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ON THE RELAXATION OF SOME CLASSES OF
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Given a Borel function g : R
n → [0,+∞] having convex effective

domain, but not necessarily bounded or with nonempty interior, locally
bounded in the relative interior of its effective domain and verifying an
upper semicontinuity type assumption in its effective domain, we prove that
for every convex bounded open set � the relaxed functional in the L1(�)-

topology of the integral u ∈W 1,∞
loc (Rn) �→

�
�
g(∇u)dx is equal to

�

�

g∗∗(∇u)dx +

�

�

(g∗∗)∞(
dDsu

d|Dsu|
)d|Dsu|

for every u ∈ BV (�), g∗∗ being the convex lower semicontinuous envelope
of g and (g∗∗)∞ its recession function.

Introduction.

Some studies in elastic-plastic torsion theory and electrostatics (see [1],
[4], [18], [23], [25], [28], [31] and the book of G. Duvaut and J.L. Lions [19])
lead to various classes of minimum problems for integral functionals de�ned on
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spaces of admissible functions subject to pointwise constraints on the gradient
that can be studied in the framework of a general theory on lower semicontinuity
and relaxation for variational functionals of the type

G(�, u) =

�

�

g(x , u, ∇u) dx ,

where g is a function taking its values in R ∪ {+∞}.
When g is just real valued relaxation problems for such functionals are

well studied in literature (see for example [5], [14], [20], [27] and the refer-
ences quoted therein) whilst, when g is admitted to take the value +∞ and
consequently G may be not �nite also on bounded sets of regular functions, i.e.
G is what we call an unbounded integral functional, few relaxation results are
available (see [20], [26]).

In the present paper we intend to start a study of the relaxation of un-
bounded integral functionals starting from the case in which g does not depend
on x and u.

We prove a general integral representation result on BV -spaces for
the relaxed functionals in L1-topologies of the integrals u ∈ W 1,∞

loc (Rn) �→�
�
g(∇u) dx (see Theorem 7.2 and Proposition 7.3) from which the following

particular case can be deduced (see Corollary 7.4).
Let g : R

n → [0, +∞[ be continuous, C be a convex subset of R
n , IC

the indicator function of C de�ned by IC (z) = 0 if z ∈ C and IC (z) = +∞ if
z ∈ R

n \ C , (g + IC )∗∗ the bipolar of g + IC and ((g + IC )∗∗)∞ its recession
function (see (1.3)), then for every convex bounded open set �

inf
�
lim inf

h

�

�

g(∇uh)dx : {uh} ⊆ W 1,∞
loc (Rn),

for every h ∈ N ∇uh(x ) ∈C for a.e. x ∈ �, uh → u in L1(�)
�

=

=

�

�

(g + IC )∗∗(∇u) dx +

�

�

((g + IC )∗∗)∞(
dDsu

d|Dsu|
) d|Dsu|

for every u ∈ BV (�),

BV (�) being the set of the functions in L1(�) having distributional partial
derivatives that are Borel measures with �nite total variations on �, ∇u the
density of the absolutely continuous part of the vector measure Du with respect

to Lebesgue measure, Dsu its singular part and
dDsu

d|Dsu|
the Radon-Nikodym

derivative of Dsu with respect to the total variation |Dsu| of Dsu.
Problems of this type are treated in Chapter X of [20] and in [26], where

also some dependences on x and u in the integrand g are allowed, but limitedly
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to the case in which C is a ball of R
n . On the contrary we are able to treat also

the case in which C is just a convex set, possibly unbounded and with empty
interior.

The main tools used to obtain our results are a recent integral representation
theorem for unbounded functionals and an extension principle proved in [9] (see
Theorem 1.5 and Proposition 1.6 in the next section) together with an inner
regularity condition that we prove in an abstract setting (see Section 2).

The result of the present paper have been announced in [8].

1. Notations and preliminary results.

For every couple of open sets A and B of R
n , A ⊂⊂ B means that A is

compact and A ⊆ B .

De�nition 1.1. Let E be a set of open subsets of R
n and α : E → [0, +∞].

We say that α is increasing if α(A1) ≤ α(A2) whenever A1, A2 ∈ E and
A1 ⊆ A2 .

If α is increasing, we de�ne the inner regular envelope α− of α as the
function de�ned by

α− : A∈ E �→ sup
�
α(B) : B ∈ E, B ⊂⊂ A

�

and say that α is inner regular if α(A) = α−(A) for every A∈ E.

Remark 1.2. It is clear that if α is increasing then

α−(A) ≤ α(A) for every A∈ E.

In the present paper we will consider functionals F depending on a open
set � and a function u such that, for �xed u, F(·, u) is increasing. In this case,
given an open set � and a function u, we will set F−(�, u) = F(·, u)−(�).

For every open set � we denote by BVloc(�) the set of the functions in
L1

loc(�) that are in BV (A) for every open set A with A ⊂⊂ �.
Given an open set � and u in BVloc(�) we set, by Lebesgue decomposition

theorem, Du = Dau + Dsu =
�
·
∇udx + Dsu, where Dau is the absolutely

continuous part of Du with respect to Lebesgue measure and Dsu its singular
part; we also denote by |Du| and |Dsu| the total variations of the R

n -valued
measures Du and Dsu and recall that BV (�) is a Banach space with norm

�u�BV (�) =

�

�

|u| dx + |Du|(�).
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Given a sequence {uh} ⊆ BV (�) and u ∈ BV (�) we say that {uh}
converges to u in w∗-BV (�), and write uh → u in w∗-BV (�), if uh → u in
L1

loc(�) and the sequence {|Duh |(�)} is bounded. Moreover, given a functional
F on BV (�) we say that F is sequentially w∗-BV (�)-lower semicontinuous if
for every sequence {uh} ⊆ BV (�), u ∈ BV (�) such that uh → u in w∗-BV (�)
it results F(u) ≤ lim inf

h
F(uh ).

For a deeper study of BV -functions we refer to [21] and [32], here we just
recall that (see for example Chapter 1 of [21]) for every bounded open set with
Lipschitz boundary � the BV (�)-bounded subsets of BV (�) are relatively
compact in BV (�) endowed with the L1(�)-topology.

For every f : R
n →]−∞, +∞] we denote by dom f the effective domain

of f , i.e. dom f =
�
z ∈ R

n : f (z) < +∞
�
, by co f the convex hull of f , i.e.

the function

co f : z ∈ R
n �→ sup

�
φ(z) : φ : R

n →] − ∞, +∞] convex, φ ≤ f on R
n}

and by f ∗∗ the bipolar of f , i.e. the function de�ned by (see for example [20],
Proposition 4.1, page 18)

f ∗∗ : z ∈ R
n �→ sup

�
φ(z) : φ : R

n → R af�ne, φ ≤ f on R
n}.

Obviously co f turns out to be convex, f ∗∗ convex, lower semicontinuous and

(1.1) f ∗∗(z) ≤ co f (z) ≤ f (z) for every z ∈ R
n,

moreover we also have

f ∗∗(z) = sup
�
φ(z) : φ : R

n →] − ∞, +∞] convex,(1.2)

lower semicontinuous φ ≤ f on R
n
�

for every z ∈ R
n.

For every subset C of R
n we denote by aff(C) the af�ne hull of C , i.e. the

intersection of all the af�ne subsets of R
n containing C . If C is also convex we

denote by ri(C) the relative interior of C , i.e. the set of the interior points of
C , in the topology of aff(C), once it is regarded as a subspace of aff(C) and by
rb(C) the relative boundary of C , i.e. the set C \ ri(C). When aff(C) = R

n we
write as usual ri(C) = C0 and rb(C) = ∂C .

The following result holds (see for example Theorem 12.2, Corollary 7.4.1,
Theorem 7.4 and Theorem 7.5 in [29]).
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Proposition 1.3. Let f : R
n →] − ∞, +∞] be convex, then ri(dom f ∗∗) =

ri(dom f ), rb(dom f ∗∗) = rb(dom f ) and f ∗∗(z) = f (z) for every z ∈

R
n \ rb(dom f ).

