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HIGHER INTEGRABILITY FOR THE GRADIENT

OF SOLUTIONS TO SOME NONLINEAR

ELLIPTIC SYSTEMS

P. CAVALIERE - A. D�OTTAVIO - F. LEONETTI - C. MUSCIANO

We consider the nonlinear elliptic system −div(A (x, Du(x)) = 0
where A (x, ξ) is only hölder continuous with p-growth. We no longer as-
sume differentiability on A and we prove higher integrability of the gradient
Du using fractional Sobolev spaces.

1. Introduction.

Difference quotient technique has been successfully used to prove regular-
ity for weak solutions u ∈W 1,p(�) of nonlinear elliptic systems

(1.1) −div (A (x , Du(x ))) = 0, x ∈ �,

when A = A (x , ξ ) is differentiable with respect to x and ξ , [17], [13], [18].
Recently, [16], [10], [9] have dealt with A = A (ξ ) when no differentiability
is assumed. In the present paper we further go on developing the technique
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employed in [16] by allowing A to depend also on x . Here � is a bounded
open subset of R

n , n ≥ 2, A : � × R
n×N → R

n×N satis�es the following
assumptions

(1.2) |A (x , ξ )| ≤ c(1+ |ξ |p−1),

(1.3) |A (x , ξ )− A (y, ξ )| ≤ c(ν + |ξ |)p−1|x − y|θ1,

(1.4) |A (x , ξ )− A (x , η)| ≤ c(ν + |ξ | + |η|)p−1−θ2|ξ − η|θ2,

(1.5) m(ν + |ξ | + |η|)p−2|ξ − η|2 ≤ (A (x , ξ )− A (x , η))(ξ − η),

for every ξ, η ∈ R
n×N , for all x , y ∈ �, where p, c, ν,m, θ1, θ2 are constants

with

(1.6) 2 ≤ p, 0 < c, 0 ≤ ν ≤ 1, 0 < m, 0 < θ1 ≤ 1, 0 < θ2 ≤ 1.

In the sequel u : � → R
N , u ∈W 1,p(�) is a weak solution to (1.1), that is

(1.7)

�

�

A (x , Du(x ))Dφ(x ) dx = 0,

for every φ : � → R
N , with φ ∈ W

1,p
0 (�). In Section 3 we will prove the

following

Theorem. Let u ∈W 1,p(�) be a weak solution to (1.1) under (1.2), . . . , (1.6).
Then

(1.8) Du ∈ Lrloc(�), ∀r < p
n

n − γ
, where γ = min

�

2θ1,
2

2− θ2

�

.

Remark 1. When γ = 2, then (1.8) holds with r = p n
n−2

for n ≥ 3 and any
r < ∞ for n = 2.

Remark 2. This higher integrability result is achieved by difference quotient
technique: hölder continuity of A allows us to gain only a fractional derivative
of |Du|(p−2)/2Du but it is enough in order to improve on the integrability of
Du. Fractional Sobolev spaces have been successfully used in [8], [6] for the
so-called �natural growth conditions�, in [5] for the nonlinear case 1 < p < 2,
in [7] for the linear case and in [3], [15], [16] when dealing with the so-called
�p, q growth conditions�.
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Remark 3. If we consider the integral

(1.9)

�

�

a(x )|Du(x )|p dx ,

where 2 ≤ p, a : R
n → R, and

(1.10) a ∈C0,σ (�), 0 < σ ≤ 1, inf
�
a > 0,

then the Euler equation of the functional (1.9) is (1.7) with A (x , ξ ) =

a(x )p|ξ |p−2ξ and such an A veri�es (1.2), . . ., (1.6) with θ1 = σ , θ2 = 1
and ν = 0.

Thus we have the following

Corollary. If u ∈W 1,p(�) minimizes the integral (1.9) under (1.10), then

(1.11) Du ∈ Lrloc(�), ∀r < p
n

n − 2σ
.

Remark 4. When σ = 1, then (1.11) holds with r = p n
n−2

and any r < ∞ for
n = 2.

