# ABOUT THE MULTIPLICITY OF SOLUTIONS FOR CERTAIN CLASS OF FOURTH ORDER SEMILINEAR PROBLEMS 

## ANNA MARIA MICHELETTI - ANGELA PISTOIA

## Dedicated to Francesco Guglielmino on his 70th birthday

We consider the following problem:
(P)

$$
\begin{cases}\Delta^{2} u+a^{2} \Delta u=b\left[(u+1)^{+}-1\right] & \text { in } \Omega, \\ \Delta u=0, u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega$ is a smooth open bounded set in $\mathbb{R}^{N}, \Delta^{2}$ is the biharmonic operator, $u^{+}=\max \{u, 0\}$, and $a, b$ are constants. In this paper we study the problem $(P)$ when $a^{2} \geq \lambda_{1}$ and $a^{2}$ is close to $\lambda_{1}$ (here $\left(\lambda_{k}\right)_{k \geq 1}$ is the sequence of the eigenvalues of $-\Delta$ in $\left.H_{0}^{1}(\Omega)\right)$. Moreover we replace the nonlinearity $(u+1)^{+}-1$ by a more general function $g$, by using a variational approach. Here we prove the existence of a nontrivial solution if either $b>\lambda_{2}\left(\lambda_{2}-a^{2}\right)$ or $b<\lambda_{1}\left(\lambda_{1}-a^{2}\right)$ and the existence of two nontrivial solutions when $b>\lambda_{k}\left(\lambda_{k}-a^{2}\right)$ and $b$ is close to $\lambda_{k}\left(\lambda_{k}-a^{2}\right)$, for any $\lambda_{k}>\lambda_{2}$. Finally we show that if $a^{2}=\lambda_{1}$ and $b<0$ the problem $(P)$ has only the trivial solution.

Entrato in Redazione il 10 aprile 1997.

## Introduction.

Let $\Omega$ be a smooth open bounded set in $\mathbb{R}^{N}$. Let us consider the problem of the existence of nontrivial solutions of the following nonlinear equation:

$$
\begin{cases}\Delta^{2} u+a^{2} \Delta u=b\left[(u+1)^{+}-1\right] & \text { in } \Omega  \tag{P}\\ \Delta u=0, u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta^{2}$ is the biharmonic operator, $u^{+}=\max \{u, 0\}$ and $a, b$ are constants.
This fourth order semilinear elliptic problem has been pointed out by Lazer and McKenna in [4] as a possible model to study traveling waves in suspension bridges and in [5] they proved the existence of $2 k-1$ solutions when $\Omega \subset \mathbb{R}$ is an interval, $a^{2}<\lambda_{1}$ and $b>\lambda_{k}\left(\lambda_{k}-a^{2}\right)$, by the global bifurcation method. (Here $\left(\lambda_{k}\right)_{k \geq 1}$ is the sequence of the eigenvalues of $-\Delta$ in $H_{0}^{1}$ ). Tarantello in [14] found a negative solution of $(P)$ when $a^{2}<\lambda_{1}$ and $b \geq \lambda_{1}\left(\lambda_{1}-a^{2}\right)$, by a degree argument.

It is clear that the number of solutions of $(P)$ depends on the position of $a^{2}$ and $b$ with respect to $\lambda_{k}$ and $\lambda_{k}\left(\lambda_{k}-a^{2}\right)$, respectively. We study the problem $(P)$, when the nonlinearity $(u+1)^{+}-1$ is replaced by a more general function $g$ (see (1.1)), as it has been suggested in [4] and [9]. It is our purpose to use a variational viewpoint.

In [10] by studying the geometry of the functional in the case $a^{2}<\lambda_{1}$ we have the existence of two solutions if $b>\lambda_{1}\left(\lambda_{1}-a^{2}\right)$ by a variation of linking theorem and the existence of three solutions if $b$ is suitable close to $\lambda_{k}\left(\lambda_{k}-a^{2}\right)$ by a theorem of existence of three critical values. In [11] we study $(P)$ when $a^{2}$ goes beyond $\lambda_{1}$ and we prove the existence of two solutions for $b$ in a suitable position with respect to $\lambda_{k}\left(\lambda_{k}-a^{2}\right)$, by a different suitable use of a variation of linking theorem. Moreover in the case $g(s)=(s+1)^{+}-1$ we obtain some uniqueness result.

In this paper we study the case $a^{2} \geq \lambda_{1}$ and $a^{2}$ close to $\lambda_{1}$. This is the "richest" case: problem $(P)$ has a greater number of solutions than in the previous situation. The existence of a nontrivial solutions is proved when $b>\lambda_{2}\left(\lambda_{2}-a^{2}\right)$ (see Theorem 2.12) and also when $b<\lambda_{1}\left(\lambda_{1}-a^{2}\right)$ (see Theorem 4.7). Moreover the existence of two nontrivial solutions is proved when $b>\lambda_{k}\left(\lambda_{k}-a^{2}\right)$ and $b$ is close to $\lambda_{k}\left(\lambda_{k}-a^{2}\right)$, for any $\lambda_{k}>\lambda_{2}$, (see Theorem 3.5).

## 1. The problem.

We consider the problem of the existence of solutions of the more general equation:

$$
\begin{cases}\Delta^{2} u+c \Delta u=b g(x, u) & \text { in } \Omega  \tag{1.1}\\ \Delta u=0, u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega$ is a smooth open bounded set in $\mathbb{R}^{N}, g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Caratheodory's function and $b, c \in \mathbb{R}$. We study (1.1) by using a variational approach.
Definition 1.2. Let $f_{b c}: H \longrightarrow \mathbb{R}$ be defined by:

$$
f_{b c}(u)=\frac{1}{2}\left(\int(\Delta u)^{2}-c \int|\nabla u|^{2}\right)-b \int G(x, u)
$$

where $G(x, s)=\int_{0}^{s} g(x, \sigma) d \sigma$. Let $H=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the Hilbert space equipped with the inner product

$$
(u, v)_{H}=\int \Delta u \Delta v+\int \nabla u \nabla v
$$

Remark 1.3. It is well known that if, for example, we assume:

$$
\text { (g) }|g(x, s)| \leq a_{0}(x)+b_{0}|s|, \forall s \in \mathbb{R} \text { and a.e. in } \Omega,
$$

where $a_{0} \in L^{2}(\Omega)$ and $b_{0} \in \mathbb{R}$.
$f_{b c}$ is a $C^{1}$ functional and its critical points are weak solutions of problem (1.1).
To use a variational approach it is necessary to study the Palais-Smale condition.

Definition 1.4. We say that $f_{b c}$ satisfies the Palais-Smale condition iffor every sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $H$ with $f_{b c}\left(u_{n}\right)$ bounded and $\lim _{n} \nabla f_{b c}\left(u_{n}\right)=0$, there exists a convergent subsequence.