Moreover for every z0 ∈ ri(dom f ), z ∈ R
n the limit lim

t→1−
f (t z + (1 − t)z0)

exists and f ∗∗(z) = lim
t→1−

f (t z + (1 − t)z0).

Given f : R
n →] − ∞, +∞] convex, lower semicontinuous and z0 ∈

dom f we de�ne the recession function f∞ of f by

(1.3) f∞ : z ∈ R
n �→ lim

t→+∞

1

t
f (z0 + t z);

it is well known that the de�nition in (1.3) is independent on the choice of
z0 and that f∞ is a nonnegative, convex, lower semicontinuous and positively
1-homogeneous function.

Let f : R
n → [0, +∞] be convex and lower semicontinuous for every

open set � let G(�, ·) be the functional de�ned by

(1.4) G(�, ·) : u ∈ BV (�) �→

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu|

(in (1.4) and in the sequel we adopt the usual convention that 0·(+∞) = 0), then
the following lower semicontinuity result holds (see for example Corollary 3.4.2
in [5]).

Theorem 1.4. Let f : R
n → [0, +∞] be convex, lower semicontinuous, �

be an open set and G(�, ·) be given by (1.4), then G(�, ·) is sequentially w∗-
BV (�)-lower semicontinuous.

Let � be an open set. Given a sequence {uh} ⊆ W 1,∞(�) and u ∈

W 1,∞(�) we say that {uh} converges to u in w∗-W 1,∞(�), and write uh → u in
w∗-W 1,∞(�), if {uh} converges to u weakly* in L∞(�) and {∇uh} converges
to ∇u weakly* in (L∞(�))n . Moreover, given a functional F on W 1,∞(�),
we say that F is sequentially w∗-W 1,∞(�)-lower semicontinuous if for every
sequence {uh} ⊆ W 1,∞(�), u ∈W 1,∞(�) such that uh → u in w∗-W 1,∞(�) it
results F(u) ≤ lim inf

h
F(uh).

For every measurable subset E of R
n we denote by |E | the Lebesgue

measure of E and by χ
E

its characteristic function de�ned by χ
E
(x ) = 1 if

x ∈ E and χ
E
(x ) = 0 if x ∈ R

n \ E .
For every z ∈ R

n we denote by uz the function de�ned by uz : x ∈ R
n �→

z · x .
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We say that a function u on R
n is piecewise af�ne on R

n if it is continuous
and if there exist z1, . . . , zm ∈ R

n , s1, . . . , sm ∈ R and m pairwise disjoint

polyedra P1, . . . , Pm having nonempty interiors with
�
�Rn \

m
∪
j=1

Pj
�
� = 0 such

that u(x ) =
m�

j=1

(uzj (x ) + sj )χPj
(x ) for every x ∈ R

n . We denote by PA(Rn) the

set of the piecewise af�ne functions on R
n and, for every u =

m�

j=1

(uzj + sj )χPj

in PA(Rn), set Bu =
m
∪
j=1

(P j \ P◦
j ).

Given an open set �, a function u de�ned on �, x0 ∈ R
n and t > 0 we

denote by T [x0]u and Otu the functions de�ned by T [x0]u : x ∈ � − x0 �→

u(x + x0) and Otu : x ∈ 1
t
� �→ 1

t
u(t x ).

For every r > 0 and x0 ∈ R
n let Qr (x0) be the open cube of R

n with faces
parallel to the coordinate planes centred in x0 and with sidelength r and set
Qr = Qr (0).

Let α be a molli�er, i.e. a nonnegative function in C∞
0 (Q1) such that�

Rn α(y) dy = 1, then, for every u ∈ L1
loc(R

n) and ε > 0, we de�ne the
regularization uε of u as

(1.5) uε : x ∈ R
n �→ uε(x ) =

1

εn

�

Rn

α

� x − y

ε

�
u(y) dy .

Given an open set � and x0 ∈ �, we say that (see [11]) � is strongly
star shaped with respect to x0 if it is star shaped with respect to x0 and if for
every x ∈ � the half open line segment joining x0 to x , and not containing x , is
contained in �. We say that an open set � is strongly star shaped if there exists
x0 ∈ � such that � is strongly star shaped with respect to x0.

By the above de�nition it follows that if � is a bounded open set strongly
star shaped with respect to x0, then for every t > 0 the open set x0 + t(� − x0)
is still strongly star shaped with respect to x0 and x0 + s(� − x0) ⊂⊂ � ⊂⊂

x0 + t(� − x0) for every s, t ∈ R with 0 ≤ s < 1 < t , moreover it is clear that

(1.6) � convex ⇒ � strongly star shaped.

We now recall the following integral representation result (see Theorem 6.2
in [9]).

Theorem 1.5. For every bounded open set � let F(�, ·) : W 1,∞
loc (Rn) →

[0, +∞] verifying

(1.7) F(�, uz + c) = F(�, uz) for every bounded open set �, z ∈ R
n, c∈ R,
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(1.8) F(� − x0, T [x0]uz ) = F(�, uz) for every bounded open set �, z ∈ R
n,

x0 ∈ R
n,

(1.9) for every u ∈W 1,∞
loc (Rn) F(·, u) is increasing,

(1.10) F(�1, u)+F(�2, u) ≤ F(�, u) whenever �1, �2, � are bounded open
sets with �1 ∪ �2 = ∅, �1 ∪ �2 ⊂⊂ �, u ∈W 1,∞

loc (Rn),

(1.11) F(�, u) ≤ F(�1, u)+F(�2, u) whenever �, �1, �2 are bounded open
sets with � ⊂⊂ �1 ∪ �2 , u ∈W 1,∞

loc (Rn),

(1.12) lim sup
r→0+

1

rn
F(Qr (x0), u) ≥ F(Q1(x0), u(x0)+∇u(x0) ·(·−x0)) for every

u ∈W 1,∞
loc (Rn), x0 a.e. in R

n ,

(1.13) for every u ∈W 1,∞
loc (Rn) F(·, u) is inner regular,

(1.14) for every bounded open set � F(�, ·) is sequentially w∗-W 1,∞(�)-
lower semicontinuous,

(1.15) F(�, u) ≤ F(� \ Bu, u) for every bounded open set �, u ∈ PA(Rn)

and let fF be de�ned by fF : z ∈ R
n �→ F(Q1, uz) ∈ [0, +∞], then fF is

convex, lower semicontinuous and

(1.16) F(�, u) =

�

�

fF (∇u) dx for every bounded open set �, u ∈W 1,∞
loc (Rn).

Conversely, given f : R
n → [0, +∞] convex, lower semicontinuous and

de�ned, for every bounded open set �, the functional F(�, ·) by (1.16) with
fF = f , it turns out that conditions (1.7) ÷ (1.15) are veri�ed by F .

Let A0 be a family of bounded open sets verifying the following property

(1.17) for every � ∈ A0 and every open set A with A ⊂⊂ � there exists
B ∈ A0 such that A ⊂⊂ B ⊂⊂ �.

Proposition 1.6. Let A0 be a family of bounded open sets verifying (1.17)
and f : R

n → [0, +∞] be convex and lower semicontinuous. For every
bounded open set � let F(�, ·) : BVloc(R

n) → [0, +∞] be such that for every
u ∈ BVloc(R

n) F(·, u) is increasing, for every � ∈ A 0 F−(�, ·) is sequentially
w∗-BV (�)-lower semicontinuous and

F−(�, u) ≤

�

�

f (∇u) dx for every � ∈ A0, u ∈C∞(Rn),

then

F−(�, u) ≤

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu|

for every � ∈ A0, u ∈ BVloc(R
n).
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Proof. Follows by Proposition 3.5 in [9]. �

In conclusion we prove the following lower semicontinuity result.
For every open set � we denote by D

�(�) the weak* topology of the space
of the distributions on �.

Proposition 1.7. Let f : R
n → [0, +∞] be convex and lower semicontinuous,

then for every open set � the functional

u ∈ BVloc(�) �→

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu|

is sequentiallyD
�(�)-lower semicontinuous.