Remark 5. In this paper we deal with the lack of differentiability of A (x , ξ ),
but we assume monotonicity (1.5). In [12], [19], [11], [14], they weaken the
ellipticity condition (1.5). [19] deals with the existence of solutions while [12],
[11], [14] regard their regularity. [12] considers the case p = 2 and its ellipticity
is weaker than (1.5) but it assumes A ∈C1 and DA ∈ L∞ . On the other hand,
[11] deals also with p > 2, its ellipticity condition is weaker than (1.5) when
ν > 0: no degeneration (ν = 0) seems to be allowed in [11]; it assumes A ∈C1

but it removes the growth condition on DA which was contained in [12].
Eventually, looking at the results, let us point out the difference between our
paper and [12], [11], [14]: they prove partial regularity, that is hölder continuity
of Du in some open �0 ⊂ �; thus Du might be discontinuous at some point
x0 ∈ �; in our paper we improve the integrability of Du in the neighbourhood
of every point x0 ∈ �.
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2. Preliminaries.

For a vector-valued function f (x ), de�ne the difference

τs,h f (x ) = f (x + hes )− f (x ),

where h ∈ R , es is the unit vector in the xs direction, and s = 1, 2, . . . , n.
For x0 ∈ R

n , let BR(x0) be the ball centered at x0 with radius R. We will often
suppress x0 whenever there is no danger of confusion. We now state several
lemmas that are crucial to our work. In the following f : � → R

k , k ≥ 1; Bρ ,
BR , B2ρ and B2R are concentric balls.

Lemma 2.1. If 0 < ρ < R, |h| < R − ρ , 1 ≤ t < ∞, s ∈ {1, . . . , n}, f ,
Ds f ∈ Lt(BR), then

�

Bρ

|τs,h f (x )|
t dx ≤ |h|t

�

BR

|Ds f (x )|
t dx .

(See [13], p. 45, [4], p. 28).

Lemma 2.2. Let f ∈ Lt (B2ρ ), 1 < t < ∞, s ∈ {1, . . . , n}; if there exists a
positive constant C such that

�

Bρ

|τs,h f (x )|
t dx ≤ C|h|t ,

for every h with |h| < ρ , then there exists Ds f ∈ Lt(Bρ ).

(See [13], p. 45, [4], p. 26).

Lemma 2.3. If f ∈ L2(B3ρ ) and for some d ∈ (0, 1) and C > 0

n�

s=1

�

Bρ

|τs,h f (x )|
2 dx ≤ C|h|2d ,

for every h with |h| < ρ , then f ∈ Lr (Bρ/4) for every r < 2n/(n − 2d).

Proof. The previous inequality tells us that f ∈ Wb,2(Bρ/2) for every b < d ,
so we can apply the imbedding theorem for fractional Sobolev spaces ([2],
Chapter VII).

Lemma 2.4. For every t with 1 ≤ t < ∞, for every f ∈ Lt (B2R), for every h
with |h| < R, for every s = 1, 2, . . . , n we have

�

BR

| f (x + hes )|
t dx ≤

�

B2R

| f (x )|t dx .
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Lemma 2.5. For every p ≥ 2

�
�τs,h

�
| f (x )|(p−2)/2 f (x )

��
�2 ≤ k3

� p

2

�2 � 1

0

| f (x )+ t τs,h f (x )|
p−2|τs,h f (x )|

2 dt

for every f ∈ L p(B2R), for every h with |h| < R, for every s = 1, 2, . . . , n, for
every x ∈ BR.

Lemma 2.6. For every γ > −1, for every k ∈ N there exist positive constants
c2, c3 such that

(2.1) c2(|v|2 + |w|2)γ /2 ≤

� 1

0

|v + tw|γ dt ≤ c3(|v|2 + |w|2)γ /2

for every v, w ∈ R
k .

(See [1]).

The previous Lemma 2.6 allows us to easily get the following corollary.

Corollary 2.7. For every p ≥ 2, for every k ∈ N there exists a positive constant
c4 such that

(2.2) c4

� 1

0

|λ + t(ξ − λ)|p−2 dt ≤ (|λ| + |ξ |)p−2

for every λ, ξ ∈ R
k .

