ABOUT THE MULTIPLICITY OF SOLUTIONS FOR CERTAIN CLASS OF FOURTH ORDER SEMILINEAR PROBLEMS

ANNA MARIA MICHELETTI - ANGELA PISTOIA

Dedicated to Francesco Guglielmino on his 70th birthday

We consider the following problem:

(P)
$$\begin{cases} \Delta^2 u + a^2 \Delta u = b \Big[(u+1)^+ - 1 \Big] & \text{in } \Omega, \\ \Delta u = 0, \ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a smooth open bounded set in \mathbb{R}^N , Δ^2 is the biharmonic operator, $u^+ = \max\{u, 0\}$, and a, b are constants. In this paper we study the problem (P) when $a^2 \ge \lambda_1$ and a^2 is close to λ_1 (here $(\lambda_k)_{k\ge 1}$ is the sequence of the eigenvalues of $-\Delta$ in $H_0^1(\Omega)$). Moreover we replace the nonlinearity $(u+1)^+ - 1$ by a more general function g, by using a variational approach. Here we prove the existence of a nontrivial solution if either $b > \lambda_2(\lambda_2 - a^2)$ or $b < \lambda_1(\lambda_1 - a^2)$ and the existence of two nontrivial solutions when $b > \lambda_k(\lambda_k - a^2)$ and b is close to $\lambda_k(\lambda_k - a^2)$, for any $\lambda_k > \lambda_2$. Finally we show that if $a^2 = \lambda_1$ and b < 0 the problem (P) has only the trivial solution.

Entrato in Redazione il 10 aprile 1997.

Supported by M.U.R.S.T. (Research funds 60% and 40%) and C.N.R.

Introduction.

Let Ω be a smooth open bounded set in \mathbb{R}^N . Let us consider the problem of the existence of nontrivial solutions of the following nonlinear equation:

(P)
$$\begin{cases} \Delta^2 u + a^2 \Delta u = b [(u+1)^+ - 1] & \text{in } \Omega, \\ \Delta u = 0, \ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Δ^2 is the biharmonic operator, $u^+ = \max\{u, 0\}$ and a, b are constants.

This fourth order semilinear elliptic problem has been pointed out by Lazer and McKenna in [4] as a possible model to study traveling waves in suspension bridges and in [5] they proved the existence of 2k - 1 solutions when $\Omega \subset \mathbb{R}$ is an interval, $a^2 < \lambda_1$ and $b > \lambda_k(\lambda_k - a^2)$, by the global bifurcation method. (Here $(\lambda_k)_{k\geq 1}$ is the sequence of the eigenvalues of $-\Delta$ in H_0^1). Tarantello in [14] found a negative solution of (P) when $a^2 < \lambda_1$ and $b \ge \lambda_1(\lambda_1 - a^2)$, by a degree argument.

It is clear that the number of solutions of (P) depends on the position of a^2 and b with respect to λ_k and $\lambda_k(\lambda_k - a^2)$, respectively. We study the problem (P), when the nonlinearity $(u + 1)^+ - 1$ is replaced by a more general function g (see (1.1)), as it has been suggested in [4] and [9]. It is our purpose to use a variational viewpoint.

In [10] by studying the geometry of the functional in the case $a^2 < \lambda_1$ we have the existence of two solutions if $b > \lambda_1(\lambda_1 - a^2)$ by a variation of linking theorem and the existence of three solutions if *b* is suitable close to $\lambda_k(\lambda_k - a^2)$ by a theorem of existence of three critical values. In [11] we study (*P*) when a^2 goes beyond λ_1 and we prove the existence of two solutions for *b* in a suitable position with respect to $\lambda_k(\lambda_k - a^2)$, by a different suitable use of a variation of linking theorem. Moreover in the case $g(s) = (s + 1)^+ - 1$ we obtain some uniqueness result.

In this paper we study the case $a^2 \ge \lambda_1$ and a^2 close to λ_1 . This is the "richest" case: problem (*P*) has a greater number of solutions than in the previous situation. The existence of a nontrivial solutions is proved when $b > \lambda_2(\lambda_2 - a^2)$ (see Theorem 2.12) and also when $b < \lambda_1(\lambda_1 - a^2)$ (see Theorem 4.7). Moreover the existence of two nontrivial solutions is proved when $b > \lambda_k(\lambda_k - a^2)$ and *b* is close to $\lambda_k(\lambda_k - a^2)$, for any $\lambda_k > \lambda_2$, (see Theorem 3.5).

