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ABOUT THE MULTIPLICITY OF SOLUTIONS

FOR CERTAIN CLASS OF FOURTH ORDER

SEMILINEAR PROBLEMS
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We consider the following problem:

(P)






�2u + a2�u = b
�
(u + 1)+ − 1

�
in �,

�u = 0, u = 0 on ∂�,

where � is a smooth open bounded set in RN , �2 is the biharmonic operator,
u+ = max{u, 0}, and a, b are constants. In this paper we study the problem
(P) when a2 ≥ λ1 and a2 is close to λ1 (here (λk )k≥1 is the sequence of
the eigenvalues of −� in H 1

0 (�)). Moreover we replace the nonlinearity
(u + 1)+ − 1 by a more general function g, by using a variational approach.
Here we prove the existence of a nontrivial solution if either b > λ2(λ2− a2)
or b < λ1(λ1 − a2) and the existence of two nontrivial solutions when
b > λk (λk − a2) and b is close to λk (λk − a2), for any λk > λ2. Finally
we show that if a2 = λ1 and b < 0 the problem (P) has only the trivial
solution.
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Introduction.

Let � be a smooth open bounded set in R
N . Let us consider the problem

of the existence of nontrivial solutions of the following nonlinear equation:

(P)

�
�2u + a2�u = b

�
(u + 1)+ − 1

�
in �,

�u = 0, u = 0 on ∂�,

where �2 is the biharmonic operator, u+ = max{u, 0} and a, b are constants.

This fourth order semilinear elliptic problem has been pointed out by Lazer
and McKenna in [4] as a possible model to study traveling waves in suspension
bridges and in [5] they proved the existence of 2k − 1 solutions when � ⊂ R

is an interval, a2 < λ1 and b > λk (λk − a2), by the global bifurcation method.
(Here (λk)k≥1 is the sequence of the eigenvalues of −� in H 1

0 ). Tarantello in
[14] found a negative solution of (P) when a2 < λ1 and b ≥ λ1(λ1 − a2), by a
degree argument.

It is clear that the number of solutions of (P) depends on the position of a2

and b with respect to λk and λk(λk − a2), respectively. We study the problem
(P), when the nonlinearity (u + 1)+ − 1 is replaced by a more general function
g (see (1.1)), as it has been suggested in [4] and [9]. It is our purpose to use a
variational viewpoint.

In [10] by studying the geometry of the functional in the case a2 < λ1 we
have the existence of two solutions if b > λ1(λ1 − a2) by a variation of linking
theorem and the existence of three solutions if b is suitable close to λk(λk − a2)
by a theorem of existence of three critical values. In [11] we study (P) when a2

goes beyond λ1 and we prove the existence of two solutions for b in a suitable
position with respect to λk(λk − a2), by a different suitable use of a variation
of linking theorem. Moreover in the case g(s) = (s + 1)+ − 1 we obtain some
uniqueness result.

In this paper we study the case a2 ≥ λ1 and a2 close to λ1. This is
the �richest� case: problem (P) has a greater number of solutions than in
the previous situation. The existence of a nontrivial solutions is proved when
b > λ2(λ2 − a2) (see Theorem 2.12) and also when b < λ1(λ1 − a2) (see
Theorem 4.7). Moreover the existence of two nontrivial solutions is proved
when b > λk(λk − a2) and b is close to λk(λk − a2), for any λk > λ2, (see
Theorem 3.5).
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1. The problem.

We consider the problem of the existence of solutions of the more general
equation:

(1.1)

�
�2u + c�u = bg(x , u) in �,

�u = 0, u = 0 on ∂�,

where � is a smooth open bounded set in R
N , g : � × R−→R is a

Caratheodory�s function and b, c ∈ R. We study (1.1) by using a variational
approach.

De�nition 1.2. Let fbc : H−→R be de�ned by:

fbc(u) =
1

2

��

(�u)2 − c

�

|∇u|2
�

− b

�

G(x , u),

where G(x , s) =
� s

0
g(x , σ )dσ . Let H = H 2(�) ∩ H 1

0 (�) be the Hilbert space
equipped with the inner product

�
u, v

�
H

=

�

�u�v +

�

∇u∇v.

Remark 1.3. It is well known that if, for example, we assume:

(g) |g(x , s)| ≤ a0(x )+ b0|s|, ∀s ∈ R and a.e. in �,

where a0 ∈ L2(�) and b0 ∈ R.

fbc is a C1 functional and its critical points are weak solutions of problem (1.1).