Proof. Let us preliminarily recall that if for every w ∈ BVloc(R
n), ε > 0 wε is

the regularization of w given by (1.5), then by Lemma 3.3 in [9] we obtain that

�

A

f (∇wε) dx ≤

�

B

f (∇w) dx +

�

B

f∞
� dDsw

d|Dsw|

�
d|Dsw| for every(1.18)

bounded open set B, every open set A with A ⊂⊂ B, w ∈ BVloc(R
n),

ε ∈ ]0, dist(A, ∂B)[.

Let � be a bounded open set, u ∈ BVloc(�), {uh} ⊆ BVloc(�) with
uh → u in D

�(�), A be an open set with A ⊂⊂ �, ε ∈ ]0, dist(A, ∂�)[
and B be an open set with Lipschitz boundary such that A ⊂⊂ B ⊂⊂ �

and dist(A, ∂B) > ε . For every h ∈ N let v and vh be the zero extensions of
u and uh out of B , then (see for example Chapter 1 of [21]) v, vh ∈ BV (Rn),
moreover, if vε and vh,ε are the regularizations of v and vh given by (1.5), by
(1.18) we get

�

A

f (∇vh,ε) dx ≤

�

B

f (∇vh) dx +

�

B

f∞
� dDsvh

d|Dsvh |

�
d|Dsvh | ≤(1.19)

≤

�

�

f (∇uh ) dx +

�

�

f∞
� dDsuh

d|Dsuh |

�
d|Dsuh | for every h ∈ N.

Let us observe now that vh,ε → vε in w∗-BV (A) as h diverges, hence by
Theorem 1.4 and (1.19) we deduce that

�

A

f (∇vε) dx ≤ lim inf
h

�

A

f (∇vh,ε) dx ≤(1.20)

≤ lim inf
h

��

�

f (∇uh) dx +

�

�

f∞
� dDsuh

d|Dsuh |

�
d|Dsuh |

�

for every ε ∈ ]0, dist(A, ∂�)[.
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Finally again by Theorem 1.4 and by (1.20) we conclude that

�

A

f (∇u) dx+

�

A

f∞
� dDsu

d|Dsu|

�
d|Dsu| =

�

A

f (∇v) dx +

+

�

A

f∞
� dDsv

d|Dsv|

�
d|Dsv| ≤ lim inf

ε→0+

�

A

f (∇vε) dx ≤

≤ lim inf
h

� �

�

f (∇uh ) dx +

�

�

f∞
� dDsuh

d|Dsuh |

�
d|Dsuh |

�
,

from which the thesis follows letting A increase to �. �

2. An abstract inner regularity result for increasing set functionals.

In the present section we prove a suf�cient condition, that can be stated in
an abstract setting, in order to deduce identity between a functional and its inner
regular envelope.

Let U be a set of functions on R
n such that

(2.1) u ∈U, x0 ∈ R
n, t ∈ ]0, 1[ ⇒ T [x0]u ∈U, Otu ∈U ,

and let, for every bounded open set � of R
n , F(�, ·) : U → [0, +∞] be a

functional satisfying

(2.2) for every u ∈UF(·, u) is increasing,

(2.3) lim inf
t→1−

F(�, T [−x0]OtT [x0]u) ≥ F(�, u) for every bounded open set

� strongly star shaped with respect to x0, u ∈U

and

(2.4) lim sup
t→1+

F−(x0 + t(� − x0), T [−x0]O1/t T [x0]u) ≤ F−(�, u) for every

bounded open set � strongly star shaped with respect ro x0, u ∈U .

Proposition 2.1. Let U be a set of functions on R
n verifying (2.1) and let, for

every bounded open set �, F(�, ·) : U → [0, +∞] verifying (2.2) ÷ (2.4),
then

(2.5) F(�, u) = F−(�, u) for every strongly star shaped bounded open set
�, u ∈U.
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Proof. Let �, u be as in (2.5), x0 ∈ � be such that � is strongly star shaped
with respect to x0 and t ∈ ]1, +∞[, then, since obviously � ⊂⊂ x0 + t(�−x0),
by (2.2) we have

(2.6) F(�, T [−x0]O1/t T [x0]u) ≤ F−(x0 + t(� − x0), T [−x0]O1/t T [x0]u),

hence as t decreases to 1, by (2.6), (2.3), (2.4) and Remark 1.2 we deduce (2.5).
�

3. Statement of the relaxation problem and elementary results.

Let g be a Borel function with

(3.1) g : z ∈ R
n �→ g(z) ∈ [0, +∞] .

In the present section we start the study, for every bounded open set �,
of the relaxed functional in the L1(�)-topology of integral G(�, ·) : u ∈

W 1,∞
loc (Rn) �→

�

�

g(∇u) dx de�ned by

G(�, ·) : u ∈ L1(�) �→ inf
�
lim inf

h

�

�

g(∇uh) dx :(3.2)

{uh} ⊆ W 1,∞
loc (Rn), uh → u in L1(�)

�
.

Obviously

(3.3) for every bounded open set �, G(�, ·) is L1(�)-lower semicontinuous

and (as usual here and in the sequel we assume that inf∅ = +∞)

G(�, u) = min
�
lim inf

h

�

�

g(∇uh) dx : {uh} ⊆ W 1,∞
loc (Rn),(3.4)

for every h ∈ N ∇uh(x ) ∈ domg for a.e. x ∈ �, uh → u in L1(�)
�

for every bounded open set �, u ∈ L1(�).

It is easy to see that G veri�es the following properties:

(3.5) G(�, u + c) = G(�, u) for every bounded open set �, u ∈ L1(�),
c ∈ R,

(3.6) G(� − x0, T [x0]u) = G(�, u) for every bounded open set �, u ∈

L1(�), x0 ∈ R
n ,



ON THE RELAXATION OF SOME CLASSES OF. . . 231

(3.7) G(�, Otu) =
1

t n
G(t�, u) for every bounded open set �, t ∈ R,

u ∈ L1(�)

and

(3.8) G(�2, u) ≤ G(�1, u) whenever �1, �2 are bounded open sets with
�1 ⊆ �2, |�2 \ �1| = 0, u ∈ L1(�2).

Moreover we also have that

(3.9) G(�1, u) ≤ G(�2, u) whenever �1, �2 are bounded open sets with
� ⊆ �2, u ∈ L1(�2),

(3.10) G(�1, u) + G(�2, u) ≤ G(�1 ∪ �2, u) whenever �1, �2 are disjoint
bounded open sets, u ∈ L1(�1 ∪ �2).

In order to prove additional measure theoretic properties of G we need to
assume further conditions on g, more precisely that

(3.11) dom g is convex,

(3.12) g is locally bounded on ri(dom g), i.e. for every compact subset K of
ri(dom g) there exists MK > 0 such that g(z) ≤ MK for every z ∈ K

and that

(3.13) for every bounded subset L of dom g there exists zL ∈ ri(dom g) such
that the function t ∈ [0, 1] �→ g((1− t)zL + t z) is upper semicontinuous
at t = 1 uniformly as z varies in L , i.e. for every ε > 0 there exists
tε < 1 such that g((1 − t)zL + t z) ≤ g(z) + ε for every t ∈ ]tε, 1] and
z ∈ L .

Remark 3.1. Assumption (3.13) looks like a sort of uniform radial upper
semicontinuity on bounded subsets of dom g, nevertheless it does not imply
in general (3.12) (think for example to the case in which n = 2, g(z1, z2) =

|z2|/|z1 | if |z1 |
2 +|z2 |

2 ≤ 1 and z1z2 �= 0, g(z1, z2) = 0 if |z1 |
2 +|z2 |

2 ≤ 1 and
z1z2 = 0, g(z1, z2) = +∞ otherwise in R

2 and zL = (0, 0) independently
on L). It is ful�lled if g is �nite and continuous in R

n or if there exists
z0 ∈ ri(dom g) such that the function t ∈ [0, 1] �→ g((1− t)z0 + t z) is increasing
for every z in dom g.

Lemma 3.2. Let g be a Borel function as in (3.1) verifying (3.11) and G be
given by (3.2). Let A be a bounded open set and u ∈ W 1,1(A) be such that
G(A, u) < +∞, then

(3.14) ∇u(x ) ∈ domg for a.e. x ∈ A .
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Proof. Since G(A, u) < +∞, by (3.4) there exists a sequence {uh} ⊆

W 1,∞
loc (Rn) such that uh → u in L1(A) and

(3.15) for every h ∈ N ∇uh(x ) ∈ domg for a.e. x ∈ A .