Now we give a sufficient condition to obtain the Palais-Smale condition.
Proposition 1.5. Assume ( $g$ ) (see Remark 1.3) and:

$$
\begin{cases}\left(g_{+\infty}\right) & \lim _{s \rightarrow+\infty} \frac{g(x, s)}{s}=1 \text { uniformly with respect to } x  \tag{1.6}\\ \left(G^{*}\right) & 2 G(x, s)-g(x, s) s \geq \alpha_{0}(x) s^{-}-\alpha_{1}(x) \forall s \in \mathbb{R}, \text { a.e.in } \Omega \\ & \text { where } \alpha_{0} \in L^{\infty}(\Omega), \alpha_{0}(x)>0 \text { a.e. in } \Omega \text { and } \alpha_{1} \in L^{1}(\Omega)\end{cases}
$$

Then for any $c \in \mathbb{R}, b \neq \Lambda_{1}(c)$ and $b \neq 0$ the functional $f_{b c}$ satisfies the Palais-Smale condition.

Proof. We give the proof (see [11]) for sake of completeness. First of all we observe that:

$$
\begin{align*}
& \nabla f_{b c}(u)=u+i^{*}((1+c) \Delta u-b g(x, u))  \tag{1.7}\\
& \quad \text { where } i^{*}: L^{2}(\Omega) \longrightarrow H \text { is a compact operator. }
\end{align*}
$$

( $i^{*}$ is the adjoint of the immersion $i: H \hookrightarrow L^{2}(\Omega)$ ).
Now let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a Palais-Smale sequence (see (1.4)). In particular:

$$
\begin{equation*}
\lim _{n} \nabla f_{b c}\left(u_{n}\right)=\lim _{n}\left(u_{n}+i^{*}\left((1+c) \Delta u_{n}-b g\left(x, u_{n}\right)\right)\right)=0 \tag{1.8}
\end{equation*}
$$

strongly in $H$.
It is enough to prove that $\left(\left\|u_{n}\right\|_{H}\right)_{n \in \mathbb{N}}$ is bounded, because of (1.7) and $(g)$. By contradiction we suppose that $\lim _{n}\left\|u_{n}\right\|_{H}=+\infty$. Up to a subsequence we can assume that $\lim _{n} \frac{u_{n}}{\left\|u_{n}\right\|_{H}}=u$ weakly in H , strongly in $L^{2}(\Omega)$ and pointwise in $\Omega$. By (1.8) we deduce:

$$
\begin{gathered}
\left(\nabla f_{b c}\left(u_{n}\right), \frac{u_{n}}{\left\|u_{n}\right\|_{H}}\right)_{H}=\frac{1}{\left\|u_{n}\right\|_{H}}\left(\int\left|\Delta u_{n}\right|^{2}-c \int\left|\nabla u_{n}\right|^{2}\right)- \\
-b \int g\left(x, u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|_{H}}=2 \frac{f_{b c}\left(u_{n}\right)}{\left\|u_{n}\right\|_{H}}+b \int\left(2 G\left(x, u_{n}\right)-g\left(x, u_{n}\right) u_{n}\right) \frac{1}{\left\|u_{n}\right\|_{H}}
\end{gathered}
$$

then passing to the limit, since $b \neq 0$ :

$$
\lim _{n} \int\left(2 G\left(x, u_{n}\right)-g\left(x, u_{n}\right) u_{n}\right) \frac{1}{\left\|u_{n}\right\|_{H}}=0
$$

Moreover by $\left(G^{*}\right)$ of (1.6) we get:

$$
\int\left(2 G\left(x, u_{n}\right)-g\left(x, u_{n}\right) u_{n}\right) \frac{1}{\left\|u_{n}\right\|_{H}} \geq \int \alpha_{0} \frac{\left(u_{n}\right)^{-}}{\left\|u_{n}\right\|_{H}}-\int \frac{\alpha_{1}(x)}{\left\|u_{n}\right\|_{H}}
$$

and so passing to the limit:

$$
0 \geq \int \alpha_{0} u^{-}, \quad \text { which implies } u \geq 0 \text { a.e. in } \Omega
$$

Then by $\left(g_{+\infty}\right)$ of (1.6) and $(g)$, using the Lebesgue's Theorem, we get:

$$
\begin{equation*}
\lim _{n} \frac{g\left(x, u_{n}\right)}{\left\|u_{n}\right\|_{H}}=u \quad \text { strongly in } L^{2}(\Omega) \tag{1.9}
\end{equation*}
$$

On the other hand by (1.8) we get:

$$
\begin{align*}
& \quad 0=\lim _{n} \frac{\nabla f_{b c}\left(u_{n}\right)}{\left\|u_{n}\right\|_{H}}=  \tag{1.10}\\
& \lim _{n}\left\{\frac{u_{n}}{\left\|u_{n}\right\|_{H}}+i^{*}\left[(1+c) \frac{\Delta u_{n}}{\left\|u_{n}\right\|_{H}}-b \frac{g\left(x, u_{n}\right)}{\left\|u_{n}\right\|_{H}}\right]\right\} \quad \text { strongly in } H .
\end{align*}
$$

Finally by (1.7), (1.9) and (1.10) we obtain:

$$
\begin{aligned}
\lim _{n} \frac{u_{n}}{\left\|u_{n}\right\|_{H}} & =u \text { strongly in } H \text { and } \\
& u \geq 0 \text { is a non trivial solution of } \Delta^{2} u+c \Delta u=b u .
\end{aligned}
$$

(We recall that the sequence $\left(\frac{\Delta u_{n}}{\left\|u_{n}\right\|_{H}}\right)_{n \in \mathbb{N}}$ is bounded in $L^{2}(\Omega)$, so it converges weakly in $L^{2}(\Omega)$ and $\left(i^{*} \frac{\Delta u_{n}}{\left\|u_{n}\right\|_{H}}\right)$ converges strongly in $H$ ). A contradiction arises, because $b \neq \Lambda_{1}(c)$.

We will use the following assumptions to build the geometric structures of the functional, which allow us to apply the variational principles of Section 4:

$$
\begin{cases}(G) & 0 \leq 2 G(x, s) \leq s^{2} \text { a.e. in } \Omega \text { and } \forall s \in \mathbb{R} ;  \tag{1.11}\\ \left(G_{-\infty}\right) & \lim _{s \rightarrow-\infty} \frac{2 G(x, s)}{s^{2}}=0 \text { uniformly with respect to } x ; \\ \left(G_{0}\right) & \lim _{s \rightarrow 0} \frac{2 G(x, s)}{s^{2}}=1 \text { uniformly with respect to } x .\end{cases}
$$

We note that if $(G)$ and $\left(G_{0}\right)$ hold then $g(\cdot, 0)=0$ and (1.1) has the trivial solution.

