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ELLIPTIC EQUATIONS WITH DISCONTINUOUS
COEFFICIENTS IN UNBOUNDED DOMAINS OF R?
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In this paper we are concerned with second order elliptic equations
in unbounded domains Q of R%. We establish existence and uniqueness
theorems under the assumptions that the leading coefficients are bounded and
measurable in 2 and satisfy a suitable condition at infinity.

Introduction.

Let  a sufficiently regular open subset of R?.
In ©Q we consider the second order linear differential operator

2 2
(D) Lu .= — Z QjjUyy, + Zaiux,, + au,
i=1

ij=1

which is uniformly elliptic with symmetric, bounded and measurable leading
coefficients, i.e.

2
@) @i =a;eL™Q), Y ;&g =vlE ae inQ VEeR
i,j=1
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where v is a positive constant.
As well known, the Dirichlet problem

(3) ue WAQNWy(Q), Lu=f, felL¥Q),

has been exhaustively studied (see [9]) under the only assumption (2) in the case
of a bounded domain 2.

Indeed, assuming that g;; satisfy (2), whilst a; and a are bounded and
measurable, G. Talenti [9] has established for a solution u of (3) the estimate

“4) [txcl2,e < (| fl2,@ + |ul2,)

with ¢ independent of u; by using (4) and an uniqueness result of C. Pucci (see
[8]), he has also shown that problem (3) is uniquely solvable when

es%inf a>0.

In this paper we study the same problem (3) when €2 is an unbounded
domain.

After recalling (see Sec. 1) definitions and properties of the spaces of
Morrey type MP(2), V MP (L), MP (Q), M} (), introduced and studied in [11],
[14], we prove (see Sec. 2) that the a-priori bound (4) still holds true, assuming
(2) and

5) a; € A7IS(Q) forsomes > 2, ae 1\72(9).
Plainly, in the case of unbounded domains the above estimate (4) is not

sufficient to get an existence and uniqueness result.
In order to do this our method proceeds through a L*°-bound of Pucci type

(6) sup |u| < ¢|fl
Q

and a W2-estimate of type

) lsx llwey < el fla,o + lul2,0)),

where €2 is a bounded open subset of €2, to be satisfied by a solution u of
problem (3) in an unbounded domain €2, with ¢ and €2 independent of u# and

f.



ELLIPTIC EQUATIONS WITH DISCONTINUOUS. .. 205

By virtue of the already given assumptions on the coefficients of the
operator L, the a-priori bound (6) is contained in a recent paper (see [15]).

For the estimate (7) we need further conditions (at infinity) about the
boundary of € and the behavior of the coefficients of L. Precisely, in order
to get (7), we suppose d€2 has non-negative curvature outside some closed ball
B,, of sufficiently large radius o and centered at the origin, a.e. with respect to
the one-dimensional Hausdorff measure on 02, and the coefficients of L satisfy
(2) together with the following conditions:

®)  a;eMy(Q)forsomes >2, a=d +be M), d' e Mg(Q),

and

2

) [L_z esssup Z(eij — gaij)2 + /Ll_z esssup (e — gb)2 <1
Q\B,, =1 Q\B,,

for a sufficiently large r; with u, u; € Ry and ¢;;, e € L*°(2) such that

2
eji =eij, Y €& > plE? ae in @ VEER?,
i,j=1

(€ij)x,» ex, € My(2) for some s > 2, es%inf e> [,
g€ L™(Q), es%inf g>0.
We notice that (9) implies

(10) essinf b > 0.
Q\B,,

On the other side, we remark that (9) holds true for any b satisfying (10)
if the coefficients a;; converge at infinity (see Remark 3.5) and that for any
matrix-function with coefficients a;; satisfying (2) there exists a b verifying (9)
(see (2.5)).

Alternatively, we prove (7), for a sufficiently regular domain €2, when
conditions (2), (8), (10) are verified and the operator

2
(a1 Lou :=— Y gy,

ij=1
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can be approximated (at infinity) by means of an uniformly elliptic operator

2
— > oy, having coefficients «;; such that

i, j=1
oj; = Q;j € LOO(Q), (O‘ij)xk € MS(Q) for some s > 2.

Finally, by using (7) together with the results of [15], we show that (3) is a
zero index problem, uniquely solvable when a’ = 0.