To use a variational approach it is necessary to study the Palais-Smale
condition.

De�nition 1.4. We say that fbc satis�es the Palais-Smale condition if for every
sequence (un)n∈N in H with fbc(un) bounded and lim

n
∇ fbc(un) = 0, there

exists a convergent subsequence.

Now we give a suf�cient condition to obtain the Palais-Smale condition.

Proposition 1.5. Assume (g) (see Remark 1.3) and:

(1.6)






(g+∞) lim
s→+∞

g(x , s)

s
= 1 uniformly with respect to x;

(G∗) 2G(x , s)− g(x , s)s ≥ α0(x )s
− − α1(x ) ∀s ∈ R, a.e.in �

where α0 ∈ L∞(�), α0(x ) > 0 a.e. in � and α1 ∈ L1(�).

Then for any c ∈ R, b �= �1(c) and b �= 0 the functional fbc satis�es the
Palais-Smale condition.
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Proof. We give the proof (see [11]) for sake of completeness. First of all we
observe that:

∇ fbc(u) = u + i∗
�
(1+ c)�u − bg(x , u)

�
,(1.7)

where i∗ : L2(�) −→ H is a compact operator.

(i∗ is the adjoint of the immersion i : H �→ L2(�)).
Now let (un)n∈N be a Palais-Smale sequence (see (1.4)). In particular:

lim
n

∇ fbc(un) = lim
n

�
un + i∗

�
(1+ c)�un − bg(x , un)

��
= 0(1.8)

strongly in H.

It is enough to prove that (�un�H )n∈N is bounded, because of (1.7) and (g). By
contradiction we suppose that lim

n
�un�H = +∞. Up to a subsequence we can

assume that lim
n

un

�un�H
= u weakly in H, strongly in L2(�) and pointwise in

�. By (1.8) we deduce:

�
∇ fbc(un),

un

�un�H

�
H

=
1

�un�H

�
�

|�un |
2 − c

�

|∇un |
2
�
−

−b

�

g(x , un)
un

�un�H
= 2

fbc(un)

�un�H
+ b

� �
2G(x , un)− g(x , un)un

� 1

�un�H
;

then passing to the limit, since b �= 0:

lim
n

� �
2G(x , un) − g(x , un)un

� 1

�un�H
= 0.

Moreover by (G∗) of (1.6) we get:

� �
2G(x , un)− g(x , un)un

� 1

�un�H
≥

�

α0
(un)

−

�un�H
−

�
α1(x )

�un�H

and so passing to the limit:

0 ≥

�

α0u
−, which implies u ≥ 0 a.e. in �.

Then by (g+∞) of (1.6) and (g), using the Lebesgue�s Theorem, we get:

(1.9) lim
n

g(x , un)

�un�H

= u strongly in L2(�).
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On the other hand by (1.8) we get:

0 = lim
n

∇ fbc(un)

�un�H
=(1.10)

lim
n

� un

�un�H
+ i∗

�
(1+ c)

�un

�un�H
− b

g(x , un)

�un�H

��
strongly in H.

Finally by (1.7), (1.9) and (1.10) we obtain:

lim
n

un

�un�H
= u strongly in H and

u ≥ 0 is a non trivial solution of �2u + c�u = bu.

(We recall that the sequence
� �un

�un�H

�
n∈N

is bounded in L2(�), so it converges

weakly in L2(�) and
�
i∗

�un

�un�H

�
converges strongly in H ). A contradiction

arises, because b �= �1(c).

We will use the following assumptions to build the geometric structures of
the functional, which allow us to apply the variational principles of Section 4:

(1.11)






(G) 0 ≤ 2G(x , s) ≤ s2 a.e. in � and ∀s ∈ R;

(G−∞) lim
s→−∞

2G(x , s)

s2
= 0 uniformly with respect to x ;

(G0) lim
s→0

2G(x , s)

s2
= 1 uniformly with respect to x .

We note that if (G) and (G0) hold then g(· , 0) = 0 and (1.1) has the trivial
solution.

Remark 1.12. We denote by λk the eigenvalues of −� in H 1
0 (�) and by ek

the eigenfunction corresponding to λk normalized in L2(�); we can choose
e1 > 0 in �. Let �k(c) = λk(λk − c). Set Hk = span(e1, . . . , ek) and
H ⊥

k = {w ∈ H | (w, v)H = 0 ∀v ∈ H }. We put H0 = 0.

In the following we consider the case λ1 ≤ c < λ2.
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2. A non trivial solution when c is close to λ1 and b ≥ �2(c).