Remark 1.12. We denote by $\lambda_{k}$ the eigenvalues of $-\Delta$ in $H_{0}^{1}(\Omega)$ and by $e_{k}$ the eigenfunction corresponding to $\lambda_{k}$ normalized in $L^{2}(\Omega)$; we can choose $e_{1}>0$ in $\Omega$. Let $\Lambda_{k}(c)=\lambda_{k}\left(\lambda_{k}-c\right)$. Set $H_{k}=\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)$ and $H_{k}^{\perp}=\left\{w \in H \mid(w, v)_{H}=0 \forall v \in H\right\}$. We put $H_{0}=0$.

In the following we consider the case $\lambda_{1} \leq c<\lambda_{2}$.

## 2. A non trivial solution when $c$ is close to $\lambda_{1}$ and $b \geq \Lambda_{2}(c)$.

We succeed to build a linking for the functional $f_{b c}$ using a suitable vector. Hence we have a non trivial solution by the "variation of linking" Theorem 5.2.

We start with a technical lemma.
Lemma 2.1. Assume $(G)$ and $\left(G_{-\infty}\right)$ (see (1.11)). Let $b \geq 0$. Then for any $\varepsilon>0$ there exists $h>0$ such that:

$$
f_{b c}(u) \geq \frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2}-\varepsilon \int u^{2}-h .
$$

Proof. By definition of $f_{b c}$, and by $(G)$ we get:

$$
\begin{aligned}
& f_{b c}(u)=\frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-b \int G(x, u)= \\
& \quad=\frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2}+ \\
& +\frac{b}{2} \int_{\{x \in \Omega: u(x) \geq 0\}}\left(u^{2}-2 G(x, u)\right)-\frac{b}{2} \int_{\{x \in \Omega: u(x) \leq 0\}} 2 G(x, u) \geq \\
& \geq \frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2} \int\left(u^{+}\right)^{2}-b \int_{\{x \in \Omega: u(x) \leq 0\}} G(x, u) .
\end{aligned}
$$

By $\left(G_{-\infty}\right)$ and $(G)$ we get that for any $\varepsilon>0$ there exists $h>0$ such that:

$$
\int_{\{x \in \Omega: u(x) \leq 0\}} G(x, u) \leq \varepsilon \int_{\Omega} u^{2}+h .
$$

The claim follows.
Lemma 2.2. Assume ( $G$ ) (see (1.11)). If $0<b \leq \Lambda_{i+1}$ (c) for $i \geq 1$, then:

$$
\inf _{w \in H_{i}^{+}} f_{b c}(w) \geq 0 .
$$

Proof. If $b>0$ by ( $G$ ) we obtain for any $w \in H_{i}^{\perp}$ :

$$
\begin{aligned}
f_{b c}(w) & =\frac{1}{2}\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)-b \int G(x, w) \geq \\
& \geq \frac{1}{2}\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)-\frac{b}{2} \int w^{2} \geq \\
& \geq \frac{1}{2}\left(1-\frac{b}{\Lambda_{i+1}(c)}\right)\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right) \geq 0
\end{aligned}
$$

since $b \leq \Lambda_{i+1}(c)$.
Lemma 2.3. Assume ( $G_{0}$ ) (see (1.11)). If $\Lambda_{i}(c)<b$ for $i \geq 1$, then there exists $\rho>0$ such that:

$$
\sup _{\substack{v \in H_{i} \\\|v\|_{L}=\rho}} f_{b c}(v)<0
$$

Proof. By $\left(G_{0}\right)$ we get for any $\varepsilon>0$ there exists $\rho>0$ such that if $|s| \leq \rho$ then $2 G(x, s) \geq(1-\varepsilon) s^{2}$ a.e. in $\Omega$. Thus if $v \in H_{i}$ with $\|v\|_{L^{\infty}} \leq \rho$ we have:

$$
\begin{align*}
f_{b c}(v) & =\frac{1}{2}\left(\int|\Delta v|^{2}-c \int|\nabla v|^{2}\right)-b \int G(x, v) \leq  \tag{2.4}\\
& \leq \frac{1}{2}\left(\int|\Delta v|^{2}-c \int|\nabla v|^{2}\right)-\frac{b}{2}(1-\varepsilon) \int v^{2} \leq \\
& \leq \frac{1}{2}\left(\Lambda_{i}(c)-b(1-\varepsilon)\right) \int v^{2}
\end{align*}
$$

and so our claim follows ( $\|\cdot\|_{L^{2}}$ and $\|\cdot\|_{L^{\infty}}$ are equivalent, since $\operatorname{dim} H_{i}<$ $+\infty)$.

Lemma 2.5. Let $h \geq 1$. Set:

$$
\begin{equation*}
\beta_{h+1}(c)=\max \left\{\left.\int\left(z^{+}\right)^{2}\left|z \in H_{h}^{\perp}, \int\right| \Delta z\right|^{2}-c \int|\nabla z|^{2}=1\right\} . \tag{2.6}
\end{equation*}
$$

Then:

$$
\beta_{h+1}(c)<\frac{1}{\Lambda_{h+1}(c)}
$$

Proof. It is easy to see that $\beta_{h+1}(c) \leq \frac{1}{\Lambda_{h+1}(c)}$. If $\beta_{h+1}(c)=\frac{1}{\Lambda_{h+1}(c)}$ then there exists a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in $H_{h}^{\perp}$ such that $\int\left|\Delta z_{n}\right|^{2}-c \int\left|\nabla z_{n}\right|^{2}=1$ and $\lim _{n} \int\left(z_{n}^{+}\right)^{2}=\frac{1}{\Lambda_{h+1}(c)}$. We point out that $\|z\|_{H}^{2}$ and $\int|\Delta z|^{2}-c \int|\nabla z|^{2}$ are equivalent norms in $H_{h}^{\perp}$, since $c<\lambda_{h+1}$. So, up to a subsequence, we have $\lim _{n} z_{n}=z$ in $L^{2}(\Omega)$, so that $\int\left(z^{+}\right)^{2}=\frac{1}{\Lambda_{h+1}(c)}$ and then $z \neq 0$. Moreover, since $z \in H_{h}^{\perp} \backslash\{0\}$ and $\int|\Delta z|^{2}-c \int|\nabla z|^{2} \leq 1$, we have $0 \leq \int\left(z^{+}\right)^{2}+\int\left(z^{-}\right)^{2} \leq$ $\frac{1}{\Lambda_{h+1}(c)}$; so $z^{-}=0$. On the other hand we have $\int z e_{1}=0$, which implies $z^{-} \neq 0$. Then a contradiction arises.
Lemma 2.7. Set

$$
\begin{align*}
& \lambda^{*}=\sup \left\{\lambda \geq \lambda_{1} \mid \exists e^{*} \in H_{2} \backslash\{0\} \text { s.t. } e^{*}(x) \leq 0\right.  \tag{2.8}\\
&\text { in } \left.\Omega \text { and } \int\left|\Delta e^{*}\right|^{2}-\lambda \int\left|\nabla e^{*}\right|^{2}>0\right\} .
\end{align*}
$$