3. Proof of the Theorem.

Let R > 0 be such that B4R ⊂ � and let Bρ and BR be concentric balls,
0 < ρ < R ≤ 1. Let η : R

n → R be a �cut off� function in C∞
0 (BR) with

η ≡ 1 on Bρ , 0 ≤ η ≤ 1. Fix s ∈ {1, . . . , n}, take 0 < |h| < R. Using
φ = τs,−h(η

2τs,hu) in (1.7) we get

(I ) =

�

BR

τs,h (A (x , Du)) η2τs,hDu dx =(3.1)

= −

�

BR

τs,h (A (x , Du)) 2ηDη τs,hu dx = (I I ).
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We have

τs,h(A (x , Du(x ))) = A (x + hes , Du(x + hes ))− A (x , Du(x ))(3.2)

= A (x + hes , Du(x + hes )) − A (x , Du(x + hes )) +

+ A (x , Du(x + hes )) − A (x , Du(x )).

In order to estimate (I I ), we use (3.2), (1.3) and (1.4), thus

|τs,h(A (x , Du(x )))| ≤ c(1+ |Du(x + hes )|)
p−1|h|θ1 +(3.3)

+ c(ν + |Du(x )| + |Du(x + hes )|)
p−1−θ2|τs,hDu(x )|

θ2 ,

then

|(I I )| ≤

�

BR

2η(x )|Dη(x )||τs,hu(x )|c(1+ |Du(x + hes )|)
p−1|h|θ1dx(3.4)

+

�

BR

2η(x )|Dη(x )||τs,hu(x )|c(ν + |Du(x )| +

+ |Du(x + hes )|)
p−1−θ2|τs,hDu(x )|

θ2 dx = (I I I ) + (IV ).

When dealing with (I I I ), we use the properties of the �cut off� function η, then
Hölder inequality, eventually Lemma 2.1 and 2.4:

(I I I ) ≤ c6|h|
θ1

�

BR

(1+ |Du(x + hes )|)
p−1|τs,hu(x )| dx ≤(3.5)

≤ c7|h|
θ1

��

BR

(1+ |Du(x + hes )|
p) dx

� p−1
p

��

BR

|τs,hu(x )|
pdx

� 1
p

≤

≤ c8|h|
θ1

��

B2R

(1+ |Du(x )|p) dx

� p−1
p

��

B2R

|Dsu(x )|
pdx

� 1
p

|h| ≤ c9|h|
θ1+1,

for some positive constants c6, c7, c8, c9 independent on h. On the other hand,
using Young inequality, we deal with (IV ) as follows:

(IV ) =

�

BR

(η(x ))θ2
�
ν + |Du(x )| +(3.6)

+ |Du(x + hes )|
� ( p−2)θ2

2 |τs,hDu(x )|
θ22c|Dη(x )|

�
ν + |Du(x )| +

+ |Du(x + hes )|
�p−1−θ2−

( p−2)θ2
2 (η(x ))1−θ2|τs,hu(x )| dx ≤

≤
m

2

�

BR

(η(x ))2 (ν + |Du(x )| + |Du(x + hes )|)
p−2 |τs,hDu(x )|

2 dx +

+ c10

�

BR

(ν + |Du(x )| + |Du(x + hes )|)
[p−1−θ2−

( p−2)θ2
2 ] 2

2−θ2 |τs,hu(x )|
2

2−θ2 dx

= (V )+ (V I ),
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for some positive constant c10 independent of h. If 2 < p or θ2 < 1, by Hölder
inequality with exponents p(2−θ2)

2
and p(2−θ2)

p(2−θ2)−2
, using Lemma 2.1 and 2.4 we

have

(V I ) ≤ c10

��

BR

�
ν + |Du(x )| +

+ |Du(x + hes )|
�p
dx

� p(2−θ2)−2

p(2−θ2)
��

BR

|τs,hu(x )|
p dx

� 2
p(2−θ2)

≤

≤ c11

��

B2R

(1+ |Du(x )|p) dx

� p(2−θ2)−2

p(2−θ2)

|h|
2

2−θ2

��

B2R

|Dsu(x )|
pdx

� 2
p(2−θ2)

,

thus

(3.7) (V I ) ≤ c12|h|
2

2−θ2 ,

for some positive constant c12 independent on h. When 2 = p and θ2 = 1 we
check (3.7) directly. Let us estimate (I) from below. We use (3.2)

(I ) =

�

BR

(A (x + hes , Du(x + hes )) −(3.8)

− A (x , Du(x + hes )))η
2(x )τs,hDu(x ) dx +

+

�

BR

(A (x , Du(x + hes )) − A (x , Du(x )))η
2(x )τs,hDu(x ) dx

= (V I I ) + (V I I I ).