1. The problem.

We consider the problem of the existence of solutions of the more general equation:

(1.1)
$$\begin{cases} \Delta^2 u + c \Delta u = bg(x, u) & \text{in } \Omega, \\ \Delta u = 0, \ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where Ω is a smooth open bounded set in \mathbb{R}^N , $g : \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Caratheodory's function and $b, c \in \mathbb{R}$. We study (1.1) by using a variational approach.

Definition 1.2. Let $f_{bc} : H \longrightarrow \mathbb{R}$ be defined by:

$$f_{bc}(u) = \frac{1}{2} \left(\int (\Delta u)^2 - c \int |\nabla u|^2 \right) - b \int G(x, u)$$

where $G(x, s) = \int_0^s g(x, \sigma) d\sigma$. Let $H = H^2(\Omega) \cap H_0^1(\Omega)$ be the Hilbert space equipped with the inner product

$$(u, v)_H = \int \Delta u \Delta v + \int \nabla u \nabla v.$$

Remark 1.3. It is well known that if, for example, we assume:

(g) $|g(x,s)| \le a_0(x) + b_0|s|, \forall s \in \mathbb{R} \text{ and a.e. in } \Omega$,

where $a_0 \in L^2(\Omega)$ and $b_0 \in \mathbb{R}$.

 f_{bc} is a C^1 functional and its critical points are weak solutions of problem (1.1).

To use a variational approach it is necessary to study the Palais-Smale condition.

Definition 1.4. We say that f_{bc} satisfies the Palais-Smale condition if for every sequence $(u_n)_{n \in \mathbb{N}}$ in H with $f_{bc}(u_n)$ bounded and $\lim_n \nabla f_{bc}(u_n) = 0$, there exists a convergent subsequence.

Now we give a sufficient condition to obtain the Palais-Smale condition.

Proposition 1.5. Assume (g) (see Remark 1.3) and:

(1.6)
$$\begin{cases} (g_{+\infty}) & \lim_{s \to +\infty} \frac{g(x,s)}{s} = 1 \text{ uniformly with respect to } x; \\ (G^*) & 2G(x,s) - g(x,s)s \ge \alpha_0(x)s^- - \alpha_1(x) \forall s \in \mathbb{R}, a.e.in \Omega \\ & \text{where } \alpha_0 \in L^{\infty}(\Omega), \ \alpha_0(x) > 0 \text{ a.e. in } \Omega \text{ and } \alpha_1 \in L^1(\Omega). \end{cases}$$

Then for any $c \in \mathbb{R}$, $b \neq \Lambda_1(c)$ and $b \neq 0$ the functional f_{bc} satisfies the Palais-Smale condition.

Proof. We give the proof (see [11]) for sake of completeness. First of all we observe that:

(1.7)
$$\nabla f_{bc}(u) = u + i^* ((1+c)\Delta u - bg(x, u)),$$

where $i^* : L^2(\Omega) \longrightarrow H$ is a compact operator.

 $(i^* \text{ is the adjoint of the immersion } i : H \hookrightarrow L^2(\Omega)).$

Now let $(u_n)_{n \in \mathbb{N}}$ be a Palais-Smale sequence (see (1.4)). In particular:

(1.8)
$$\lim_{n} \nabla f_{bc}(u_n) = \lim_{n} \left(u_n + i^* \left((1+c) \Delta u_n - bg(x, u_n) \right) \right) = 0$$

strongly in H.

It is enough to prove that $(||u_n||_H)_{n\in\mathbb{N}}$ is bounded, because of (1.7) and (g). By contradiction we suppose that $\lim_n ||u_n||_H = +\infty$. Up to a subsequence we can assume that $\lim_n \frac{u_n}{\|u_n\|_H} = u$ weakly in H, strongly in $L^2(\Omega)$ and pointwise in Ω . By (1.8) we deduce:

$$\left(\nabla f_{bc}(u_n), \frac{u_n}{\|u_n\|_H}\right)_H = \frac{1}{\|u_n\|_H} \left(\int |\Delta u_n|^2 - c \int |\nabla u_n|^2\right) - b \int g(x, u_n) \frac{u_n}{\|u_n\|_H} = 2 \frac{f_{bc}(u_n)}{\|u_n\|_H} + b \int \left(2G(x, u_n) - g(x, u_n)u_n\right) \frac{1}{\|u_n\|_H};$$

then passing to the limit, since $b \neq 0$:

$$\lim_{n} \int \left(2G(x, u_{n}) - g(x, u_{n})u_{n} \right) \frac{1}{\|u_{n}\|_{H}} = 0.$$

Moreover by (G^*) of (1.6) we get:

$$\int \left(2G(x, u_n) - g(x, u_n)u_n\right) \frac{1}{\|u_n\|_H} \ge \int \alpha_0 \frac{(u_n)^-}{\|u_n\|_H} - \int \frac{\alpha_1(x)}{\|u_n\|_H}$$

and so passing to the limit:

$$0 \ge \int \alpha_0 u^-$$
, which implies $u \ge 0$ a.e. in Ω .