We succeed to build a linking for the functional fbc using a suitable vector.
Hence we have a non trivial solution by the �variation of linking� Theorem 5.2.

We start with a technical lemma.

Lemma 2.1. Assume (G) and (G−∞) (see (1.11)). Let b ≥ 0. Then for any
ε > 0 there exists h > 0 such that:

fbc(u) ≥
1

2

��

|�u|2 − c

�

|∇u|2
�

−
b

2

�

(u+)2 − ε

�

u2 − h.

Proof. By de�nition of fbc , and by (G) we get:

fbc(u) =
1

2

��

|�u|2 − c

�

|∇u|2
�

− b

�

G(x , u) =

=
1

2

��

|�u|2 − c

�

|∇u|2
�

−
b

2

�

(u+)2 +

+
b

2

�

{x∈�:u(x)≥0}

�
u2 − 2G(x , u)

�
−

b

2

�

{x∈�:u(x)≤0}

2G(x , u) ≥

≥
1

2

��

|�u|2 − c

�

|∇u|2
�

−
b

2

�

(u+)2 − b

�

{x∈�:u(x)≤0}

G(x , u).

By (G−∞) and (G) we get that for any ε > 0 there exists h > 0 such that:

�

{x∈�:u(x)≤0}

G(x , u) ≤ ε

�

�

u2 + h.

The claim follows. �

Lemma 2.2. Assume (G) (see (1.11)). If 0 < b ≤ �i+1(c) for i ≥ 1, then:

inf
w∈H ⊥

i

fbc(w) ≥ 0.
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Proof. If b > 0 by (G) we obtain for any w ∈ H ⊥
i :

fbc(w) =
1

2

��

|�w|2 − c

�

|∇w|2
�

− b

�

G(x , w) ≥

≥
1

2

��

|�w|2 − c

�

|∇w|2
�

−
b

2

�

w2 ≥

≥
1

2

�
1−

b

�i+1(c)

���

|�w|2 − c

�

|∇w|2
�

≥ 0,

since b ≤ �i+1(c). �

Lemma 2.3. Assume (G0) (see (1.11)). If �i (c) < b for i ≥ 1, then there
exists ρ > 0 such that:

sup
v∈Hi

�v�
L2

=ρ

fbc(v) < 0.

Proof. By (G0) we get for any ε > 0 there exists ρ > 0 such that if |s| ≤ ρ

then 2G(x , s) ≥ (1− ε)s2 a.e. in �. Thus if v ∈ Hi with �v�L∞ ≤ ρ we have:

fbc(v) =
1

2

��

|�v|2 − c

�

|∇v|2
�

− b

�

G(x , v) ≤(2.4)

≤
1

2

��

|�v|2 − c

�

|∇v|2
�

−
b

2
(1− ε)

�

v2 ≤

≤
1

2

�
�i (c)− b(1− ε)

��

v2,

and so our claim follows (� · �L2 and � · �L∞ are equivalent, since dimHi <

+∞). �

Lemma 2.5. Let h ≥ 1. Set:

(2.6) βh+1(c) = max

��

(z+)2 | z ∈ H ⊥
h ,

�

|�z|2 − c

�

|∇z|2 = 1

�

.

Then:

βh+1(c) <
1

�h+1(c)
.
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Proof. It is easy to see that βh+1(c) ≤ 1
�h+1(c)

. If βh+1(c) = 1
�h+1(c)

then

there exists a sequence (zn )n∈N in H ⊥
h such that

�
|�zn |2 − c

�
|∇zn |2 = 1

and lim
n

�
(z+

n )
2 = 1

�h+1(c)
. We point out that �z�2H and

�
|�z|2 − c

�
|∇z|2 are

equivalent norms in H ⊥
h , since c < λh+1. So, up to a subsequence, we have

lim
n

zn = z in L2(�), so that
�
(z+)2 = 1

�h+1(c)
and then z �= 0. Moreover, since

z ∈ H ⊥
h \ {0} and

�
|�z|2 − c

�
|∇z|2 ≤ 1, we have 0 ≤

�
(z+)2 +

�
(z−)2 ≤

1
�h+1(c)

; so z− = 0. On the other hand we have
�

ze1 = 0, which implies

z− �= 0. Then a contradiction arises. �

Lemma 2.7. Set

λ∗ = sup
�
λ ≥ λ1 | ∃e∗ ∈ H2 \ {0} s.t. e∗(x ) ≤ 0(2.8)

in � and

�

|�e∗|2 − λ

�

|∇e∗|2 > 0
�
.