We also remark that such conclusions can fail when (10) is not satisfied.

For instance (see [2]) we have uniqueness, but not always existence, when we
consider the Dirichlet problem

ue W(R?», —Au=f, feL*R>.

1. The spaces of Morrey type M?(2), VMP?(RQ), 2\71’(52), M{(Sl).

In this section we introduce the notations which will be used throughout
the paper.
For x e R? and r € R, we set

B(x,r):= {yER2 Sy —x| <r},

in particular B, := B(0, r).
We denote by ¢; a function of class Cj° (R?) such that

0<g <1, gg=1onB;, ¢ =00nR?*\ By,

and put
&(x) = ti(x/r), xeR%

For an open subset © of R? we let
Qx,r):=QNBx,r), Qx):=Q(x,1), K :=~0,r)

and denote by X(€2) the o -algebra of the Lebesgue-measurable subsets of 2.
For p €[1, 4o0], if A€ X(2) and g € L?(A), we put

|A| := Lebesgue-measure of A,
Xa = characteristic function of A,

|g|p,A = llgllrcay-
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Introducing D(Q), the class of the restrictions to Q of the functions in
Cg"(Rz), and Lﬁ)c(ﬁ), the class of the functions g : 2 — R such that
g e LP(Q) forevery ¢ € D(Q), we define MP () as the space of the functions
g€ L’ (Q) such that

loc

(1.1) llgllpmr) :=sup|glp am < +00,
xeQ

endowed with the norm given in (1.1).
We also need the following subspaces of M”(£2):

V M?(L2), the subspace of the functions g € M”(£2) such that

nplg, QI(r) :==suplglp.oun—>0 ast— 0;
xeR

MP(Q), the subspace of the functions g € M?(£2) such that

oplg, Ql(r) ;= sup |[xagllmr) — Oast — 0;
AeX(Q)
|A(x)|<T VxeQ

M(f (R2), the subspaces of the functions g € M?(£2) such that
0,g, Q) == (1 = ¢ullpry = 0 asr — oo.
Clearly, it turns out that MP(Q) C VMP(Q) and for every g € MP(Q)
nplg, QI(T) < o,lg, Q(7);
moreover (see Lemma 2.1 of [11])
ME(Q) € MP().
Furthermore we call:
modulus of continuity of g € VMP?(2) any function  : R, — R, such that
n(r)—0 ast— 0, n,lg, QL) <n(r)VreRy;
modulus of continuity of g € MP(S2) any function ¢ : Ry — R, such that
o(t) >0 ast—0, o,[g,2(r) <o(r) VreRy;
modulus of continuity of g € M[(2) any function 6 : Ry — R, such that
O(r) — 0 asr — +o0, oplg, QI(1/r)+6,[g, Q(r) <0(r) VreR,.

The above-mentioned spaces have been introduced in [10] and represent
the particular case A = 0 of the spaces M?-*(€2), which have been defined in
[14].

From [10] and [14] we also infer the following two lemmas.
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Lemma 1.1. MP(Q) is the closure of L™ (Q2) in MP(R2); Mé’(Q) is the closure
of C5°(2) in MP ().

Lemma 1.2. Let k € N, p € [2, +oo[, with p > 2 if k = 1, and suppose Q2
endowed with the cone property. Then for every g € MP(Q2) and u € W*(Q) we
have gu € L*(Q) and

lgul2,0 < cligllmellullwg),

where c is a positive constant depending only on p, k and the characteristic
cone of Q.

From the previous lemmas we easily deduce the following further results.

Lemma 1.3. Ifthe assumptions of Lemma 1.2 are verified and g € My (), then
for any € e R the bound

lgulo < ellullw e + c@luha, ueW (),

holds true with a positive constant c(¢) depending only on &, p, k, the modulus
of continuity of g € MP(2) and the characteristic cone of 2.

Lemma 1.4. If the assumptions of Lemma 1.2 are verified and g € M} (2), then
there exist c(e) € Ry and an open subset Q(¢) CC 2 such that for any e e R,

lgula.o < ellullw ey + c@lulrae , YueWHR),

with c(¢) and Q(e) depending only on €, p, k, the modulus of continuity of
g € MJ () and the characteristic cone of Q.