Then by $(g_{+\infty})$ of (1.6) and (g), using the Lebesgue's Theorem, we get:

(1.9)
$$\lim_{n} \frac{g(x, u_n)}{\|u_n\|_H} = u \quad \text{strongly in } L^2(\Omega).$$

On the other hand by (1.8) we get:

(1.10)
$$0 = \lim_{n} \frac{\nabla f_{bc}(u_{n})}{\|u_{n}\|_{H}} = \lim_{n} \left\{ \frac{u_{n}}{\|u_{n}\|_{H}} + i^{*} \left[(1+c) \frac{\Delta u_{n}}{\|u_{n}\|_{H}} - b \frac{g(x, u_{n})}{\|u_{n}\|_{H}} \right] \right\} \text{ strongly in } H$$

Finally by (1.7), (1.9) and (1.10) we obtain:

$$\lim_{n} \frac{u_{n}}{\|u_{n}\|_{H}} = u \text{ strongly in } H \text{ and}$$
$$u \ge 0 \text{ is a non trivial solution of } \Delta^{2}u + c\Delta u = bu.$$

(We recall that the sequence $\left(\frac{\Delta u_n}{\|u_n\|_H}\right)_{n\in\mathbb{N}}$ is bounded in $L^2(\Omega)$, so it converges weakly in $L^2(\Omega)$ and $\left(i^*\frac{\Delta u_n}{\|u_n\|_H}\right)$ converges strongly in H). A contradiction arises, because $b \neq \Lambda_1(c)$.

We will use the following assumptions to build the geometric structures of the functional, which allow us to apply the variational principles of Section 4:

(1.11)
$$\begin{cases} (G) & 0 \le 2G(x, s) \le s^2 \text{ a.e. in } \Omega \text{ and } \forall s \in \mathbb{R}; \\ (G_{-\infty}) & \lim_{s \to -\infty} \frac{2G(x, s)}{s^2} = 0 \text{ uniformly with respect to } x; \\ (G_0) & \lim_{s \to 0} \frac{2G(x, s)}{s^2} = 1 \text{ uniformly with respect to } x. \end{cases}$$

We note that if (G) and (G₀) hold then $g(\cdot, 0) = 0$ and (1.1) has the trivial solution.

Remark 1.12. We denote by λ_k the eigenvalues of $-\Delta$ in $H_0^1(\Omega)$ and by e_k the eigenfunction corresponding to λ_k normalized in $L^2(\Omega)$; we can choose $e_1 > 0$ in Ω . Let $\Lambda_k(c) = \lambda_k(\lambda_k - c)$. Set $H_k = \text{span}(e_1, \dots, e_k)$ and $H_k^{\perp} = \{w \in H \mid (w, v)_H = 0 \forall v \in H\}$. We put $H_0 = 0$.

In the following we consider the case $\lambda_1 \leq c < \lambda_2$.

2. A non trivial solution when *c* is close to λ_1 and $b \ge \Lambda_2(c)$.

We succeed to build a linking for the functional f_{bc} using a suitable vector. Hence we have a non trivial solution by the "variation of linking" Theorem 5.2.

We start with a technical lemma.

Lemma 2.1. Assume (G) and $(G_{-\infty})$ (see (1.11)). Let $b \ge 0$. Then for any $\varepsilon > 0$ there exists h > 0 such that:

$$f_{bc}(u) \geq \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - \frac{b}{2} \int (u^+)^2 - \varepsilon \int u^2 - h.$$

Proof. By definition of f_{bc} , and by (G) we get:

$$\begin{split} f_{bc}(u) &= \frac{1}{2} \Big(\int |\Delta u|^2 - c \int |\nabla u|^2 \Big) - b \int G(x, u) = \\ &= \frac{1}{2} \Big(\int |\Delta u|^2 - c \int |\nabla u|^2 \Big) - \frac{b}{2} \int (u^+)^2 + \\ &+ \frac{b}{2} \int_{\{x \in \Omega: u(x) \ge 0\}} (u^2 - 2G(x, u)) - \frac{b}{2} \int_{\{x \in \Omega: u(x) \le 0\}} 2G(x, u) \ge \\ &\ge \frac{1}{2} \Big(\int |\Delta u|^2 - c \int |\nabla u|^2 \Big) - \frac{b}{2} \int (u^+)^2 - b \int_{\{x \in \Omega: u(x) \le 0\}} G(x, u). \end{split}$$