Then:
λ1 < λ∗ < λ2.

Proof. It is easy to see that λ∗ < λ2. To get that λ
∗ > λ1, it is enough to prove

that:

∃δ > 0 s.t. ∀c ∈ ]λ1, λ1 + δ[ ∃e∗ ∈ H2, e∗ ≤ 0 in � s.t.
�

|�e∗|2 − c

�

|∇e∗|2 > 0.

We choose e∗(x ) = se2(x )− e1(x ) with s ∈ R and we take s so small that e∗ is
negative in � and c so close to λ1 that:

�

|�e∗|2 − c

�

|∇e∗|2 = s2�2(c) − �1(c) > 0.

That proves our statement. �

Lemma 2.9. Assume (G) and (G−∞) (see (1.11)). Let λ1 ≤ c < λ∗ (see (2.8))

and 0 < b <
1

βh+1(c)
(see (2.6)) for some h ≥ 2. Then there exist e∗ ∈ Hh \ {0}

and R0 > 0 such that for any R ≥ R0 :

inf
�

fbc(z) | z = w + σe∗, w ∈ H ⊥
h , σ ≥ 0,

�

|�z|2 − c

�

|∇z|2 = R2
�

> 0.
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Proof. Since c < λ∗ by Lemma 2.7 there exists e∗ ∈ H2 ⊂ Hh , e∗ ≤ 0 in �

such that:

(2.10)

�

|�e∗|2 − c

�

|∇e∗|2 > 0.

Now by Lemma 2.1, we get for any w ∈ H ⊥
h and σ ≥ 0, because of the

negativity of e∗:

fbc(w + σe∗) ≥
1

2

��

|�w|2 − c

�

|∇w|2
�

+

+
1

2
σ 2

� �

|�e∗|2 − c

�

|∇e∗|2
�

−

−
b

2

�
�
(w + σe∗)+

�2
− ε

�

w2 − εσ 2 − h ≥

≥
1

2

��

|�w|2 − c

�

|∇w|2
�

+

+
1

2
σ 2

� �

|�e∗|2 − c

�

|∇e∗|2
�

−

−
b

2

�

(w+)2 − ε

�

w2 − εσ 2 − h ≥

≥
1

2

�

1− bβh+1(c)−
2ε

�h+1(c)

���

|�w|2 − c

�

|∇w|2
�

+

+
1

2
σ 2

� �

|�e∗|2 − c

�

|∇e∗|2 − 2ε
�

− h.

Thus the claim follows, since in virtue of (2.10) �w + σe∗�2H and�

|�w|2 − c

�

|∇w|2 + σ 2
��

|�e∗|2 − c

�

|∇e∗|2
�

are equivalent norms in the space span (e∗)⊕ H ⊥
h . �

The following remark will be useful in the proof of Theorem 3.5.

Remark 2.11. Assume (G) and (G−∞) (see (1.11)). Let λ1 ≤ c < λ∗ (see
(2.8)) and 0 < b < 1

βh+1(c)
(see (2.6)) for some h ≥ 2. Then there exists R0 > 0

such that for any R ≥ R0:

inf
�

fbc(z) | z = w + σeh+1, w ∈ H ⊥
h+1, σ ≥ 0,

�

|�z|2 − c

�

|∇z|2 = R2
�

> 0.
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Theorem 2.12. Assume (g) (see (1.3)), (1.11) and (1.6). If λ1 ≤ c < λ∗ (see
(2.8)) and b > �2(c), then the functional fbc has at least two different critical
values.

Proof. By Lemmas 2.9, 2.2 and 2.3 it follows that, if �i (c) < b ≤ �i+1(c) <
1

βi+1 (c)
(see (2.6)) for i ≥ 2, there exist e∗ ∈ H2 \ {0} and R > ρ > 0 such that:

inf
z∈�R (e∗,H ⊥

i
)

fbc(z) > sup
v∈Hi

�v�
L2

=ρ

fbc(v),

where �R(e
∗, H ⊥

i ) is the boundary of the set
�
z = w + σe∗ | w ∈ H ⊥

i , σ ≥

0,
�

|�z|2 − c
�

|∇z|2 ≤ R2
�
in span(e∗) ⊕ H ⊥

i . The claim follows by the
variational statement 5.2. �

3. Two non trivial solutions when c is close to λ1 and b ≥ �2(c).

Now we build another linking for the functional fb,c in such a way as to
use the �linking scale� Theorem 5.3.