Then:

$$
\lambda_{1}<\lambda^{*}<\lambda_{2} .
$$

Proof. It is easy to see that $\lambda^{*}<\lambda_{2}$. To get that $\lambda^{*}>\lambda_{1}$, it is enough to prove that:

$$
\begin{gathered}
\exists \delta>0 \text { s.t. } \forall c \in] \lambda_{1}, \lambda_{1}+\delta\left[\exists e^{*} \in H_{2}, e^{*} \leq 0 \text { in } \Omega\right. \text { s.t. } \\
\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}>0
\end{gathered}
$$

We choose $e^{*}(x)=s e_{2}(x)-e_{1}(x)$ with $s \in \mathbb{R}$ and we take $s$ so small that $e^{*}$ is negative in $\Omega$ and $c$ so close to $\lambda_{1}$ that:

$$
\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}=s^{2} \Lambda_{2}(c)-\Lambda_{1}(c)>0
$$

That proves our statement.
Lemma 2.9. Assume $(G)$ and $\left(G_{-\infty}\right)$ (see (1.11)). Let $\lambda_{1} \leq c<\lambda^{*}$ (see (2.8)) and $0<b<\frac{1}{\beta_{h+1}(c)}\left(\right.$ see (2.6)) for some $h \geq 2$. Then there exist $e^{*} \in H_{h} \backslash\{0\}$ and $R_{0}>0$ such that for any $R \geq R_{0}$ :

$$
\begin{aligned}
\inf \left\{f_{b c}(z) \mid z=\right. & w+\sigma e^{*}, w \in H_{h}^{\perp}, \sigma \geq 0 \\
& \left.\int|\Delta z|^{2}-c \int|\nabla z|^{2}=R^{2}\right\}>0
\end{aligned}
$$

Proof. Since $c<\lambda^{*}$ by Lemma 2.7 there exists $e^{*} \in H_{2} \subset H_{h}, e^{*} \leq 0$ in $\Omega$ such that:

$$
\begin{equation*}
\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}>0 \tag{2.10}
\end{equation*}
$$

Now by Lemma 2.1, we get for any $w \in H_{h}^{\perp}$ and $\sigma \geq 0$, because of the negativity of $e^{*}$ :

$$
\begin{aligned}
f_{b c}\left(w+\sigma e^{*}\right) & \geq \frac{1}{2}\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)+ \\
& +\frac{1}{2} \sigma^{2}\left(\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}\right)- \\
& -\frac{b}{2} \int\left(\left(w+\sigma e^{*}\right)^{+}\right)^{2}-\varepsilon \int w^{2}-\varepsilon \sigma^{2}-h \geq \\
& \geq \frac{1}{2}\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)+ \\
& +\frac{1}{2} \sigma^{2}\left(\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}\right)- \\
& -\frac{b}{2} \int\left(w^{+}\right)^{2}-\varepsilon \int w^{2}-\varepsilon \sigma^{2}-h \geq \\
& \geq \frac{1}{2}\left(1-b \beta_{h+1}(c)-\frac{2 \varepsilon}{\Lambda_{h+1}(c)}\right)\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)+ \\
& +\frac{1}{2} \sigma^{2}\left(\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}-2 \varepsilon\right)-h .
\end{aligned}
$$

Thus the claim follows, since in virtue of (2.10) $\left\|w+\sigma e^{*}\right\|_{H}^{2}$ and

$$
\int|\Delta w|^{2}-c \int|\nabla w|^{2}+\sigma^{2}\left(\int\left|\Delta e^{*}\right|^{2}-c \int\left|\nabla e^{*}\right|^{2}\right)
$$

are equivalent norms in the space span $\left(e^{*}\right) \oplus H_{h}^{\perp}$.
The following remark will be useful in the proof of Theorem 3.5.
Remark 2.11. Assume $(G)$ and $\left(G_{-\infty}\right)$ (see (1.11)). Let $\lambda_{1} \leq c<\lambda^{*}$ (see (2.8)) and $0<b<\frac{1}{\beta_{h+1}(c)}\left(\right.$ see (2.6)) for some $h \geq 2$. Then there exists $R_{0}>0$ such that for any $R \geq R_{0}$ :

$$
\begin{aligned}
& \inf \left\{f_{b c}(z) \mid z=w+\sigma e_{h+1}, w \in H_{h+1}^{\perp}, \sigma \geq 0\right. \\
& \left.\qquad|\Delta z|^{2}-c \int|\nabla z|^{2}=R^{2}\right\}>0
\end{aligned}
$$

Theorem 2.12. Assume (g) (see (1.3)), (1.11) and (1.6). If $\lambda_{1} \leq c<\lambda^{*}$ (see (2.8)) and $b>\Lambda_{2}(c)$, then the functional $f_{b c}$ has at least two different critical values.
Proof. By Lemmas 2.9, 2.2 and 2.3 it follows that, if $\Lambda_{i}(c)<b \leq \Lambda_{i+1}(c)<$ $\frac{1}{\beta_{i+1}(c)}\left(\right.$ see (2.6)) for $i \geq 2$, there exist $e^{*} \in H_{2} \backslash\{0\}$ and $R>\rho>0$ such that:

$$
\inf _{z \in \Sigma_{R}\left(e^{*}, H_{i}^{\perp}\right)} f_{b c}(z)>\sup _{\substack{v \in H_{i} \\\|v\|_{L^{2}}=\rho}} f_{b c}(v),
$$

where $\Sigma_{R}\left(e^{*}, H_{i}^{\perp}\right)$ is the boundary of the set $\left\{z=w+\sigma e^{*} \mid w \in H_{i}^{\perp}, \sigma \geq\right.$ $\left.0, \int|\Delta z|^{2}-c \int|\nabla z|^{2} \leq R^{2}\right\}$ in $\operatorname{span}\left(e^{*}\right) \oplus H_{i}^{\perp}$. The claim follows by the variational statement 5.2.

## 3. Two non trivial solutions when $c$ is close to $\lambda_{1}$ and $b \geq \Lambda_{2}(c)$.

Now we build another linking for the functional $f_{b, c}$ in such a way as to use the "linking scale" Theorem 5.3.
Lemma 3.1. Let $k \geq 1$. Set:

$$
l_{k}(b, c)=\inf _{w \in H_{k}^{\perp}} f_{b c}(w) .
$$

Assume $(G)$ and $\left(G_{-\infty}\right)$ (see (1.11)). Then:
(i) $0 \leq b<\frac{1}{\beta_{k+1}(c)} \quad \Rightarrow \quad l_{k}(b, c)>-\infty$, where:
$\beta_{k+1}(c)=\max \left\{\left.\int\left(w^{+}\right)^{2}\left|w \in H_{k}^{\perp}, \int\right| \Delta w\right|^{2}-c \int|\nabla w|^{2}=1\right\}<\frac{1}{\Lambda_{k+1}(c)}$
(see (2.6));
(ii) $0 \leq b \leq \Lambda_{k+1}(c) \quad \Rightarrow \quad l_{k}(b, c) \geq 0$;
(iii) $\liminf _{b \rightarrow \Lambda_{k+1}(c)} l_{k}(b, c) \geq 0$.