By $(G_{-\infty})$ and (G) we get that for any $\varepsilon > 0$ there exists h > 0 such that:

$$\int_{\{x\in\Omega: u(x)\leq 0\}} G(x,u) \leq \varepsilon \int_{\Omega} u^2 + h.$$

The claim follows. \Box

Lemma 2.2. Assume (G) (see (1.11)). If $0 < b \le \Lambda_{i+1}(c)$ for $i \ge 1$, then:

$$\inf_{w\in H_i^\perp} f_{bc}(w) \ge 0.$$

Proof. If b > 0 by (G) we obtain for any $w \in H_i^{\perp}$:

$$f_{bc}(w) = \frac{1}{2} \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) - b \int G(x, w) \ge$$

$$\ge \frac{1}{2} \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) - \frac{b}{2} \int w^2 \ge$$

$$\ge \frac{1}{2} \left(1 - \frac{b}{\Lambda_{i+1}(c)} \right) \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) \ge 0,$$

since $b \leq \Lambda_{i+1}(c)$. \Box

Lemma 2.3. Assume (G_0) (see (1.11)). If $\Lambda_i(c) < b$ for $i \ge 1$, then there exists $\rho > 0$ such that:

$$\sup_{v\in H_i\atop \|v\|_{L^2}=\rho}f_{bc}(v)<0.$$

Proof. By (G_0) we get for any $\varepsilon > 0$ there exists $\rho > 0$ such that if $|s| \le \rho$ then $2G(x, s) \ge (1 - \varepsilon)s^2$ a.e. in Ω . Thus if $v \in H_i$ with $||v||_{L^{\infty}} \le \rho$ we have:

(2.4)
$$f_{bc}(v) = \frac{1}{2} \left(\int |\Delta v|^2 - c \int |\nabla v|^2 \right) - b \int G(x, v) \leq \\ \leq \frac{1}{2} \left(\int |\Delta v|^2 - c \int |\nabla v|^2 \right) - \frac{b}{2} (1 - \varepsilon) \int v^2 \leq \\ \leq \frac{1}{2} \left(\Lambda_i(c) - b(1 - \varepsilon) \right) \int v^2,$$

and so our claim follows ($\| \cdot \|_{L^2}$ and $\| \cdot \|_{L^{\infty}}$ are equivalent, since dim $H_i < +\infty$). \Box

Lemma 2.5. Let $h \ge 1$. Set:

(2.6)
$$\beta_{h+1}(c) = \max\left\{\int (z^+)^2 | z \in H_h^{\perp}, \int |\Delta z|^2 - c \int |\nabla z|^2 = 1\right\}.$$

Then:

$$\beta_{h+1}(c) < \frac{1}{\Lambda_{h+1}(c)}.$$

Proof. It is easy to see that $\beta_{h+1}(c) \leq \frac{1}{\Lambda_{h+1}(c)}$. If $\beta_{h+1}(c) = \frac{1}{\Lambda_{h+1}(c)}$ then there exists a sequence $(z_n)_{n\in\mathbb{N}}$ in H_h^{\perp} such that $\int |\Delta z_n|^2 - c \int |\nabla z_n|^2 = 1$ and $\lim_n \int (z_n^+)^2 = \frac{1}{\Lambda_{h+1}(c)}$. We point out that $||z||_H^2$ and $\int |\Delta z|^2 - c \int |\nabla z|^2$ are equivalent norms in H_h^{\perp} , since $c < \lambda_{h+1}$. So, up to a subsequence, we have $\lim_n z_n = z$ in $L^2(\Omega)$, so that $\int (z^+)^2 = \frac{1}{\Lambda_{h+1}(c)}$ and then $z \neq 0$. Moreover, since $z \in H_h^{\perp} \setminus \{0\}$ and $\int |\Delta z|^2 - c \int |\nabla z|^2 \leq 1$, we have $0 \leq \int (z^+)^2 + \int (z^-)^2 \leq \frac{1}{\Lambda_{h+1}(c)}$; so $z^- = 0$. On the other hand we have $\int ze_1 = 0$, which implies $z^- \neq 0$. Then a contradiction arises. \Box