We now observe that, being by (3.11) dom g closed and convex there exist
two families {aθ}θ∈T ⊆ R

n and {bθ}θ∈T ⊆ R such that z ∈ dom g if and only if
aθ · z + bθ ≥ 0 for every θ ∈ T , therefore by (3.15) we obtain that

aθ

1

|B|

�

B

ϕ∇uh dx + bθ ≥ 0 for every h ∈ N, θ ∈ T ,(3.16)

every ball B ⊆ A and every ϕ ∈C1
0 (B) with ϕ ≥ 0,

�

B

ϕ dx = 1 .

By (3.16), taking the limit as h diverges, we deduce that

1

|B|

�

B

ϕ∇u dx ∈ dom g for every ball B ⊆ A

and every ϕ ∈C1
0 (B) with ϕ ≥ 0,

�

B

ϕ dx = 1 ,

from which (3.14) follows. �

4. The case of bounded effective domain with nonempty interior.

Let g be a Borel function as in (3.1) and G be given by (3.2).
The integral representation result for G will be proved in some steps, in

the �rst one, that is treated in the present section, we assume that

(4.1) dom g is bounded,

(4.2) (dom g)◦ �= ∅.

It is clear that, by (4.1) it results

(4.3) G(�, u) = inf
�
lim inf

h

�

�

g(∇uh) dx : {uh} ⊆ W 1,∞
loc (Rn), for every

h ∈ N ∇uh(x ) ∈ dom g for a.e. x ∈ �, uh → u in w∗-W 1,∞(�)
�

for
every bounded open set �, u ∈ L1(�).

Lemma 4.1. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1), (4.2) and let G be given by (3.2), then

G−(�1 ∪ �2, u) ≤ G−(�1, u) + G−(�2, u)(4.4)

whenever �1, �2 are bounded open sets, u ∈ L1(�1, ∪�2).
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Proof. Let us preliminarily observe that, by (4.1), we can take L = dom g in
(3.13) and that it is not restrictive to assume that zdom g = 0, otherwise we just
have to consider the function g� = g(zdom g +·). In particular this, together with
(4.2), yields that

(4.5) 0 ∈ (domg)◦.

Let now �1, �2, u be as in (4.4), �x an open set A with A ⊂⊂ � and
observe that there exist A1 ⊂⊂ �1, A2 ⊂⊂ �2 such that A ⊂⊂ A1 ∪ A2 . By
virtue of this, in order to prove (4.4), it suf�ces to show that

(4.6) G(A, u) ≤ G(A1, u)+G(A2, u) whenever A, A1, A2 are bounded open
sets with A1 ⊂⊂ �1, A2 ⊂⊂ �2 and A ⊂⊂ A1 ∪ A2 .

To do thiswe can obviously assume that the right-hand side of (4.6) is �nite
so that by (4.1) and (4.3) for i = 1, 2 there exists a sequence {uih} ⊆ W 1,∞

loc (Rn)
such that uih → u in w∗-W 1,∞(Ai ), for every h ∈ N ∇uih(x ) ∈ dom g for a.e.
x ∈ Ai and

(4.7) G(Ai , u) = lim
h

�

Ai

g(∇uih) dx .

Let B1 be an open set with B1 ⊂⊂ A1 such that A ⊂⊂ B1 ∪ A2 , let
ϕ ∈C1

0 (A1) verifying

(4.8) 0 ≤ ϕ ≤ 1 in R
n , ϕ = 1 in B1 , �∇ϕ�

L∞(Rn)
≤

2

dist(B1, ∂A1)

and set, for every h ∈ N, wh = ϕu1
h + (1 − ϕ)u2

h , then wh → u in w∗-W 1,∞(A)
and by (4.8) we have

G(A, tu) ≤ lim inf
h

�

A

g(t∇wh) dx ≤ lim sup
h

�

A∩B1

g(t∇u1
h) dx +(4.9)

+lim sup
h

�

A2

g(t∇u2
h) dx+lim sup

h

�

A∩(A1 \B1 )

g(t∇wh) dx for every t ∈ [0, 1[.

Let us �x now t ∈ [0, 1[, then, since for every h ∈ N ∇wh = ϕ∇u1
h + (1 −

ϕ)∇u2
h + (u1

h − u2
h)∇ϕ and ∇uih(x ) ∈ dom g for i = 1, 2 and a.e. x ∈ Ai , by

(3.11) it results that for every h ∈ N tϕ(x )∇u1
h(x )+ t(1−ϕ(x ))∇u2

h(x ) ∈ tdomg
for a.e. x ∈ A. By virtue of this, once recalled that by (4.5) and (3.11)
tdom g ⊆ (dom g)◦ and that uih → u in L∞(A) for i = 1, 2, we obtain that there
exist a compact subset Kt of (dom g)◦ (depending only on t ) and ht ,A1,B1

∈ N
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(depending on t, A1 and B1) such that for every h ≥ ht ,A1,B1
t∇wh(x ) ∈ Kt for

a.e. x ∈ A from which, together with (3.12), we conclude that

(4.10) there exist Mt > 0 and ht ,A1,B1
∈ N such that for every h ≥ ht ,A1,B1

g(t∇wh(x )) ≤ Mt for a.e. x ∈ A.

We now �x ε > 0, then by (3.13) we obtain the existence of tε ∈ [0, 1[
such that

�

A1

g(t∇u1
h) dx ≤

�

A1

g(∇u1
h) dx + ε|A1|,(4.11)

�

A2

g(t∇u2
h) dx ≤

�

A2

g(∇u2
h) dx + ε|A2|

for every t ∈ ]tε, 1[, h ∈ N,

hence by (4.9) ÷ (4.11) and (4.7) we deduce that

G(A, tu) ≤ lim sup
h

�

A1

g(∇u1
h) dx + lim sup

h

�

A2

g(∇u2
h) dx +(4.12)

+ ε(|A1| + |A2|) + Mt |A ∩ (A1 \ B1)| ≤ G(A1, u) + G(A2, u) +

+ ε(|A1 | + |A2 |) + Mt |A ∩ (A1 \ B1)| for every t ∈ ]tε, 1[.

As B1 increases to A1 and then t tends to 1− we deduce by (4.12) and (3.3)
that

G(A, u) ≤ G(A1, u) + G(A2, u) + ε(|A1 | + |A2 |)

from which inequality (4.6) follows as ε tends to zero �

Lemma 4.2. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1), (4.2) and let G be given by (3.2), then

G−(�, u) = G(�, u) for every bounded(4.13)

open set�, u ∈W 1,∞
loc (Rn).

Proof. Let �, u be as in (4.13) then, since G(·, u) is increasing on �, by
Remark 1.2 we soon have that

(4.14) G−(�, u) ≤ G(�, u) .

In order to prove the reverse inequality in (4.14) we can obviously assume
that G−(�, u) < +∞ so that G(A, u) < +∞ for every open set A with
A ⊂⊂ � and, by Lemma 3.2, that

(4.15) ∇u(x ) ∈ domg for a.e. x ∈ � .
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Let now A, B be open sets with A ⊂⊂ B ⊂⊂ �, then by (4.1) and
(4.3) there exists {uh} ⊆ W 1,∞

loc (Rn) such that uh → u in w∗-W 1,∞(B) and

G(B, u) = lim
h

�
B
g(∇uh) dx .

Let ϕ ∈C1
0 (B) be such that

(4.16) 0 ≤ ϕ ≤ 1 in R
n , ϕ = 1 in A , �∇ϕ�

L∞(Rn )
≤

2

dist(A, ∂B)

and de�ne, for every h ∈ N, wh = ϕuh + (1 − ϕ)u; then obviously wh ∈

W 1,∞
loc (Rn) for every h ∈ N and wh → u in w∗-W 1,∞(�).

