the symmetric properties of J,,(x : q)
with respect to the index n and the argument x, multiplication and addition
formulas being discussed in [23].

It is easy to prove that

Jo(=x :1q) = (=1)"J,(x : q)
Ju(x 2 q) = Ju(=x:q)

strongly reminiscent of the corresponding relations obeyed by the usual Bessel
functions.

(48)
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5. Concluding remarks.

The analysis performed in the previous section confirms the possibility of
introducing g -analogs of Bessel function, which are symmetric in the parameter
g with respect to the interchange of ¢ and 1/¢. In full analogy with the ordinary
case, recurrence relations, shifting operators and g -differential equations can be
obtained.

The approach we follow is based on the generating function; which is
defined as the product of symmetric g-exponential functions with appropriate
arguments.

As already noticed, g-Bessel functions linked to the standard g-expo-
nential function e,(z) have been introduced ([13], [21], [6]); three different
types of functions can be recognized in this case as a consequence of the non-
invariance of the exponential e, with respect to the interchange g < ¢~ '.
The properties of these functions have been deeply investigated, also within
the context of the theory of group representation. In [10],[11] it has been shown
that g-generalizations of Bessel functions appear in the realization of the two-
dimensional Euclidean quantum algebra &(2). Similarly, symmetric ¢-Bessel
functions can be understood as matrix elements of the representation of &(2)
on the Hilbert space of all the linear combinations of the functions 7%,z € C
and n € N. The group elements are realized as product of exponentials of the
three generators, the symmetric g-exponential function E, being involved. In
this connection, it is needless to say that the generating function method can be
immediately recovered within the group representation framework, as shown in
[7]. As a conclusion, let us stress that symmetric g-analog of modified Bessel
functions can be defined quite straightforwardly.

In particular we note that they are specified by the generating function

+00
(49) Eq<%t)Eq(—x—2t) =Yg,

The analytical continuation formula

(50) i"I(x:q)= J,(ix : q)

is a consequence of the identity

b 5(3)E( - 5) = () B 55 )

The g-differential equation satisfied by 7,(x : g) can be obtained from Eq. (47),
by replacing x with ix.
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Other special functions like g-Hermite and g-Laguerre polynomials or
functions can be introduced and furthermore an algebraic setting for them can
be recognized [7].
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