Lemma 3.1. Let k ≥ 1. Set:

lk (b, c) = inf
w∈H ⊥

k

fbc(w).

Assume (G) and (G−∞) (see (1.11)). Then:

(i) 0 ≤ b < 1
βk+1(c)

⇒ lk (b, c) > −∞, where:

βk+1(c) = max

��

(w+)2 | w ∈ H ⊥
k ,

�

|�w|2 − c

�

|∇w|2 = 1

�

<
1

�k+1(c)

(see (2.6));
(ii) 0 ≤ b ≤ �k+1(c) ⇒ lk (b, c) ≥ 0;

(iii) lim inf
b→�k+1(c)

lk (b, c) ≥ 0.

Proof. First of all we denote by �w�c

2 =
�

|�w|2 − c
�

|∇w|2. Since
c < λk+1 , � · �

c
and � · �H are norms equivalent in the space H ⊥

k .

(i) If w ∈ H ⊥
k , by (2.1) we get:

fbc(w) ≥
1

2
�w�

c

2 −
b

2

�

(w+)2 −(3.2)

− ε

�

w2 − h ≥
1

2
(1− bβk+1(c)−

ε

�k+1(c)
)�w�

c

2 − h.
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Then it follows the existence of a minimum point of fbc on H ⊥
k , because of the

lower semicontinuity of fbc .

(ii) If 0 ≤ b ≤ �k+1(c) and w ∈ H ⊥
k , by (G) we get:

fbc(w) =
1

2
�w�

c

2 − b

�

G(x , w) ≥

≥
1

2
�w�

c

2 −
b

2

�

w2 ≥
1

2
(1−

b

�k+1(c)
)�w�

c

2 ≥ 0.

(iii) If lim
n

bn = �k+1(c), we show that lim inf
n

lk (bn, c) ≥ 0. In (i) we have

shown the existence of wn ∈ H ⊥
k such that:

1

2
�wn�

2
c − bn

�

G(x , wn) = lk (bn, c) ≤(3.3)

≤
1

2
�w�c

2 − bn

�

G(x , w), ∀w ∈ H ⊥
k .

Arguing by contradiction, we suppose lim
n

�wn�c
= +∞. Up a subsequence,

we have lim
n

wn

�wn�c
= w weakly in H , strongly in L2(�) and a.e. in �, with

�w�c ≤ 1. Now we observe that by (2.1) we get:

lk (bn, c) ≥
1

2
�wn�c

2 −
bn

2

�

(wn
+)2 − bn

�

{x∈�:wn (x)≤0}

G(x , wn).

As a result by this fact and by (3.3) it follows:

0 ≥ lim sup
n

lk (bn, c)

�wn�c

2
≥ lim inf

n

lk (bn, c)

�wn�c

2
≥

≥
1

2

�
1− �k+1(c)

�

(w+)2
�

− �k+1(c) lim sup
n

�

{x∈�:wn (x)≤0}

G(x , wn)

�wn�c

2
.

Moreover, by (G) and (G−∞), using Fatou�s lemma, we get:

lim sup
n

�

{x∈�:wn (x)≤0}

G(x , wn)

�wn�c

2
≤ 0;

then 1− �k+1(c)
�
(w+)2 ≤ 0.
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By (2.5) a contradiction arises, since
�
(w+)2 ≤ βk+1(c)�w�

c

2 ≤ βk+1(c)
and βk+1(c) < 1

�k+1 (c)
. Finally, since (wn)n∈N is bounded in H , up to a

subsequence, we can suppose lim
n

wn = w0 weakly in H and strongly in L2(�).

By (3.3) we deduce:

1

2
�w0�c

2 − �k+1(c)

�

G(x , w0) ≤ lim inf
n

lk (bn, c) ≤

≤
1

2
�w�

c

2 − �k+1(c)

�

G(x , w), ∀w ∈ H ⊥
k ,

then by (ii):

lim inf
n

lk (bn, c) ≥ lk (�k+1(c), c) =
1

2
�w0�c

2 − �k+1(c)

�

G(x , w0) ≥ 0. �

Lemma 3.4. Let k ≥ 1. Set:

mk (b, c; ρ) = sup
v∈Hk

�v�
L2

=ρ

fbc(v).

Assume (G0) (see (1.11)). Then:

lim sup
ρ→0

mk (b, c; ρ)

ρ2
≤
1

2

�
�k(c)− b

�
.