We apply (1.5) so that

m

�

BR

(ν + |Du(x )| +(3.9)

+ |Du(x + hes )|)
p−2|τs,hDu(x )|

2η2(x ) dx ≤ (V I I I ).

In order to deal with (V I I ), we use (1.3), (1.6), Hölder inequality and
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Lemma 2.4:

|(V I I )| ≤

�

BR

c(ν + |Du(x )| + |Du(x + hes )|)
p−1|h|θ1 |τs,hDu(x )|η

2(x ) dx =

=

�

BR

(ν + |Du(x )| + |Du(x + hes )|)
p−2
2 η(x )|τs,hDu(x )| ·

· c|h|θ1 (ν + |Du(x )| + |Du(x + hes )|)
p
2 η(x ) dx ≤

≤

��

BR

(ν + |Du(x )| + |Du(x + hes )|)
p−2η2(x )|τs,hDu(x )|

2 dx

� 1
2

·

· c|h|θ1
��

BR

(ν + |Du(x )| + |Du(x + hes )|)
pη2(x ) dx

� 1
2

≤

≤
m

4

�

BR

(ν + |Du(x )| + |Du(x + hes )|)
p−2η2(x )|τs,hDu(x )|

2 dx +

+ c13|h|
2θ1

�

BR

(1+ |Du(x )|p + |Du(x + hes )|
p) dx ≤

≤
m

4

�

BR

(ν + |Du(x )| + |Du(x + hes )|)
p−2η2(x )|τs,hDu(x )|

2 dx +

+ c13|h|
2θ1 2

�

B2R

(1+ |Du(x )|p) dx

thus

|(V I I )| ≤
m

4

�

BR

(ν + |Du(x )| +(3.10)

+ |Du(x + hes )|)
p−2η2(x )|τs,hDu(x )|

2 dx + c14|h|
2θ1 ,

for some positive constant c14 independent on h. Now (3.8),. . . , (3.10) merge
into

3

4
m

�

BR

(ν + |Du(x )| +(3.11)

+ |Du(x + hes )|)
p−2|τs,hDu(x )|

2η2(x ) dx − c14|h|
2θ1 ≤ (I ).

Using (3.1), (3.4), . . . , (3.7), (3.11) recalling 0 ≤ ν , 2θ1 ≤ θ1 + 1 and |h| < 1,
we get

m

4

�

BR

(η(x ))2
�
|Du(x )| +(3.12)

+ |Du(x + hes )|
�p−2

|τs,hDu(x )|
2 dx ≤ c15|h|

min{2θ1,
2

2−θ2
}
,
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for some positive constant c15 independent on h. Now we use Lemma 2.5 and
Corollary 2.7 in order to get

(3.13)

�

BR

�
�τs,h

�
|Du(x )|(p−2)/2 Du(x )

��
�2 η2(x ) dx ≤ c16|h|

γ ,

for every s = 1, . . . , n, for every h with |h| < R, where c16 is a positive
constant independent on h and γ is de�ned in (1.8). Since η = 1 on Bρ , if
γ < 2 inequality (3.13) allows us to apply Lemma 2.3 in order to get

|Du|(p−2)/2 Du ∈ Lr (Bρ/4), ∀r < 2n/(n − γ ).

We remark that | |Du|(p−2)/2 Du| = |Du|p/2, thus (1.8) is completely proven.
If γ = 2 we use (3.13), Lemma 2.2 and Sobolev imbedding theorem for W 1,2,
thus Remark 1 is completely proven. �
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