By (4.1), assuming as in Lemma 4.1 that zdomg in (3.13) relatively to
L = dom g is equal to 0 (and thus getting (4.5)), and by using (3.11) ÷ (3.13),
(4.5), (4.15), (4.16) and an argument similar to the one employed to get (4.10)
we obtain that

(4.17) for every t ∈ [0, 1[ there exist Mt > 0 and ht ,B,A ∈ N such that for every
h ≥ ht ,B,A g(t∇wh(x )) + g(t∇u(x )) ≤ Mt for a.e. x ∈ �,

and that for �xed ε > 0 there exists tε ∈ ]0, 1[ such that

(4.18)

�

B

g(t∇uh) dx ≤

�

B

g(∇uh) dx + ε|B| , for every t ∈ ]tε, 1[, h ∈ N.

By (4.16) ÷ (4.18) we conclude that

G(�, tu) ≤ lim inf
h

�

�

g(t∇wh) dx ≤ lim inf
h

�

B

g(t∇uh) dx +(4.19)

+ lim sup
h

�

B\A

g(t∇wh) dx +

�

�\B

g(t∇u) dx ≤

≤ lim sup
h

�

B

g(∇uh) dx + ε|B| + Mt |� \ A| ≤

≤ G−(�, u) + ε|�| + Mt |� \ A| for every t ∈ [0, 1[.

As A increases to � and then t tends to 1− we deduce by (4.19) and (3.3)
that

(4.20) G(�, u) ≤ G−(�, u) + ε|�| ,

hence as ε tends to zero by (4.20) and (3.15) equality (4.13) follows. �

Lemma 4.3. Let g be a Borel function as in (3.1) and let G be given by (3.2),
then

lim sup
r→0+

1

rn
G(Qr (x0), u) ≥ G(Q1, ∇u(x0) · (·))(4.21)

for every u ∈W 1,1
loc (Rn), x0 a.e. in R

n.
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Proof. Let u ∈W 1,1
loc (Rn), then, see for example Theorem 3.4.2 in [32], we have

lim
r→0+

�

Q1

|OrT [x0](u − u(x0))(x ) − ∇u(x0) · x | dx = 0(4.22)

for a.e. x0 ∈ R
n,

and, by Lebesgue Differentiation Theorem,

lim
r→0+

�

Q1

|∇(OrT [x0](u − u(x0))) − ∇u(x0)| dx = 0(4.23)

for a.e. x0 ∈ R
n,

therefore by (4.22) and (4.23) we get

OrT [x0](u − u(x0)) → ∇u(x0) · (·) in W 1,1(Q1)(4.24)

as r → 0+ for a.e. x0 ∈ R
n.

By (4.24), (3.3), (3.7) and (3.5) we obtain

G(Q1, ∇u(x0) · (·)) ≤ lim inf
r→0+

G(Q1, OrT [x0](u − u(x0))) =

= lim sup
r→0+

1

rn
G(Qr (x0), u),

that is condition (4.21). �

We are now in a position to prove a �rst integral representation result for
G .

Theorem 4.4. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1), (4.2) and let G be given by (3.2), then there exists f : R

n → [0, +∞]
convex and lower semicontinuous such that

G(�, u) =

�

�

f (∇u) dx for every bounded(4.25)

open set �, u ∈W 1,∞
loc (Rn).

Proof. By (3.5), (3.6), (3.9), (3.10), Lemma 4.1, (3.7), Lemma 4.3, (3.3), (3.8)
and Lemma 4.2 we get that the assumptions of Theorem 1.5 are ful�lled by the
restrictions to W 1,∞

loc (Rn) of the functionals G(�, ·), � bounded open set, thus
the thesis follows by Theorem 1.5. �

In the following result we specify the function f in (4.25).
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Proposition 4.5. Let g be a Borel function as in (3.1) verifying (3.11)÷ (3.13),
(4.1), (4.2) and f the one appearing in (4.25) of Theorem 4.4, then f = g∗∗.

Proof. Since g ≥ g∗∗ we soon deduce by Theorem 4.4, by the convexity and
the lower semicontinuity of g∗∗ and by Theorem 1.4 that f ≥ g∗∗; on the other
side it is clear that f ≤ g, therefore by using the properties of f and (1.2) we
obtain that f ≤ g∗∗ and the thesis. �

5. The case of bounded effective domain with empty interior.

We now want to consider the case in which assumption (4.2) is dropped.
For every k ∈ {1, . . . , n} we denote by 0k the origin of R

k , moreover we
denote by | · |k the k-dimensional Lebesgue measure on R

k and, for every
open set A of R

k and u in L1(A), by ũ the function on A × R
n−k de�ned

by ũ : x = (x1, . . . , xn) ∈ A× R
n−k �→ u(x1, . . . , xk).

Lemma 5.1. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1) and let G be given by (3.2). Assume that

(5.1) aff(dom g) = R
k × {0n−k} for some k ∈ {1, . . . , n − 1},

then there exists fp : R
k → [0, +∞] convex and lower semicontinuous such

that

G(A × I, ũ) = |I |n−k

�

A

fp (∇u) dy whenever A is a bounded(5.2)

open set of Rk , I is a connected bounded open set of Rn−k , u ∈W 1,∞
loc (Rk).

Proof. Let us denote by gp the function de�ned by gp : (z1, . . . , zk ) ∈ R
k �→

g(z1, . . . , zk , 0n−k ) ∈ [0, +∞], de�ne for every bounded open set A of R
k the

functionals

Gp(A, ·) : u ∈W 1,∞
loc (Rk ) �→

�

A

gp(∇u) dy ,

Gp(A, ·) : u ∈ L1(A) �→ inf
�
lim inf

h

�

A

gp(∇uh) dy :

{uh} ⊆ W 1,∞
loc (Rk), uh → u in L1(A)

�

and observe that obviously

Gp(A, u) = min
�
lim inf

h

�

A

gp(∇uh ) dy : {uh} ⊆ W 1,∞
loc (Rk),(5.3)

for every h ∈ N ∇uh(y) ∈ domgp for a.e. y ∈ A, uh → u in L1(A)
�

for every bounded open set A of R
k , u ∈ L1(A).
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The function gp satis�es all the assumptions of Theorem 4.4 with n = k
and so by Theorem 4.4 we deduce the existence of fp : R

k → [0, +∞] convex
and lower semicontinuous such that

Gp(A, u) =

�

A

fp(∇u) dy for every bounded open(5.4)

set A of R
k , u ∈W 1,∞

loc (Rk).

Let now A, I, u be as in (5.2) and let us prove that

(5.5) G(A × I, ũ) ≤ |I |n−k

�

A

fp (∇u) dy .

To do this we can assume that the right-hand side of (5.5) is �nite so that
by (5.3) and (5.4) there exists {uh} ⊆ W 1,∞

loc (Rk) such that for every h ∈ N

∇uh(y) ∈ domgp for a.e. y ∈ A, uh → u in L1(A) and

(5.6)

�

A

fp (∇u) dy = lim inf
h

�

A

g(∇1uh, . . . , ∇kuh, 0n−k ) dy,

then obviously ũh → ũ in L1(A × I ), for every h ∈ N ∇ũh(x ) ∈ dom g for a.e.
x ∈ A× I and, by (5.6),

G(A × I, ũ) ≤ lim inf
h

�

A×I

g(∇ũh) dx =

= lim inf
h

|I |n−k

�

A

g(∇1uh, . . . , ∇kuh, 0n−k ) dy = |I |n−k

�

A

fp(∇u) dy ,

that is (5.5).

In order to prove the opposite inequality to (5.5) we assume that G(A ×

I, ũ) < +∞ so that there exists {vh} ⊆ W 1,∞
loc (Rn) such that for every h ∈ N

∇vh(x ) ∈ domg for a.e. x ∈ A × I , vh → ũ in L1(A × I ) and

(5.7) +∞ > G(A × I, ũ) = lim
h

�

A×I

g(∇vh) dx ,

then by (5.7) and (5.1) we have that for every h ∈ N ∇k+1vh = . . . = ∇nvh = 0
a.e. in A×I from which, by taking into account the connectedness of I , we infer
that vh depends effectively only on its �rst k variables in A× I for every h ∈ N.
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By virtue of this we can assume that for every h ∈ N there exists wh ∈W 1,∞
loc (Rk)

such that vh = w̃h , then wh → u in L1(A) and by (5.7), (5.4) we have

G(A × I, ũ) = lim
h

�

A×I

g(∇1wh , . . . , ∇kwh , 0n−k ) dx =(5.8)

= |I |n−k lim
h

�

A

gp(∇wh) dy ≥ |I |n−k Gp(A, u) = |I |n−k

�

A

fp (∇u) dy .