Proof. By (2.4) it follows that for any ε > 0 and for ρ small enough:

mk (b, c; ρ)

ρ2
≤
1

2

�
�k (c)− b + εb

�
.

Then the claim follows. �

Theorem 3.5. Assume (g) (see (1.3)), (1.11) and (1.6). Let λ1 ≤ c < λ∗

(see (2.8)). For any λi > λ2 there exists ε > 0 such that for any b ∈�
�i (c), �i (c) + ε

�
the functional fbc has at least three different critical values.

Proof. Let λ1 ≤ c < λ∗ < λ2 ≤ · · · ≤ λk < λk+1 = · · · = λi < λi+1 . First of
all since c < λi < λi H and �k+1(c) = �i (c) < b < 1

βi (c)
by Lemmas 2.2, 2.3

and Remark 2.11 (where index h + 1 is replaced by i) it follows that there exist
Ri > ρi > 0 such that:

(3.6) inf
z∈�Ri

(ei ,H ⊥
i
)

fbc(z) > sup
v∈Hi

�v�
L2

=ρi

fbc(v),
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where: �Ri
(ei , H ⊥

i ) =
�
w ∈ H ⊥

i |
�

|�w|2 − c
�

|∇w|2 ≤ R2i
�

∪
�

z =

w + σei | w ∈ H ⊥
i , σ ≥ 0,

�
|�z|2 − c

�
|∇z|2 = R2i

�
.

Secondly by Lemmas 3.1 and 3.4 it follows that there exists ε > 0 such that for
any b ∈

�
�k+1(c), �k+1(c) + ε

�
there exists ρk > 0 such that:

(3.7) inf
w∈H ⊥

k

fbc(w) = lk(b, c) > mk (b, c; ρk) = sup
v∈Hi

�v�
L2

=ρi

fbc(v).

Finally since c < c∗ and 0 < b < 1
βk+1(c)

by Lemma 2.9 it follows that there
exist e∗ ∈ Hk \ {0} and Rk > max{Ri , ρk} such that:

(3.8) inf
z∈�Rk

(e∗,H ⊥
k
)

fbc(z) > sup
v∈Hi

�v�
L2

=ρi

fbc(v).

where: �Rk
(e∗, H ⊥

k ) =
�
w ∈ H ⊥

k |
�

|�w|2 − c
�

|∇w|2 ≤ R2k
�

∪
�
z =

w + σe∗ | w ∈ H ⊥
k , σ ≥ 0,

�
|�z|2 − c

�
|∇z|2 = R2k

�
. By (3.6), (3.7)

and (3.8) using Theorem 5.3, we get the claim. �

4. A non trivial solution when c > λ1 and b ≤ �1(c).

By the Mountain Pass Theorem we are able to prove that in this case the
functional fb,c has a strictly positive critical value. We start with some technical
lemmas.

Lemma 4.1. Assume (G) and (G0) (see (1.11)). Let b ≤ 0. Then for any ε > 0
there exists a function θ : H−→R such that:

fb,c(u) ≥
1

2

��

|�u|2 − c

�

|∇u|2
�

−

−
b

2
(1− ε)

�

u2 − �u�H u2θ (u) with lim
u→0

θ (u) = 0.

Proof. First of all, (G0) implies that for any ε > 0 there exists ρ > 0 s.t. if
|s| ≤ ρ then 2G(x , s) ≥ (1− ε)s2 a.e. in �. Then we can compute:

fb,c(u) =
1

2

��

|�u|2 − c

�

|∇u|2
�

− b

�

{x∈�:|u(x)|≤ρ}

G(x , u)−(4.2)

− b

�

{x∈�:|u(x)|≥ρ}

G(x , u) ≥
1

2

��

|�u|2 − c

�

|∇u|2
�

−
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−
b

2
(1− ε)

�

u2 +
b

2

�

{x∈�:|u(x)|≥ρ}

�
− 2G(x , u)+ (1− ε)u2

�
≥

≥
1

2

��

|�u|2 − c

�

|∇u|2
�

−
b

2
(1− ε)

�

u2 +
b

2

�

{x∈�:|u(x)|≥ρ}

u2,

because of (G). On the other hand using Hölder inequality we get:

(4.3)

�

{x∈�:|u(x)|≥ρ}

u2 ≤ S�u�H u2
�
meas{x ∈ � : |u(x )| ≥ ρ}

�p
,

for some positive constants S and p. By (4.2) and (4.3) the claim follows. �

Lemma 4.4. Assume (G) and (G0) (see (1.11)). If λk ≤ c < λk+1 for k ≥ 1
and b < �1(c) then there exists ρ > 0 such that:

inf
u∈γρ(H )

fb,c(u) > 0,

where:

γρ(H ) =
�
u = v + w ∈ Hk ⊕ H ⊥

k |(4.5)
�

v2 +
� �

|�w|2 − c

�

|∇w|2
�

= ρ2
�
,

is homeomorphic to a sphere.