Lemma 1.5. If the assumptions of Lemma 1.2 are verified, then for every
g€ Mé’ (R2) the operator

ueWhQ) — gue LA(Q)

is compact.

For a function u defined on 2 having derivatives in the sense of the
distributions, we will make use of the following notations:

1 1
) 213 (2 2 2 \2
U, = (th1 + ux2) , Uge = (uxlx1 + 214x]x2 + uxm) .
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2. Preliminary lemmas.
In the sequel we suppose the open subset  of R? has the uniform C2-
regularity property according to R.A. Adams [1] (see 4.6):

i1) there existd e Ry, k € N, an open covering {U,};cn of 02 and diffeomor-
phisms ®; : U; — By, i €N, of class C? such that

1) {x e Q/dist(x, dQ) < d} C J ®; '(B(0, 1/2));

ieN

2) every collection of k 4 1 of the sets U; has empty intersection;

3) ®;(U;NQ)={xeB/x; >0},ieN;

4) the components of ®; and dDi_l , together with first and second derivatives,
are all bounded by a constant independent of i € N.

Let us consider the differential operator L defined in (1) with principal
term Lo given by (11).
If (2) is verified, a; € M*(R2) for some s > 2, a € M*(R2), then we put

B := max{max |a;;|cc, @, max [|a; || ys@), 1allpme)}-
l,J 1

Lemma 2.1. Assuming i,), (2), a; € VM*(Q) for some s > 2, a € M*(Q) and

2.1 ay = es%inf a>0,

we have the bound

(2.2) sup lu| < c|Lulrg, YueW Q)N Wi(Q),
Q

where c is a constant depending only on v, B, ag and the moduli of continuity of
a; € VM*(Q).

Proof. As a consequence of well known results about Sobolev spaces. A
function u € W2(2) N WOl (£2) has the following properties:

ueC’(Q), u=0 onds, lim u(x)=0.

[x]—+o00

So we deduce the assertion from the results of [15]. U

Let us suppose
ip) the coefficient of L verify (2) and (5).



210 MARIO TROISI - ANTONIO VITOLO

It is known (e.g., see [4], [9]) that the uniform ellipticity of L in an open
subset © of R? is equivalent to Cordes’ hypothesis:

)

(2.3) es%mf 2 > 1.
>
iz Y
If we put
2 2 2
Z aii) Z aijj
N i=1 B Ry |
2.4) gy = es%mf 2 1, y:= es%lnf : ,
> a;j 2 ajj
ij=1 ij=1
we have

2
esssup Z(SU — yaij)z =1-—¢g
Q =
i,j=1

and so (2.3) is equivalent to the condition

2
(2.5) esssu (8;; — yai;)? < 1.
> P Z J J

ij=1
Lemma 2.2. Assuming i) and i,), we have bound

(2.6) [txel2,@ < c(|Lu + Aulz,o + |ulz2,0),

Yue WHQ) N W, (R) and Y1 € [0, +oo],
where c is a constant depending only on 2, v, f and the moduli of continuity of
a;e M5(Q), i = 1,2, and of a € M*(R).

Proof. From Theorem 3 of [12] we have (2.6) with L, instead of L, and so we
obtain the result by applying Lemma 1.3. ]
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3. Conditions at infinity on the coefficients a;;.

Let u € Ry and k e N.
We denote by Ej(u, £2) the class of the k x k matrix-functions ((¢;;)) such
that

k
eji = e;; € L™(Q), Z e;j&& > ulEl* ae inQ, VEeRY
i j=1

(eij)x, € M{(2) for some s > 2.
Moreover we put

9(Q) ={geL™®Q): es%inf g >0}

We will use the pair (g;;, b) to indicate the operator
Lou +bu, ueWiQ),
with Ly given by (11) and b € M %(2) such that essinf b > 0 for some r € R,
Q\B,
Hypothesis 3.1. There exist u, 1,71 € Ry, e;; € Ea(u, ), e € E1(1, 2), g €
§(2) such that

2

3.1) w2 esssup Z (eij — gaij)2 + /Ll_z esssup (e — gh)* < 1.
Q\B,, i, j=1 Q\B,,

To be more explicit, we will also say that (a;;, b) verifies Hypothesis 3.1
(with respect to (e;;, e, g)).