Proof. First of all we denote by $\|w\|_{c}{ }^{2}=\int|\Delta w|^{2}-c \int|\nabla w|^{2}$. Since $c<\lambda_{k+1},\|\cdot\|_{c}$ and $\|\cdot\|_{H}$ are norms equivalent in the space $H_{k}^{\perp}$.
(i) If $w \in H_{k}^{\perp}$, by (2.1) we get:

$$
\begin{align*}
& f_{b c}(w) \geq \frac{1}{2}\|w\|_{c}^{2}-\frac{b}{2} \int\left(w^{+}\right)^{2}-  \tag{3.2}\\
& \quad-\varepsilon \int w^{2}-h \geq \frac{1}{2}\left(1-b \beta_{k+1}(c)-\frac{\varepsilon}{\Lambda_{k+1}(c)}\right)\|w\|_{c}^{2}-h
\end{align*}
$$

Then it follows the existence of a minimum point of $f_{b c}$ on $H_{k}^{\perp}$, because of the lower semicontinuity of $f_{b c}$.
(ii) If $0 \leq b \leq \Lambda_{k+1}(c)$ and $w \in H_{k}^{\perp}$, by ( $G$ ) we get:

$$
\begin{aligned}
f_{b c}(w) & =\frac{1}{2}\|w\|_{c}^{2}-b \int G(x, w) \geq \\
& \geq \frac{1}{2}\|w\|_{c}^{2}-\frac{b}{2} \int w^{2} \geq \frac{1}{2}\left(1-\frac{b}{\Lambda_{k+1}(c)}\right)\|w\|_{c}^{2} \geq 0
\end{aligned}
$$

(iii) If $\lim _{n} b_{n}=\Lambda_{k+1}(c)$, we show that $\liminf _{n} l_{k}\left(b_{n}, c\right) \geq 0$. In (i) we have shown the existence of $w_{n} \in H_{k}^{\perp}$ such that:

$$
\begin{align*}
\frac{1}{2}\left\|w_{n}\right\|_{c}^{2} & -b_{n} \int G\left(x, w_{n}\right)=l_{k}\left(b_{n}, c\right) \leq  \tag{3.3}\\
& \leq \frac{1}{2}\|w\|_{c}^{2}-b_{n} \int G(x, w), \quad \forall w \in H_{k}^{\perp}
\end{align*}
$$

Arguing by contradiction, we suppose $\lim _{n}\left\|w_{n}\right\|_{c}=+\infty$. Up a subsequence, we have $\lim _{n} \frac{w_{n}}{\left\|w_{n}\right\|_{c}}=w$ weakly in $H$, strongly in $L^{2}(\Omega)$ and a.e. in $\Omega$, with $\|w\|_{c} \leq 1$. Now we observe that by (2.1) we get:

$$
l_{k}\left(b_{n}, c\right) \geq \frac{1}{2}\left\|w_{n}\right\|_{c}^{2}-\frac{b_{n}}{2} \int\left(w_{n}^{+}\right)^{2}-b_{n} \int_{\left\{x \in \Omega: w_{n}(x) \leq 0\right\}} G\left(x, w_{n}\right)
$$

As a result by this fact and by (3.3) it follows:

$$
\begin{aligned}
0 & \geq \limsup _{n} \frac{l_{k}\left(b_{n}, c\right)}{\left\|w_{n}\right\|_{c}^{2}} \geq \liminf _{n} \frac{l_{k}\left(b_{n}, c\right)}{\left\|w_{n}\right\|_{c}^{2}} \geq \\
& \geq \frac{1}{2}\left(1-\Lambda_{k+1}(c) \int\left(w^{+}\right)^{2}\right)-\Lambda_{k+1}(c) \limsup _{n} \int_{\left\{x \in \Omega: w_{n}(x) \leq 0\right\}} \frac{G\left(x, w_{n}\right)}{\left\|w_{n}\right\|_{c}^{2}}
\end{aligned}
$$

Moreover, by $(G)$ and $\left(G_{-\infty}\right)$, using Fatou's lemma, we get:

$$
\limsup _{n} \int_{\left\{x \in \Omega: w_{n}(x) \leq 0\right\}} \frac{G\left(x, w_{n}\right)}{\left\|w_{n}\right\|_{c}^{2}} \leq 0
$$

then $1-\Lambda_{k+1}(c) \int\left(w^{+}\right)^{2} \leq 0$.

By (2.5) a contradiction arises, since $\int\left(w^{+}\right)^{2} \leq \beta_{k+1}(c)\|w\|_{c}{ }^{2} \leq \beta_{k+1}(c)$ and $\beta_{k+1}(c)<\frac{1}{\Lambda_{k+1}(c)}$. Finally, since $\left(w_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H$, up to a subsequence, we can suppose $\lim _{n} w_{n}=w_{0}$ weakly in $H$ and strongly in $L^{2}(\Omega)$. By (3.3) we deduce:

$$
\begin{aligned}
& \frac{1}{2}\left\|w_{0}\right\|_{c}^{2}-\Lambda_{k+1}(c) \int G\left(x, w_{0}\right) \leq \liminf _{n} l_{k}\left(b_{n}, c\right) \leq \\
& \quad \leq \frac{1}{2}\|w\|_{c}^{2}-\Lambda_{k+1}(c) \int G(x, w), \quad \forall w \in H_{k}^{\perp},
\end{aligned}
$$

then by (ii):

$$
\liminf _{n} l_{k}\left(b_{n}, c\right) \geq l_{k}\left(\Lambda_{k+1}(c), c\right)=\frac{1}{2}\left\|w_{0}\right\|_{c}^{2}-\Lambda_{k+1}(c) \int G\left(x, w_{0}\right) \geq 0 .
$$

Lemma 3.4. Let $k \geq 1$. Set:

$$
m_{k}(b, c ; \rho)=\sup _{\substack{v H_{k} \\ \| v v_{L}=\rho}} f_{b c}(v) .
$$

Assume $\left(G_{0}\right)$ (see (1.11)). Then:

$$
\underset{\rho \rightarrow 0}{\limsup } \frac{m_{k}(b, c ; \rho)}{\rho^{2}} \leq \frac{1}{2}\left(\Lambda_{k}(c)-b\right) .
$$

Proof. By (2.4) it follows that for any $\varepsilon>0$ and for $\rho$ small enough:

$$
\frac{m_{k}(b, c ; \rho)}{\rho^{2}} \leq \frac{1}{2}\left(\Lambda_{k}(c)-b+\varepsilon b\right) .
$$