Proof. Let u = v + w with v ∈ Hk and w ∈ H ⊥
k . By Lemma 4.1, since b < 0,

we get:

fb,c(v + w) ≥
1

2

� �

|�v|2 − c

�

|∇v|2
�

+
1

2

��

|�w|2 − c

�

|∇w|2
�

−

−
b

2
(1− ε)

�

v2 −
b

2
(1− ε)

�

w2 − (�v�2H + �w|2H )θ (v + w) ≥

≥
1

2

�
�1(c)− b(1− ε)− aθ (v + w)

�
�

v2 +
1

2

�
1− aθ (v + w)

�
·

·
��

|�w|2 − c

�

|∇w|2
�
,

where a is a positive constant. Now we point out that if �v + w�2h and�
v2 +

� �
|�w|2 − c

�
|∇w|2

�
are equivalent norms on the space H . Thus

the claim follows, if ρ > 0 is small enough. �

Lemma 4.6. Assume (G) and (G−∞) (see (1.11)). If λ1 < c and b < 0 then:

lim
s→+∞

fb,c(−se1) = −∞.
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Proof. We have:

fb,c(−se1) = s2
�

�1(c) − b

�
G(x , −se1)

s2

�

;

moreover by (G) and (G−∞) we easily get:

lim
s→+∞

�
G(x , −se1)

s2
= 0

and so the claim follows. �

Theorem 4.7. Assume (g) (see (1.3)), (1.11) and (1.6). Let λ1 < c and
b < �1(c).

Then the functional fb,c has at least two different critical values.

Proof. Let λ1 < · · · ≤ λk ≤ c < λk+1 for some 1 ≤ k. Firstly, since
b < �1(c), by Lemma 4.4 there exists a set:

�ρ (H ) =
�
v + w ∈ Hk ⊕ H ⊥

k |

�

v2 +
�
�

|�w|2 − c

�

|∇w|2
�
≤ ρ

�
,

homeomorphic to a ball in H , whose boundary is the set γρ(H ) (see (4.5)), such
that:

(4.8) inf
u∈γρ (H )

fb,c(u) > 0.

Moreover (G) implies fb,c(0) = 0, with 0∈ �ρ(H ). Finally Lemma 4.6 ensures
the existence of s∗ > 0 such that −s∗e1 /∈ �ρ(H ) and fb,c(−s∗e1) < 0. Thus
the classical mountain pass theorem (see [3]) claims the existence of a critical
value c1 of fb,c such that:

c1 ≥ inf
u∈γρ(H )

fb,c(u) > 0.

It is evident that the trivial solution is the minimum of the functional fb,c on the
set �ρ (H ).
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5. Variational setting.

In this section we recall two theorems (see [6], [7], [11] and [12]) of
existence of critical points for a functional, which have been used in the previous
sections.

De�nition 5.1. Let X be an Hilbert space, Y ⊂ X , ρ > 0 and e ∈ X \Y , e �= 0.
Set:

Bρ (Y ) =
�

x ∈ Y | �x�X ≤ ρ
�
,

Sρ(Y ) =
�

x ∈ Y | �x�X = ρ
�
,

�ρ(e, Y ) =
�
σe + v | σ ≥ 0, v ∈ Y, �σe + v�X ≤ ρ

�
,

�ρ(e, Y ) =
�
σe + v | σ ≥ 0, v ∈ Y, �σe + v�X = ρ

�
∪

∪
�
v | v ∈ Y, �v�X ≤ ρ

�
.

First of all we recall a theorem of existence of two critical levels for a
functional which is a variation of linking theorem (see Theorem 3.4 of [6] and
[12]).

Theorem 5.2 (�a variation of linking�). Let X be an Hilbert space, which is
topological direct sum of the subspaces X1 and X2 . Let F ∈ C1(X, R).
Moreover assume:

(a) dim X1 < +∞;
(b) there exist ρ > 0, R > 0 and e ∈ X1, e �= 0 such that ρ < R and

sup
Sρ(X1)

F < inf
�R (e,X2)

F;

(c) −∞ < a = inf
�R(e,X2)

F;

(d) (P.S.)c holds for any c ∈ [a, b], where b = sup
Bρ (X1)

F.