Remark 3.2. As a consequence of (2.5), in order that (a;;, b) verifies Hypoth-
esis 3.1 (with respect to (e;;, e, y), where y has been defined in (2.4)) it is
sufficient that there exist 1,79 € Ry, e € E1(u1, €2), such that

(3.2) esssup |e — yb| < pu1/%o.
Q\B,,

Remark 3.3. Let u, r e Ry, ¢;; € Ex(u, €2), g € §(£2), such that

2

3.3) o =1—pu *esssup Z(eij - gaij)2 > 0.
Q\B, i j=1
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As a consequence of Remark 4.1 of [3], Hypothesis 3.1 is satisfied (by
(ajj, b)) if there exist ry € R such that

(3.4) essinf (gh) > (1 — /o) esssup (gh).
Q\B,, Q\B,,

Remark 3.4. From (2.5) and Remark 3.3 we deduce that Hypothesis 3.1 is
satisfied (by (a;;, b)) if there exists r € R, such that

essinf (yb)
Q\B, . (an + an)?
—— > 1— Jessinf

esssup (yb) a\B, ajy +2ai, +a3,
\B,

—1.

Remark 3.5. As a consequence of Remark 3.3, Hypothesis 3.1 is satisfied (by
(ajj, b)), whatever b is, in the case of

7 " / N . n _ 0
aij = a;; +a;;, (a;;)y, € Mp(S2) for some s > 2, ‘x‘l_l)rilooaij =aq;; €R,

because (3.3) and (3.4) can be satisfied by taking © = v/2,r9 € R, ¢;; =
aj; +aj;, g = 1, such that

1

. 292
[ essinf b -|
" Q\B,
esssup |aj; — a?j| <3 1—]1- esssou
Q\B,, L 0B p J
0

We also observe (see note (1) of M. Giaquinta [5] and Proposition 1 of
M. Chicco [2]) that, if we set

2
w Y eja; +/L1_2eb
ij=1

(3.5) 80 ‘= )

2
u?2 > aizj + b2
ij=1

then for any function f : 2 — R we have

2 2
T Z(eij —g0ai})* + 1 (e—gob)* < pu? Z(eij — fai;* +uy (e — b)Y

i,j=1 i,j=1
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Therefore a pair (a;;, b) verifies Hypothesis 3.1 with respect to (¢;;, e, g)
if and only if (a;;, b) does it with respect to (¢;;, e, go).
Moreover

2
w2 Z (eij — goaij)* + py (e — gob)* =
ij=1

2
2
2 (M_Z 2. eijai +M1_26b)
_ _ i,j=1
= 2Zelgj+ﬂlzez_

2

i, j= -2 2 —2712

i,j=1 u=2y aj; +py b
ij=1

k)

and so (a;;, b) verifies Hypothesis 3.1 with respect to (e;;, e, g) if and only if
J J

2
2
> (M_z > €ijai +M1_2€b)
i, j=1
esssup ;L_z Z eizj + /L1_2e2 — o

2
i, j= - 2 -2
Q\By, i, j=1 n? Z aij‘i‘lh b2
i, j=1

< 1.

4. A-priori bounds.
We state in advance some lemmas.

Lemma 4.1. If Q has the uniform C?-regularity property, then each u €
W2(Q)N WO1 (Q) is the limit in W*(Q) of a sequence {u,},en such that

u, € WA(Q)NC*Q), u,=00n0Q.

Proof. Let us take v, € D(Q), n €N, such that
4.1) v, — u  in WA(Q).

By virtue of Theorem 5.4 of [11] for each n € N there exists a solution
U, € WA Q)N WOl (R2) of the equation

(42) _Aun +u, = _Avn + vy
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from Theorem 5.1 of [2] we deduce that u,, € W>P(Q) for every p € [2, +00[;
so in particular u, € C°(Q), whence, by known results (see [6]), u, € C*(RQ).

On the other side, as a consequence of Theorem 4.2 of [11], the solution

U, —u e WHQ) N W, (Q)
of the equation
—AQy —u) + Uy —u) = =AWy —u) + (Vg — 1)
satisfies a bound of the type
lun —ullwxg) < ¢l — Ay —u) + (v, —u)l,

with ¢ € R, independent of n, whence the result. (]

Lemma 4.2. Let Q have the uniform C?-regularity property and ry € R, be
such that the curvature is non-negative on 92 \ E,O a.e. with respect to the
one-dimensional Hausdorff measure on 02.