By (5.5) and (5.8) equality (5.2) follows. �

In order to extend (5.2) to a wider class of open sets we need to prove the
following subadditivity result.

Lemma 5.2. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1), (5.1) and let G be given by (3.2), then

G(
m
∪
i=1

(Ai × Ii ), ũ) ≤

m�

i=1

G(Ai × Ii , ũ) whenever A1, . . . , Am(5.9)

are pairwise disjoint bounded open sets of Rk, I1, . . . , Im are connected

bounded open sets of Rn−k , u ∈W 1,∞
loc (Rk).

Proof. Let A1, . . . , Am , I1, . . . , Im , u be as in (5.9), obviously we can assume
the right hand side of (5.9) to be �nite so that by Lemma 3.2 we get

(5.10) ∇ũ(x ) ∈ domg for a.e. x ∈
m
∪
i=1

(Ai × Ii ) ,

moreover, by (4.1), it is not restrictive to assume that the point zdom g in (3.13)
is equal to the origin of R

n , thus getting

(5.11) 0n ∈ ri(dom g) .

By the �niteness of
m�

i=1

G(Ai × Ii , ũ), (4.1) and (4.3) for every i ∈

{1, . . . ,m} we deduce the existence of a sequence {uh} ⊆ W 1,∞
loc (Rn) such

that for every h ∈ N ∇uih(x ) ∈ dom g for a.e. x ∈ Ai × Ii , u
i
h → ũ in w∗-

W 1,∞(Ai × Ii ) as h diverges and

(5.12) G(Ai × Ii , ũ) = lim
h

�

Ai×Ii

g(∇uih) dx for every i ∈ {1, . . . ,m} .
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For every i ∈ {1, . . . ,m}, by (5.1) and the connectedness of Ii , we obtain
that for every h ∈ N the functions uih depend effectively only on their �rst k
variables in Ai × Ii , because of this from now onwards we will think them as
W 1,∞

loc (Rk) functions.

For every i ∈ {1, . . . ,m} let Bi be an open set with Bi ⊂⊂ Ai and let
ϕi ∈C

1
0 (Ai ) verifying

(5.13) 0 ≤ ϕi ≤ 1 in R
k , ϕi = 1 in Bi , �∇ϕi�L∞(Rk)

≤
2

dist(Bi , ∂Ai )
.

For every h ∈ N we set wh =
m�

i=1

ϕi u
i
h+(1−

m�

i=1

ϕi)u, then obviously wh → u in

w∗-W 1,∞(
m
∪
i=1

Ai ) and w̃h → ũ in w∗-W 1,∞(
m
∪
i=1

(Ai × Ii )). Let us now observe

that, being the sets A1, . . . , Am pairwise disjoint, it turns out that the values
φ1(y), . . . , φm(y) are all equal to zero except at most for one as y varies in
m
∪
i=1

Ai , hence we have that

∇w̃h =

m�

i=1

ϕ̃i∇ũ
i
h + (1 −

m�

i=1

ϕ̃i )∇ũ +

m�

i=1

(ũih − ũ)∇ϕ̃i ,

moreover, once recalled that uih → u in L∞(spt(ϕi)) for every i ∈ {1, . . . ,m},
by arguing as in the proof of Lemma 4.1, we get by (3.11), (5.11), (5.10) and
(5.13) that

(5.14) for every t ∈ [0, 1[ there exist a compact subset Kt of ri(dom g) and

ht ∈ N such that for every h ≥ ht t∇w̃h(x ) ∈ Kt for a.e. x ∈
m
∪
i=1

(Ai× Ii ).

By (5.14), being the sets A1, . . . , Am pairwise disjoint, we have

G(
m
∪
i=1

(Ai × Ii ), t ũ) ≤ lim inf
h

�

m

∪
i=1

(Ai×Ii )

g(t∇w̃h) dx ≤(5.15)

≤

m�

i=1

lim sup
h

�

Ai×Ii

g(t∇w̃h) dx ≤

m�

i=1

lim sup
h

�

Ai×Ii

g(t∇ũih) dx +

+

m�

i=1

lim sup
h

�

(Ai \Bi )×Ii

g(t∇w̃h) dx .
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Let us now �x ε > 0, then by (3.13) we obtain tε ∈ ]0, 1[ such that

�

Ai×Ii

g(t∇ũih) dx ≤

�

Ai×Ii

g(∇ũih) dx + ε|Ai |k |Ii |n−k(5.16)

for every i ∈ {1, . . . ,m}, h ∈ N

and by (5.14) and (3.12) that

(5.17) for every t ∈ ]0, 1[ there exists Mt > 0 such that for every h ≥ ht

g(t∇w̃h(x )) ≤ Mt for a.e. x ∈
m
∪
i=1

(Ai × Ii ).

By (5.15) ÷ (5.17) and (5.12) we conclude,

G(
m
∪
i=1

(Ai × Ii ), t ũ) ≤

m�

i=1

G(Ai × Ii , ũ) +(5.18)

+ ε

m�

i=1

|Ai |k |Ii |n−k + Mt

m�

i=1

|Ai \ Bi |k |Ii |n−k .

Letting �rst Bi increase to Ai for every i ∈ {1, . . . ,m}, then t tend to 1−

and �nally ε go to 0, we get inequality (5.9) by (5.18) and (3.3). �

We can now prove the representation result for G under assumption (4.1).

Theorem 5.3. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13),
(4.1) and let G be given by (3.2), then there exists f : R

n → [0, ∞] convex
and lower semicontinuous such that

G(�, u) =

�

�

f (∇u) dx for every convex bounded(5.19)

open set �, u ∈W 1,∞
loc (Rn).

Proof. Let us assume for a moment that (5.1) holds.
Let �, u be as in (5.19) and assume that G(�, u) < +∞, then by

Lemma 3.2 we get that ∇u(x ) ∈ dom g for a.e. x ∈ � and therefore, by taking
into account (5.1) and the convexity of �, that u depends only on its �rst k
variables in �. Let v ∈W 1,∞

loc (Rk) be such that u = ṽ in �, then it is clear that

(5.20) G(�, u) = G(�, ṽ) .

For every ν ∈ N, let Rν be a partition of R
n , up to a set of zero measure,

made up by open cubes with faces parallel to the coordinate planes Ai × Ij
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(i, j ∈ N), where for every i, j ∈ N Ai , is an open cube of R
k , Ij is an open

cube of R
n−k and let Sν = {(i, j ) ∈ N × N : Ai × Ij ⊂⊂ �}.

Let us �x ν ∈ N. By (5.20), (3.9), (3.10) and Lemma 5.1 we deduce the
existence of fp : R

k → [0, +∞] convex and lower semicontinuous such that

G(�, u) ≥ G( ∪
(i, j )∈Sν

Ai × Ij , ṽ) ≥(5.21)

≥
�

(i, j )∈Sν

G(Ai × Ij , ṽ) =
�

(i, j )∈Sν

|Ij |n−k

�

Ai

fp(∇v) dy .

At this point if we de�ne the function f by

(5.22) f : (z1, . . . , zn) ∈ R
n �→

�
fp(z1, . . . , zk ) if zk+1 = . . . = zn = 0

+∞ otherwise,

f turns out to be convex and lower semicontinuous, moreover by (5.21) we
obtain

(5.23) G(�, u) ≥
�

(i, j )∈Sν

�

Ai×Ij

f (∇u) dx =

�

∪
(i, j)∈Sν

(Ai×Ij )

f (∇u) dx .

As ν diverges we deduce by (5.23) that

G(�, u) ≥

�

�

f (∇u) dx for every convex bounded(5.24)

open set �, u ∈W 1,∞
loc (Rn).