Then the claim follows.
Theorem 3.5. Assume (g) (see (1.3)), (1.11) and (1.6). Let $\lambda_{1} \leq c<\lambda^{*}$ (see (2.8)). For any $\lambda_{i}>\lambda_{2}$ there exists $\varepsilon>0$ such that for any $b \in$ $] \Lambda_{i}(c), \Lambda_{i}(c)+\varepsilon\left[\right.$ the functional $f_{b c}$ has at least three different critical values. Proof. Let $\lambda_{1} \leq c<\lambda^{*}<\lambda_{2} \leq \cdots \leq \lambda_{k}<\lambda_{k+1}=\cdots=\lambda_{i}<\lambda_{i+1}$. First of all since $c<\lambda_{i}<\lambda_{i H}$ and $\Lambda_{k+1}(c)=\Lambda_{i}(c)<b<\frac{1}{\beta_{i}(c)}$ by Lemmas 2.2, 2.3 and Remark 2.11 (where index $h+1$ is replaced by $i$ ) it follows that there exist $R_{i}>\rho_{i}>0$ such that:

$$
\begin{equation*}
\inf _{z \in \Sigma_{R_{i}}\left(e_{i}, H_{i}^{\perp}\right)} f_{b c}(z)>\sup _{\substack{v \in H_{H_{2}} \\ \| v v_{L}=\rho_{i}}} f_{b c}(v), \tag{3.6}
\end{equation*}
$$

where: $\quad \Sigma_{R_{i}}\left(e_{i}, H_{i}^{\perp}\right)=\left\{\left.w \in H_{i}^{\perp}\left|\int\right| \Delta w\right|^{2}-c \int|\nabla w|^{2} \leq R_{i}^{2}\right\} \cup\{z=$ $\left.w+\left.\sigma e_{i}\left|w \in H_{i}^{\perp}, \sigma \geq 0, \int\right| \Delta z\right|^{2}-c \int|\nabla z|^{2}=R_{i}^{2}\right\}$.
Secondly by Lemmas 3.1 and 3.4 it follows that there exists $\varepsilon>0$ such that for any $b \in\left[\Lambda_{k+1}(c), \Lambda_{k+1}(c)+\varepsilon\left[\right.\right.$ there exists $\rho_{k}>0$ such that:

$$
\begin{equation*}
\inf _{w \in H_{k}^{\perp}} f_{b c}(w)=l_{k}(b, c)>m_{k}\left(b, c ; \rho_{k}\right)=\sup _{\substack{v \in H_{i} \\\|v\|_{L^{2}}=\rho_{i}}} f_{b c}(v) \tag{3.7}
\end{equation*}
$$

Finally since $c<c^{*}$ and $0<b<\frac{1}{\beta_{k+1}(c)}$ by Lemma 2.9 it follows that there exist $e^{*} \in H_{k} \backslash\{0\}$ and $R_{k}>\max \left\{R_{i}, \rho_{k}\right\}$ such that:

$$
\begin{equation*}
\inf _{z \in \Sigma_{R_{k}}\left(e^{*}, H_{k}^{\perp}\right)} f_{b c}(z)>\sup _{\substack{v \in H_{i} \\\|v\| L_{L^{2}}=\rho_{i}}} f_{b c}(v) \tag{3.8}
\end{equation*}
$$

where: $\quad \Sigma_{R_{k}}\left(e^{*}, H_{k}^{\perp}\right)=\left\{\left.w \in H_{k}^{\perp}\left|\int\right| \Delta w\right|^{2}-c \int|\nabla w|^{2} \leq R_{k}^{2}\right\} \cup\{z=$ $\left.w+\left.\sigma e^{*}\left|w \in H_{k}^{\perp}, \sigma \geq 0, \int\right| \Delta z\right|^{2}-c \int|\nabla z|^{2}=R_{k}^{2}\right\}$. Ву (3.6), (3.7) and (3.8) using Theorem 5.3, we get the claim.

## 4. A non trivial solution when $c>\lambda_{1}$ and $b \leq \Lambda_{1}(c)$.

By the Mountain Pass Theorem we are able to prove that in this case the functional $f_{b, c}$ has a strictly positive critical value. We start with some technical lemmas.

Lemma 4.1. Assume ( $G$ ) and $\left(G_{0}\right)$ (see (1.11)). Let $b \leq 0$. Then for any $\varepsilon>0$ there exists a function $\theta: H \longrightarrow \mathbb{R}$ such that:

$$
\begin{aligned}
f_{b, c}(u) & \geq \frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)- \\
& -\frac{b}{2}(1-\varepsilon) \int u^{2}-\|u\|_{H} u^{2} \theta(u) \text { with } \lim _{u \rightarrow 0} \theta(u)=0
\end{aligned}
$$

Proof. First of all, $\left(G_{0}\right)$ implies that for any $\varepsilon>0$ there exists $\rho>0$ s.t. if $|s| \leq \rho$ then $2 G(x, s) \geq(1-\varepsilon) s^{2}$ a.e. in $\Omega$. Then we can compute:

$$
\begin{gather*}
f_{b, c}(u)=\frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-b \int_{\{x \in \Omega:|u(x)| \leq \rho\}} G(x, u)-  \tag{4.2}\\
-b \int_{\{x \in \Omega:|u(x)| \geq \rho\}} G(x, u) \geq \frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-
\end{gather*}
$$

$$
\begin{aligned}
& -\frac{b}{2}(1-\varepsilon) \int u^{2}+\frac{b}{2} \int_{\{x \in \Omega:|u(x)| \geq \rho\}}\left(-2 G(x, u)+(1-\varepsilon) u^{2}\right) \geq \\
\geq & \frac{1}{2}\left(\int|\Delta u|^{2}-c \int|\nabla u|^{2}\right)-\frac{b}{2}(1-\varepsilon) \int u^{2}+\frac{b}{2} \int_{\{x \in \Omega:|u(x)| \geq \rho\}} u^{2},
\end{aligned}
$$

because of $(G)$. On the other hand using Hölder inequality we get:

$$
\begin{equation*}
\int_{\{x \in \Omega::|u(x)| \geq \rho\}} u^{2} \leq S\|u\|_{H} u^{2}(\operatorname{meas}\{x \in \Omega:|u(x)| \geq \rho\})^{p}, \tag{4.3}
\end{equation*}
$$

for some positive constants $S$ and $p$. By (4.2) and (4.3) the claim follows.
Lemma 4.4. Assume ( $G$ ) and ( $G_{0}$ ) (see (1.11)). If $\lambda_{k} \leq c<\lambda_{k+1}$ for $k \geq 1$ and $b<\Lambda_{1}(c)$ then there exists $\rho>0$ such that:

$$
\inf _{u \in \gamma_{\rho}(H)} f_{b, c}(u)>0,
$$

where:
(4.5) $\quad \gamma_{\rho}(H)=\left\{u=v+w \in H_{k} \oplus H_{k}^{\perp} \mid\right.$

$$
\left.\int v^{2}+\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)=\rho^{2}\right\},
$$

is homeomorphic to a sphere.
Proof. Let $u=v+w$ with $v \in H_{k}$ and $w \in H_{k}^{\perp}$. By Lemma 4.1, since $b<0$, we get:

$$
\begin{array}{r}
f_{b, c}(v+w) \geq \frac{1}{2}\left(\int|\Delta v|^{2}-c \int|\nabla v|^{2}\right)+\frac{1}{2}\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)- \\
-\frac{b}{2}(1-\varepsilon) \int v^{2}-\frac{b}{2}(1-\varepsilon) \int w^{2}-\left(\|v\|_{H}^{2}+\|\left. w\right|_{H} ^{2}\right) \theta(v+w) \geq \\
\geq \frac{1}{2}\left(\Lambda_{1}(c)-b(1-\varepsilon)-a \theta(v+w)\right) \int v^{2}+\frac{1}{2}(1-a \theta(v+w)) . \\
\cdot\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right),
\end{array}
$$

where $a$ is a positive constant. Now we point out that if $\|v+w\|_{h}^{2}$ and $\int v^{2}+\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right)$ are equivalent norms on the space $H$. Thus the claim follows, if $\rho>0$ is small enough.
Lemma 4.6. Assume ( $G$ ) and $\left(G_{-\infty}\right)$ (see (1.11)). If $\lambda_{1}<c$ and $b<0$ then:

$$
\lim _{s \rightarrow+\infty} f_{b, c}\left(-s e_{1}\right)=-\infty .
$$

Proof. We have:

$$
f_{b, c}\left(-s e_{1}\right)=s^{2}\left(\Lambda_{1}(c)-b \int \frac{G\left(x,-s e_{1}\right)}{s^{2}}\right)
$$

moreover by $(G)$ and $\left(G_{-\infty}\right)$ we easily get:

$$
\lim _{s \rightarrow+\infty} \int \frac{G\left(x,-s e_{1}\right)}{s^{2}}=0
$$

and so the claim follows.
Theorem 4.7. Assume (g) (see (1.3)), (1.11) and (1.6). Let $\lambda_{1}<c$ and $b<\Lambda_{1}(c)$.

Then the functional $f_{b, c}$ has at least two different critical values.
Proof. Let $\lambda_{1}<\cdots \leq \lambda_{k} \leq c<\lambda_{k+1}$ for some $1 \leq k$. Firstly, since $b<\Lambda_{1}(c)$, by Lemma 4.4 there exists a set:

$$
\Gamma_{\rho}(H)=\left\{v+w \in H_{k} \oplus H_{k}^{\perp} \mid \int v^{2}+\left(\int|\Delta w|^{2}-c \int|\nabla w|^{2}\right) \leq \rho\right\}
$$

homeomorphic to a ball in $H$, whose boundary is the set $\gamma_{\rho}(H)$ (see (4.5)), such that:

$$
\begin{equation*}
\inf _{u \in \gamma_{\rho}(H)} f_{b, c}(u)>0 \tag{4.8}
\end{equation*}
$$

Moreover $(G)$ implies $f_{b, c}(0)=0$, with $0 \in \Gamma_{\rho}(H)$. Finally Lemma 4.6 ensures the existence of $s^{*}>0$ such that $-s^{*} e_{1} \notin \Gamma_{\rho}(H)$ and $f_{b, c}\left(-s^{*} e_{1}\right)<0$. Thus the classical mountain pass theorem (see [3]) claims the existence of a critical value $c_{1}$ of $f_{b, c}$ such that:

$$
c_{1} \geq \inf _{u \in \gamma_{\rho}(H)} f_{b, c}(u)>0
$$

It is evident that the trivial solution is the minimum of the functional $f_{b, c}$ on the set $\Gamma_{\rho}(H)$.

## 5. Variational setting.

In this section we recall two theorems (see [6], [7], [11] and [12]) of existence of critical points for a functional, which have been used in the previous sections.

Definition 5.1. Let $X$ be an Hilbert space, $Y \subset X, \rho>0$ and $e \in X \backslash Y, e \neq 0$.
Set:

$$
\begin{aligned}
& B_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X} \leq \rho\right\} \\
& S_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X}=\rho\right\} \\
& \Delta_{\rho}(e, Y)=\{\sigma e+v \mid \sigma \geq 0, v \in Y,\left.\|\sigma e+v\|_{X} \leq \rho\right\} \\
& \Sigma_{\rho}(e, Y)=\{\sigma e+v \mid \sigma \geq 0, v \in Y,\left.\|\sigma e+v\|_{X}=\rho\right\} \cup \\
& \cup\left\{v \mid v \in Y,\|v\|_{X} \leq \rho\right\}
\end{aligned}
$$

First of all we recall a theorem of existence of two critical levels for a functional which is a variation of linking theorem (see Theorem 3.4 of [6] and [12]).

Theorem 5.2 ("a variation of linking"). Let $X$ be an Hilbert space, which is topological direct sum of the subspaces $X_{1}$ and $X_{2}$. Let $F \in C^{1}(X, \mathbb{R})$. Moreover assume:
(a) $\operatorname{dim} X_{1}<+\infty$;
(b) there exist $\rho>0, R>0$ and $e \in X_{1}, e \neq 0$ such that $\rho<R$ and $\sup _{S_{\rho}\left(X_{1}\right)} F<\inf _{\Sigma_{R}\left(e, X_{2}\right)} F ;$
(c) $-\infty<a=\inf _{\Delta_{R}\left(e, X_{2}\right)} F$;
(d) $(P . S .)_{c}$ holds for any $c \in[a, b]$, where $b=\sup _{B_{\rho}\left(X_{1}\right)} F$.

Then there exist at least two critical levels $c_{1}$ and $c_{2}$ for the functional $F$ such that:

$$
\inf _{\Delta_{R}\left(e, X_{2}\right)} F \leq c_{1} \leq \sup _{S_{\rho}\left(X_{1}\right)} F<\inf _{\Sigma_{R}\left(e, X_{2}\right)} F \leq c_{2} \leq \sup _{B_{\rho}\left(X_{1}\right)} F
$$

Finally we recall a theorem of existence of three critical levels for a functional (see Theorem 8.4 of [7]).
Theorem 5.3 ("linking scale"). Let $X$ be an Hilbert space, which is topological direct sum of the four subspaces $X_{0}, X_{1}, X_{2}$ and $X_{3}$. Let $F \in C^{1}(X, \mathbb{R})$. Moreover assume:
(a) $\operatorname{dim} X_{i}<+\infty$ for $i=0,1,2$;
(b) there exist $\rho>0, R>0$ and $e \in X_{2}, e \neq 0$ such that:

$$
\rho<R \quad \text { and } \quad \sup _{S_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F<\inf _{\Sigma_{R}\left(e, X_{3}\right)} F \text {; }
$$

(c) there exist $\rho^{\prime}>0, R^{\prime}>0$ and $e^{\prime} \in X_{1}, e^{\prime} \neq 0$ such that:

$$
\rho^{\prime}<R^{\prime} \quad \text { and } \quad \sup _{S_{\rho}^{\prime}\left(X_{0} \oplus X_{1}\right)} F<\inf _{\Sigma_{R}^{\prime}\left(e^{\prime}, X_{2} \oplus X_{3}\right)} F \text {; }
$$

(d) $R \leq R^{\prime} \quad\left(\Longrightarrow \quad \Delta_{R}\left(e, X_{3}\right) \subset \Sigma_{R}^{\prime}\left(e^{\prime}, X_{2} \oplus X_{3}\right)\right)$;
(e) $-\infty<a=\inf _{\Delta_{R}^{\prime}\left(e, X_{2} \oplus X_{3}\right)} F$;
(f) (P.S. $)_{c}$ holds for any $c \in[a, b]$, where $b=\sup _{B_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F$.