Let u e W(Q) N WO1 () andr > ry.

If e;j € Ex(ju, 2\ E,O), then the function

up = (1 —&u

satisfies the inequality

2
@3 f ()3, dx < f [ = D" e | dx +
Q Q

ij=1

2
+ Z A[(eij ehk)xj (ur)x,» (ur )xhxk - (eij ehk)xh (Mr )x,» (Mr)xkxj] dx.

ijihk=1
Proof. By virtue of Lemma 4.1 we can suppose
ue WAQ)NC*Q), u=00ndQ.

Setting
Wy = Cplty,  pER,,
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from classical results we deduce that

(.4) w2 f (w, 2. dx +
Q

2

+/ Z eijehk[(wp)xhxk(wp)x,»nj - (wp)xjxk(wp)xinh] dl <
2, i hk=1

2
= / } - Z eij(wp)xilezdx +
Q

ij=1

2
+ Z [(eijehk)xj (wp)x,»(wp)xhxk - (eijehk)xh (wp)x,»(wp)xkxj] dxv
Q

i,j,h,k=1

with n = (ny, n,) the unit outward normal to 9£2.

By proceeding as in [7] and using the assumption on the curvature, the line
integral along 0€2 turns out to be non-negative, and so (4.4) yields (4.3) for w,
(in the place of u,).

From this we get the result, letting p — 400, by the dominated conver-
gence theorem of Lebesgue. ]

We will consider the following two conditions alternatively:

i3) Hypothesis 3.1 is satisfied and there exists ry € R, such that the curvature
is non-negative on 92 \ B,, a.e. with respect to the one-dimensional measure of
Hausdorff on 9€2;

i;) there exist u, u; € Ry, ((;;)) € Ex(u, ) and, for any e e Ry, r, e Ry
such that
esssup |a;; —a;j| <&, esssupb > .
Q\B, Q\B,,

Remark 4.3. Condition i;) implies Hypothesis 3.1. In fact, if i}) holds true,
then (3.1) is satisfied choosing u, u; € Ry, as given by i}), ¢; = o,
e = u, g = 1, for a sufficiently large r;.

We will set

ﬁ/ Z max{ﬁ’ |eij|OO,Qv |e|OO,Qv |g|OO,Q}7

with 8 defined in Section 2, and y : R, — R, y(r) — 0 as t — 0, such that

y(1) = Osl(eij)x, 2] + Oslex, €21,
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if i3) is verified, whilst

B’ = max{B, |aij|c,q. esssup b},
Q\B,,

and
y(1) = Ol(aij)e, 2],
if i) is verified.
We will also make use of the following condition:
is) a; € Mj(Q) for some s > 2,a = a’ + b, with a’ € M3 ().
Lemma 4.4. If conditions iy), iy), i3), i4) are verified, then there exists r* € R,

such that

4.5) (1 = &ullwae) < c[LI(1 = & ullr,o

for every u € W?(Q) N Wol(Q) and r > r*, where c is a positive constant
depending only on Q, u, ui, B/, (1), es%inf g, and the moduli of continuity of
ai € M{(RQ), a' € MA(), b € M*(RQ).

Proof. Starting from inequality (4.3) and proceeding as in the proof of
Lemma 6 of [13], we can find a bounded open subset €2y of €2 such that

(4.6) (X = &ullwae) < c(ILI(1 = &ullz.e + (1 = &ul.o,)

for » > max{ry, 1}, whence the result follows at once. [l
Theorem 4.5. If conditions iy), i), i3) or i}) (alternatively, i) are verified,
then there exist c € Ry and a bounded open subset Qy of Q2 such that

@7 Nullwg) < c(Lubg + lulag,), YueWHQ) N Wy(Q),

with ¢ and Q depending only on 2, u, uy, B, y (1), es%inf g, and the moduli
of continuity of a; € M(Q), a’ € MX(), b € M¥().