Then there exist at least two critical levels c1 and c2 for the functional F such
that:

inf
�R(e,X2)

F ≤ c1 ≤ sup
Sρ(X1)

F < inf
�R (e,X2)

F ≤ c2 ≤ sup
Bρ (X1)

F.

Finally we recall a theorem of existence of three critical levels for a
functional (see Theorem 8.4 of [7]).

Theorem 5.3 (�linking scale�). Let X be an Hilbert space, which is topological
direct sum of the four subspaces X0, X1, X2 and X3. Let F ∈ C1(X, R).
Moreover assume:
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(a) dim Xi < +∞ for i = 0, 1, 2;
(b) there exist ρ > 0, R > 0 and e ∈ X2, e �= 0 such that:

ρ < R and sup
Sρ(X0⊕X1⊕X2)

F < inf
�R(e,X3)

F;

(c) there exist ρ � > 0, R� > 0 and e� ∈ X1, e� �= 0 such that:

ρ � < R� and sup
S �

ρ(X0⊕X1)

F < inf
��

R
(e�,X2⊕X3)

F;

(d) R ≤ R�
�

�⇒ �R(e, X3) ⊂ ��
R(e

�, X2 ⊕ X3)
�
;

(e) −∞ < a = inf��
R
(e,X2⊕X3) F;

(f) (P.S.)c holds for any c ∈ [a, b], where b = sup
Bρ (X0⊕X1⊕X2)

F.

Then there exist three critical levels c1 , c2 and c3 for the functional F such that:

a ≤ c3 ≤ sup
S �

ρ(X0⊕X1)

F < inf
��

R
(e�,X2⊕X3)

F ≤

≤ inf
�R(e,X3)

F ≤ c2 ≤ sup
Sρ(X0⊕X1⊕X2)

F < inf
�R(e,X3)

F ≤ c1 ≤ b.

6. An uniqueness result when c = λ1 and b < 0.

We will prove the following uniqueness result.

Proposition 6.1. Let g : R−→R be such that:

(6.2)






(i) g is Lipschitz, is C1 except at a point s0 with g(s0) �= 0

and g(0) = 0;

(ii) g�(s) ≥ 0 ∀s ∈ R \ {s0} and g�(0) �= 0.

Moreover assume:

(6.3)






(iii) |g(s)| ≤ a0 + b0|s|, ∀s ∈ R, with a0, b0 ∈ R;

(iv) lim
s→+∞

g(s)

s
= 1;

(v) 2G(s)− g(s)s ≥ α0s
− − α1 ∀s ∈ R, with α0, α1 ∈ R

+;

(vi) G(s) ≥ 0 ∀s ∈ R.

If c = λ1 and b < 0, then the functional fb,λ1 has an unique trivial critical
point, which is a local minimum point, so the problem (1.1) has only the trivial
solution.
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Proof. First of all by (vi) of (6.3) we have fb,λ1 (0) = 0 and fb,λ1 (u) ≥ 0
∀u ∈ H .

Secondly we remark that critical points of fb,λ1 (u) are isolated. In fact if
u0 is a critical point of fb,λ1 by (iii) of (6.3) using standard regularity results we
have that u0 ∈ C0(�). Thus by (6.2)

(6.4) f ��
b,λ1
(u0)(v)

2 =

�

(�v)2 − λ1

�

|∇v|2 − b

�

g�(u0)v
2 ≥ 0 ∀v ∈ H.

If f ��
b,λ1
(u0)(v)

2 = 0 then by (6.4) and (ii) of (6.2) we get
�
(�v)2−λ1

�
|∇v|2 =

0, which implies v = σe1 for σ ∈ R and
�

g�(u0)e
2
1 = 0, which implies

g�(u0) = 0 in �. A contradiction arises since u0(x ) = 0 on ∂� and (6.2)
holds. Then we have f ��

b,λ1
(u0)(v)

2 > 0 ∀v ∈ H \ {0}. Therefore critical points
of fb,λ1 are isolated, since any critical point of fb,λ1 is a strict local minimum
point.

Finally if the functional fb,λ1 has two different critical points, they are two
local minima points. So by (i) of (6.2) and (6.3) using Theorem 6.5.3, page 354,
of [2] we state the existence of a third critical point which is not a minimum
point and a contradiction arises. �
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