Then there exist three critical levels $c_{1}, c_{2}$ and $c_{3}$ for the functional $F$ such that:

$$
\begin{aligned}
& a \leq c_{3} \leq \sup _{S_{\rho}^{\prime}\left(X_{0} \oplus X_{1}\right)} F<\inf _{\Sigma_{R}^{\prime}\left(e^{\prime}, X_{2} \oplus X_{3}\right)} F \leq \\
& \leq \inf _{\Delta_{R}\left(e, X_{3}\right)} F \leq c_{2} \leq \sup _{S_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F<\inf _{\Sigma_{R}\left(e, X_{3}\right)} F \leq c_{1} \leq b .
\end{aligned}
$$

## 6. An uniqueness result when $c=\lambda_{1}$ and $b<0$.

We will prove the following uniqueness result.
Proposition 6.1. Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be such that:

$$
\left\{\begin{array}{c}
\text { (i) } \quad g \text { is Lipschitz, is } C^{1} \text { except at a point } s_{0} \text { with } g\left(s_{0}\right) \neq 0  \tag{6.2}\\
\text { and } g(0)=0 ; \\
\text { (ii) } \quad g^{\prime}(s) \geq 0 \forall s \in \mathbb{R} \backslash\left\{s_{0}\right\} \text { and } g^{\prime}(0) \neq 0 .
\end{array}\right.
$$

Moreover assume:
(6.3) $\begin{cases}\text { (iii) } & |g(s)| \leq a_{0}+b_{0}|s|, \forall s \in \mathbb{R}, \text { with } a_{0}, b_{0} \in \mathbb{R} ; \\ \text { (iv) } & \lim _{s \rightarrow+\infty} \frac{g(s)}{s}=1 ; \\ \text { (v) } & 2 G(s)-g(s) s \geq \alpha_{0} s^{-}-\alpha_{1} \forall s \in \mathbb{R}, \text { with } \alpha_{0}, \alpha_{1} \in \mathbb{R}^{+} ; \\ \text {(vi }) & G(s) \geq 0 \forall s \in \mathbb{R} .\end{cases}$

If $c=\lambda_{1}$ and $b<0$, then the functional $f_{b, \lambda_{1}}$ has an unique trivial critical point, which is a local minimum point, so the problem (1.1) has only the trivial solution.

Proof. First of all by (vi) of (6.3) we have $f_{b, \lambda_{1}}(0)=0$ and $f_{b, \lambda_{1}}(u) \geq 0$ $\forall u \in H$.

Secondly we remark that critical points of $f_{b, \lambda_{1}}(u)$ are isolated. In fact if $u_{0}$ is a critical point of $f_{b, \lambda_{1}}$ by (iii) of (6.3) using standard regularity results we have that $u_{0} \in C_{0}(\Omega)$. Thus by (6.2)

$$
\begin{equation*}
f_{b, \lambda_{1}}^{\prime \prime}\left(u_{0}\right)(v)^{2}=\int(\Delta v)^{2}-\lambda_{1} \int|\nabla v|^{2}-b \int g^{\prime}\left(u_{0}\right) v^{2} \geq 0 \quad \forall v \in H \tag{6.4}
\end{equation*}
$$

If $f_{b, \lambda_{1}}^{\prime \prime}\left(u_{0}\right)(v)^{2}=0$ then by (6.4) and (ii) of (6.2) we get $\int(\Delta v)^{2}-\lambda_{1} \int|\nabla v|^{2}=$ 0 , which implies $v=\sigma e_{1}$ for $\sigma \in \mathbb{R}$ and $\int g^{\prime}\left(u_{0}\right) e_{1}^{2}=0$, which implies $g^{\prime}\left(u_{0}\right)=0$ in $\Omega$. A contradiction arises since $u_{0}(x)=0$ on $\partial \Omega$ and (6.2) holds. Then we have $f_{b, \lambda_{1}}^{\prime \prime}\left(u_{0}\right)(v)^{2}>0 \quad \forall v \in H \backslash\{0\}$. Therefore critical points of $f_{b, \lambda_{1}}$ are isolated, since any critical point of $f_{b, \lambda_{1}}$ is a strict local minimum point.

Finally if the functional $f_{b, \lambda_{1}}$ has two different critical points, they are two local minima points. So by (i) of (6.2) and (6.3) using Theorem 6.5.3, page 354, of [2] we state the existence of a third critical point which is not a minimum point and a contradiction arises.

## REFERENCES

[1] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, Journ. Funct. Anal., 14 (1973), pp. 349-381.
[2] M.S. Berger, Nonlinearity and functional analysis, Academic Press, 1977.
[3] J. Ekeland - R. Temam, Convex analysis and variational problems, North Holland Publishing Company, 1976.
[4] A.C. Lazer - P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review, 32 (1990), pp. 537-578.
[5] A.C. Lazer - P.J. McKenna, Global bifurcation and a Theorem of Tarantello, Journ. Math. Anal. Appl., 181 (1994), pp. 648-655.
[6] A. Marino - A.M. Micheletti - A. Pistoia, Some variational results on semilinear problems with asymptotically nonsimmetric behavior, Nonlinear Analysis " A tribute in honor of G. Prodi", S.N.S. Pisa, (1991), pp. 243-256.
[7] A. Marino - A.M. Micheletti - A. Pistoia, A non symmetric asymptotically linear elliptic problem, Topol. Meth. Nonlin. Anal., 4 (1994), pp. 289-339.
[8] P.J. McKenna - W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98 (1987), pp. 167-177.
[9] P.J. McKenna - W. Walter, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), pp. 703-715.
[10] A.M. Micheletti - A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, to appear on Nonlinear Analysis T.M.A.
[11] A.M. Micheletti - A. Pistoia, Non trivial solutions for some fourth-order semilinear elliptic problems, to appear on Nonlinear Analysis T.M.A.
[12] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 65, Amer. Math. Soc. Providence, R.I., 1986.
[13] M. Schechter - K. Tintarev, Pairs of critical points produced by linking subsets with application to semilinear elliptic problems, Bull. Soc. Math. Belg.,44 (3) B (1992), pp. 249-261.
[14] G. Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat., 5 (1992), pp. 561-565.

> Dipartimento di Matematica Applicata "Ulisse Dini",
> Facoltà di Ingegneria,
> Via Bonanno 25,
> 56100 Pisa (ITALY)
> e-mail: pistoia@dm.unipi.it