Proof. Firstly, we consider the case when i), iy), i3), i4) are verified.
Let r* € Ry as in Lemma 4.4. By applying Lemma 2.2 to ¢« and using
(4.5), for r > r* we have:

(4.8) lleellway < ci(|Lulr o + [ LG u)lao + 18-ul o).
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From i,), by virtue of Lemma 1.3, we deduce that

4.9) [L(&u)la0 < [Lulzq + €llullwx o) + c(e)lulz,q,

with €2, a bounded open subset of 2, whence (4.7) in the present case.
Now, let us suppose that i1), i»), i3), is) are verified.

In this case (see, e.g., Theorem 4.4 of [11]) there exist ¢, and a bounded
open subset Q' of € such that

(4.10) I = & ullwae) < ea(ILIA = & )ul +

2
+ > (@i — il = &ulys g + 11— &)

i, j=1
whence, by virtue of i}), choosing a sufficiently large r, € Ry we get

1A = ullwae) = 2(ILIA = Eullze + 10 =G ul.o) + (1 = & ullwae),

for r > r,, which yields an inequality of type (4.6) and so (4.5).
By arguing as in the first part of this proof, then we obtain (4.7). ([

Theorem 4.6. Let us suppose that the conditions of Theorem 4.5 are verified
and assume

4.11) ay = es%inf a>0.

Then we have the estimate
(4.12) lullweey < clLulo, Yue W) N Wy(R),
with ¢ depending only on ay the parameters occurring in the constant of the

bound (4.7).

Proof. The result is an obvious consequence of Theorem 4.5 and Lemma 4.2,
since a modulus of continuity in M{(£2) is a modulus of continuity in V M*(€2),
too. (]
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5. Existence theorems.

In this section we consider the problem
(5.1) ue WAQ)YNWy(Q), Lu=f, feL*Q).

Theorem 5.1. If the conditions of Theorem 4.5 are verified, then (5.1) is a zero
index problem.
If in addition (4.11) is verified, then problem (5.1) is uniquely solvable.

Proof. Firstly, we consider the case when (4.11) is verified.

Let us set
5.2) L.ou:=tAu+ (1 —1t)Lu, 71e€l0,1],
where
2
(5.3) Au = — Z ejjliy,y, + e,
ij=1
if we consider i3),
2
(5.4) Au = — Z QjjUy,x, +bu,
ij=1

if we consider i}).
In the case of assumption i3), we observe that for every 7 € [0, 1]

2
(5.5) v Y ey — gi(rey + (1= Dai)* +
ij=1
2
+u2le — gelre + (1 = DB < v72 > (eij — goai)® + (e — gob),
ij=1

where

2
w2 Y ejlre + (1 — vayl+ up*elre + (1 — 1)b]
i,j=1
8r ‘= . 5 s
p2 Y [rey + (1= Day P + pi?[re + (1 = Db
i,j=1
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which is reduced to (3.5) for T = 0.

Since (a;j, b) verifies Hypothesis 3.1 with respect to (e;;, e, go), then
for every © € [0, 1] the pair ([te;; + (1 — 7)a;;], [te + (1 — T)b]) verifies
Hypothesis 3.1 with respect to (e;;, e, g).

Furthermore, since T — g, is a continuous function, from Theorem 4.6
we deduce that there exists ¢ € R, such that

(5.6) lullweey < clL ulrg Yue WAHS2) N W, (Q) and YV €0, 1].

In the case of assumption i), the coefficients of L, satisfy condition i})
uniformly with respect to 7 € [0, 1] and so again Theorem 4.2 yields (5.6).
Now, we recall that, as a consequence of known results, the problem

(5.7) ue WAQ)NWy(Q), Au = f, feL¥(Q),

is uniquely solvable. For instance, we can get this result observing that the proof
of Theorem 5.4 of [11] remains unchanged if we suppose the coefficient of u
belongs to M 2(Q) rather than to M () for some #, > 2.

From the uniqueness and existence result for problem (5.7), together with
(5.6), we can apply the classical method of continuity along a parameter in order
to establish that problem (5.1) is uniquely solvable if (4.11) is verified.

If (4.11) is not verified, by applying the above conclusions to the operator
Lu — a’u and observing that, as a consequence of Lemma 1.5, the operator
ue WKQ) — a'u e LX) is compact, we deduce that (5.1) is a zero index
problem from well known results of functional analysis. ]
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