In order to prove the reverse inequality in (5.24) again when (5.1) holds let
�, u be as in (5.19), obviously we can suppose that

�
�
f (∇u) dx < +∞. By

virtue of this and by the convexity of � we get that u depends effectively only
on its �rst k variables in � and, as before, let v ∈W 1,∞

loc (Rk) be such that u = ṽ

in �, moreover for every ν ∈ N let Rν , S
ν be as above.

Let us �xν ∈ N. For every i ∈ N let us de�ne Sν
i = { j ∈ N : (i, j ) ∈ Sν}

and assume, for sake of simplicity, that Sν
i �= ∅ if and only if i ∈ {1, . . . ,mν}.

For every i ∈ {1, . . . ,mν} set Ci = ( ∪
j∈Sν

i

I j )
◦ , then, by using the convexity

of �, it turns out that Ci is connected and
mν

∪
i= j

(Ai × Ci ) ⊂⊂ �; moreover by

(5.22), Lemma 5.1 and Lemma 5.2 we have
�

�

f (∇u) dx =

�

�

fp(∇v) dx ≥

�

mν

∪
i=1

(Ai×Ci )

fp(∇v) dx =(5.25)

=

mν�

i=1

|Ci |n−k

�

Ai

fp (∇v) dy =

mν�

i=1

G(Ai × Ci , ṽ) = G(
mν

∪
i=1

(Ai × Ci ), ṽ) .



ON THE RELAXATION OF SOME CLASSES OF. . . 243

Let us now set �ν =
� mν

∪
i=1

(Ai × Ci )
�◦

, then by (5.25) and (3.8) we deduce

that

(5.26)

�

�

f (∇u) dx ≥ G(�ν, ṽ) = G(�ν, u) ,

therefore as ν diverges we obtain by (5.26) that

�

�

f (∇u) dx ≥ G−(�, u) for every convex bounded(5.27)

open set �, u ∈W 1,∞
loc (Rn).

Finally by (3.9), (3.3), (3.6), (3.7), Proposition 2.1 applied with U =

W 1,∞
loc (Rn) and F = G , (1.6), (5.27) we infer that

�

�

f (∇u) dx ≥ G(�, u) for every convex bounded(5.28)

open set �, u ∈W 1,∞
loc (Rn).

By (5.28) and (5.24) we get (5.19) under assumption (5.1).
We now consider the general case, when (5.1) is not assumed.
If aff(dom g) = R

n the thesis follows by Theorem 4.4, hence we can
assume that the dimension k of aff(dom g) is strictly smaller than n.

If k = 0 dom g consists of a single point and (5.19) follows trivially, hence
we can assume that k ∈ {1, . . . , n − 1}.

Let A : R
n → R

n be an af�ne transformation such that, denoting by MA

the matrix associated to the linear part of A, det MA = 1, A(aff(dom g)) =

R
k × {0n−k} and set gA : (z1, . . . , zn) ∈ R

n �→ g(A−1(z1, . . . , zn)), then gA
veri�es assumptions (3.11) ÷ (3.13) and aff(dom gA) = R

k × {0n−k}.
Let GA be the functional de�ned by (3.2) with g = gA and let us observe

that for every convex bounded open set � the set A(�) is again convex bounded
and open.

By the particular case considered above we get the existence of fA : R
n →

[0, +∞] convex and lower semicontinuous such that

GA(A
−1(�), uA) =

�

A−1 (�)

fA (∇uA) dy for every(5.29)

convex bounded open set �, u ∈W 1,∞
loc (Rn),

uA being de�ned by uA : (y1, . . . , yn) ∈ R
n �→ u(A(y1, . . . , yn)).
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Let us observe now that

GA(A
−1(�), uA) = G(�, u) for every bounded open(5.30)

set �, u ∈W 1,∞
loc (Rn)

and de�ne the function f by f : z ∈ R
n �→ fA(A(z)), then obviously

fA (z) = f (A−1(z)) for every z ∈ R
n and by (5.30) and (5.29) we get

G(�, u) = GA(A
−1(�), uA) =

�

A−1 (�)

fA (∇yu
A(y)) dy =

=

�

A−1 (�)

f (A−1(∇yu
A(y))) dy =

�

A−1 (�)

f ((∇x u)(A(y))) dy =

=

�

�

f (∇xu) dx for every bounded open set �, u ∈W 1,∞
loc (Rn),

that is the thesis. �

In the following result we specify the function f in (5.19).

Proposition 5.4. Let g be a Borel function as in (3.1) verifying (3.11)÷ (3.13),
(4.1) and f the one appearing in (5.19) of Theorem 5.3, then f = g∗∗.

Proof. Similar to the one of Proposition 4.5 but by using Theorem 5.3 in place
of Theorem 4.4. �

6. A result on Lipschitz functions without boundedness assumptions of the
effective domain.

Let g be a Borel function as in (3.1) and G be de�ned in (3.2).
The present section yields some preliminaries to the integral representation

result for G when assumption (4.1) is dropped.
For every bounded open set � let us introduce the functional G (∞)(�, ·) as

G (∞)(�, ·) : u ∈W 1,∞(�) �→ inf
�
lim inf

h

�

�

g(∇uh) dx :(6.1)

{uh} ⊆ W 1,∞
loc (Rn), uh → u in w∗-W 1,∞(�)

�

and prove an integral representation result for G (∞) .
We observe explicitly that in general, for a given bounded open set �,

G (∞)(�, ·) needs not to be sequentially w∗-W 1,∞(�)-lower semicontinuous and
that

G(�, u) ≤ G (∞)(�, u) whenever � is a bounded(6.2)

open set, u ∈W 1,∞(�).
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Theorem 6.1. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13)
and let G(∞) be given by (6.1), then there exists φ : R

n → [0, +∞] convex and
Borel such that

G (∞)(�, u) ≥

�

�

φ(∇u) dx for every convex bounded(6.3)

open set �, u ∈W 1,∞(�),

G (∞)(�, u) =

�

�

φ(∇u) dx for every convex bounded(6.4)

open set �, u ∈W 1,∞(�) such that G (∞)(�, u) < +∞.

If in addition (dom g)◦ �= ∅, then

G (∞)(�, u) ≥

�

�

φ(∇u) dx for every bounded(6.5)

open set�, u ∈W 1,∞
loc (Rn),

G (∞)(�, u) =

�

�

φ(∇u) dx for every bounded(6.6)

open set�, u ∈W 1,∞
loc (Rn) such that G (∞)(�, u) < +∞.

Proof. Let us prove (6.3). For every m ∈ N let Im be the indicator function of
Qm , set gm = g + Im and de�ne, for every bounded open set �, the functional
Gm(�, ·) by

Gm(�, ·) : u ∈ L1(�) �→ inf
�
lim inf

h

�

�

gm(∇uh) dx :

{uh} ⊆ W 1,∞
loc (Rn), uh → u in L1(�)

�
.

It is clear that the sequence {gm} is decreasing, hence for every bounded
open set � and u in L1(�) so is also {Gm(�, u)}, moreover we also have that

G (∞)(�, u) = inf
m∈N

Gm(�, u) for every(6.7)

bounded open set �, u ∈W 1,∞(�).
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For �xed m ∈ N gm veri�es the assumptions of Theorem 5.3, therefore by
this result we infer the existence of fm : R

n → [0, +∞] convex and lower
semicontinuous such that

Gm(�, u) =

�

�

fm (∇u) dx for every convex bounded(6.8)

open set �, u ∈W 1,∞
loc (Rn), m ∈ N.

Since for every bounded open set � and u in L1(�) {Gm(�, u)} is
decreasing, for every z ∈ R

n the sequence { fm(z)} too veri�es the same property,
therefore if we de�ne φ by

(6.9) φ : z ∈ R
n �→ inf

m∈N

fm (z) ∈ [0, +∞] ,

we get that φ is convex and Borel and, by (6.7) and (6.8), that

G (∞)(�, u) = inf
m∈N

Gm(�, u) = inf
m∈N

�

�

fm (∇u) dx ≥(6.10)

≥

�

�

φ(∇u) dx for every convex bounded open set �, u ∈W 1,∞
loc (Rn),

that is (6.3) once recalled that, being � convex, every element of W 1,∞(�) can
be extended to an element of W 1,∞

loc (Rn).
In order to prove (6.4) let us observe that φ(z) = lim

m
fm (z) for every

z ∈ R
n and that, if � is a convex bounded open set, u ∈ W 1,∞

loc (Rn) and
G (∞)(�, u) < +∞, then (6.10) yields

�
�
fm0

(∇u) dx < +∞ for some m0 ∈ N,
so that, by (6.10) and Lebesgue Dominated Convergence Theorem, we conclude
that

G (∞)(�, u) = lim
m

�

�

fm (∇u) dx =

�

�

φ(∇u) dx for every(6.11)

convex bounded open set �, u ∈W 1,∞
loc (Rn) such that G (∞)(�, u) < +∞.

By (6.11) equality (6.4) follows once recalled that, being � convex, every
element of W 1,∞(�) can be extended to an element of W 1,∞

loc (Rn).
The proofs of (6.5) and (6.6) follow exactly as above but by using Theo-

rem 4.4 in place of Theorem 5.3 �

Theorem 6.1 suggests to introduce, for every g : R
n → [0, +∞], the

function g(∞) by

(6.12) g(∞) : z ∈ R
n �→ inf

m∈N

(g + IQm
)∗∗(z) .

In the following result we describe the function φ in Theorem 6.1.
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Proposition 6.2. Let g be a Borel function as in (3.1) verifying (3.11)÷ (3.13),
g(∞) be given by (6.12) and φ be the one appearing in Theorem 6.1, then
φ = g(∞).

Proof. Follows by (6.8), Proposition 5.4 and (6.9). �

The following result yields some properties of the function in (6.12).

Proposition 6.3. Let g be as in (3.1) and g(∞) be given by (6.12), then g(∞) is
convex, Borel and

(6.13) g∗∗(z) ≤ g(∞)(z) ≤ co g(z) for every z ∈ R
n,

moreover
ri(dom g∗∗) = ri(dom g(∞)) = ri(dom(co g)),

rb(dom g∗∗) = rb(dom g(∞)) = rb(dom(co g))

and

g∗∗(z) = g(∞)(z) = co g(z) for every z ∈ R
n \ rb(dom f ).

Proof. It is clear that g(∞) is convex and Borel.

Since obviously g(∞) ≤ inf
m∈N

(g + IQm
) = g and g(∞) is convex we soon

obtain that

(6.14) g(∞)(z) ≤ co g(z) for every z ∈ R
n .

On the other side, being for every m ∈ N g ≤ g + IQm
, we have that

g∗∗ ≤ (g + IQm
)∗∗ and

(6.15) g∗∗(z) ≤ g(∞)(z) for every z ∈ R
n .

By (6.14) and (6.15) inequalities in (6.13) follow.

Finally the last parts of the thesis follow by (6.13) and Proposition 1.3
applied to co g, once observed that (1.1) yields

g∗∗ = (g∗∗)∗∗ ≤ (co g)∗∗ ≤ g∗∗. �
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7. A result on BV -functions.

Let g be a Borel function as in (3.1) and G be de�ned in (3.2). In the
present section we prove the representation result for G .

Lemma 7.1. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13) and
let G be given by (3.2), then there exists f : R

n → [0, +∞] convex and lower
semicontinuous such that

G−(�, u) =

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu| for every(7.1)

convex bounded open set �, u ∈ BV (�).

If in addition (dom g)◦ �= ∅, then

G−(�, u) =

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu| for every(7.2)

bounded open set �, u ∈ BV (�).

Proof. Let us prove (7.1). Let G (∞) be the functional de�ned in (6.1), φ be
the convex Borel function given by Theorem 6.1 and set f = (φ + Idom g)

∗∗ ,
then it is clear that f is convex, lower semicontinuous and that, being obviously
φ ≤ g, f ≤ φ + Idom g ≤ g.

By virtue of this and of Proposition 1.7 we soon get

G−(�, u) ≥

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu| for every(7.3)

bounded open set �, u ∈ BV (�).

In order to prove the reverse inequality in (7.3) let us �rst observe that
Idom g ≤ φ + Idom g ≤ g from which we conclude that dom(φ + Idom g) = dom g
and, together with (3.11) and Proposition 1.3, that it results

ri(dom f ) = ri(dom(φ + Idom g)) = ri(dom g) ,(7.4)

f (z) = φ(z) + Idom g(z) = φ(z) for every z ∈ ri(dom f ).(7.5)

Let � be as in (7.1), u ∈ C∞(Rn), z1 ∈ ri(dom f ), t ∈ [0, 1[ and observe
that we can assume

�
�
f (∇u) dx < +∞ so that ∇u(x ) ∈ dom f for every x ∈ �

and there exists a compact subset Kt of ri(dom f ) such that t∇u(x )+(1−t)z1 ∈

Kt for every x ∈ �. By (7.4) it follows that Kt ⊆ ri(dom g) and hence, by using
also (3.12), that

G (∞)(�, tu + (1 − t)uz1 ) ≤

�

�

g(t∇u + (1 − t)z1) dx < +∞ .



ON THE RELAXATION OF SOME CLASSES OF. . . 249

This, together with (3.9), (6.2), Theorem 6.1, (7.5) and the convexity of f
implies that

G−(�, tu + (1 − t)uz1 ) ≤ G (∞)(�, tu + (1 − t)uz1 ) =(7.6)

=

�

�

φ(t∇u + (1 − t)z1) dx =

�

�

f (t∇u + (1 − t)z1) dx ≤

≤

�

�

f (∇u) dx + (1 − t) f (z1)|�|,

hence, as t increases to 1, we obtain by (7.6) and (3.3) that

G−(�, u) ≤

�

�

f (∇u) dx for every convex(7.7)

bounded open set �, u ∈C∞(Rn).

By (3.9), (3.3) and (7.7) the assumptions of Proposition 1.6 with A0 equal
to the family of the convex bounded open sets, and, for every bounded open set
�, F(�, ·) = G(�, ·) are ful�lled, hence by Proposition 1.6 we obtain

G−(�, u) ≤

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d|Dsu| for every(7.8)

convex bounded open set �, u ∈ BV (�).

By (7.8) and (7.3) equality (7.1) follows.
The proof of (7.2) follows exactly as above with the only difference that in

this case (7.7) holds for every bounded open set and by taking A0 equal to the
family of the bounded open sets in the application of Proposition 1.6. �

Theorem 7.2. Let g be a Borel function as in (3.1) verifying (3.11) ÷ (3.13)
and let G be given by (3.2), then there exists f : R

n → [0, +∞] convex and
lower semicontinuous such that

G(�, u) =

�

�

f (∇u) dx +

�

�

f∞
� dDsu

d|Dsu|

�
d |Dsu| for every(7.9)

convex bounded open set �, u ∈ BV (�).

Proof. Let f be given by Lemma 7.1, then by (3.9), (3.3), (3.6) and (3.7)
Proposition 2.1 applies with U = BVloc(R

n), F = G and by (1.6) and
Lemma 7.1 we conclude that (7.9) holds. �

In the following proposition we identify the function f in Theorem 7.2.
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Proposition 7.3. Let g be a Borel functions as in (3.1) verifying (3.11)÷ (3.13)
and f the one appearing in Theorem 7.2, then f = g∗∗.

Proof. By Proposition 6.3 we have

(7.10) g∗∗ = (g∗∗)∗∗ ≤ (g(∞) + Idom g)
∗∗ ≤ (g + Idom g)

∗∗ = g∗∗,

therefore by the de�nition of f in Lemma 7.1, Proposition 6.2 and (7.10) the
thesis follows. �

By the above result we deduce the following corollary.

Corollary 7.4. Let g : R
n → [0, +∞[ be continuous and C be a convex subset

of R
n , then

inf
�
lim inf

h

�

�

g(∇uh) dx : {uh} ⊆ W 1,∞
loc (Rn),

for every h ∈ N ∇uh(x ) ∈C for a.e. x ∈ �, uh → u in L1(�)
�

=

=

�

�

(g + IC )∗∗(∇u) dx +

�

�

((g + IC )∗∗)∞
� dDsu

d|Dsu|

�
d|Dsu| for every

convex bounded open set �, u ∈ BV (�).

Proof. Follows by Theorem 7.2 and Proposition 7.3. �
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