Lemma 2.7. Set

(2.8)
$$\lambda^* = \sup \left\{ \lambda \ge \lambda_1 \mid \exists e^* \in H_2 \setminus \{0\} \text{ s.t. } e^*(x) \le 0 \\ \text{ in } \Omega \text{ and } \int |\Delta e^*|^2 - \lambda \int |\nabla e^*|^2 > 0 \right\}.$$

Then:

$$\lambda_1 < \lambda^* < \lambda_2.$$

Proof. It is easy to see that $\lambda^* < \lambda_2$. To get that $\lambda^* > \lambda_1$, it is enough to prove that:

$$\exists \delta > 0 \text{ s.t. } \forall c \in]\lambda_1, \lambda_1 + \delta[\exists e^* \in H_2, e^* \le 0 \text{ in } \Omega \text{ s.t.}$$
$$\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 > 0.$$

We choose $e^*(x) = se_2(x) - e_1(x)$ with $s \in \mathbb{R}$ and we take *s* so small that e^* is negative in Ω and *c* so close to λ_1 that:

$$\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 = s^2 \Lambda_2(c) - \Lambda_1(c) > 0.$$

r statement. \Box

That proves our statement.

Lemma 2.9. Assume (G) and $(G_{-\infty})$ (see (1.11)). Let $\lambda_1 \leq c < \lambda^*$ (see (2.8)) and $0 < b < \frac{1}{\beta_{h+1}(c)}$ (see (2.6)) for some $h \geq 2$. Then there exist $e^* \in H_h \setminus \{0\}$ and $R_0 > 0$ such that for any $R \geq R_0$:

$$\inf \left\{ f_{bc}(z) \mid z = w + \sigma e^*, \ w \in H_h^{\perp}, \ \sigma \ge 0, \\ \int |\Delta z|^2 - c \int |\nabla z|^2 = R^2 \right\} > 0$$

Proof. Since $c < \lambda^*$ by Lemma 2.7 there exists $e^* \in H_2 \subset H_h$, $e^* \leq 0$ in Ω such that:

(2.10)
$$\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 > 0.$$

Now by Lemma 2.1, we get for any $w \in H_h^{\perp}$ and $\sigma \ge 0$, because of the negativity of e^* :

$$\begin{split} f_{bc}(w+\sigma e^*) &\geq \frac{1}{2} \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) + \\ &+ \frac{1}{2} \sigma^2 \left(\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 \right) - \\ &- \frac{b}{2} \int \left((w+\sigma e^*)^+ \right)^2 - \varepsilon \int w^2 - \varepsilon \sigma^2 - h \geq \\ &\geq \frac{1}{2} \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) + \\ &+ \frac{1}{2} \sigma^2 \left(\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 \right) - \\ &- \frac{b}{2} \int (w^+)^2 - \varepsilon \int w^2 - \varepsilon \sigma^2 - h \geq \\ &\geq \frac{1}{2} \left(1 - b\beta_{h+1}(c) - \frac{2\varepsilon}{\Lambda_{h+1}(c)} \right) \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) + \\ &+ \frac{1}{2} \sigma^2 \left(\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 - 2\varepsilon \right) - h. \end{split}$$

Thus the claim follows, since in virtue of (2.10) $||w + \sigma e^*||_H^2$ and

$$\int |\Delta w|^2 - c \int |\nabla w|^2 + \sigma^2 \Big(\int |\Delta e^*|^2 - c \int |\nabla e^*|^2 \Big)$$

are equivalent norms in the space span $(e^*) \oplus H_h^{\perp}$. \Box

The following remark will be useful in the proof of Theorem 3.5.

Remark 2.11. Assume (*G*) and (*G*_{-∞}) (see (1.11)). Let $\lambda_1 \leq c < \lambda^*$ (see (2.8)) and $0 < b < \frac{1}{\beta_{h+1}(c)}$ (see (2.6)) for some $h \geq 2$. Then there exists $R_0 > 0$ such that for any $R \geq R_0$:

$$\inf \left\{ f_{bc}(z) \mid z = w + \sigma e_{h+1}, \ w \in H_{h+1}^{\perp}, \ \sigma \ge 0, \\ \int |\Delta z|^2 - c \int |\nabla z|^2 = R^2 \right\} > 0.$$

Theorem 2.12. Assume (g) (see (1.3)), (1.11) and (1.6). If $\lambda_1 \leq c < \lambda^*$ (see (2.8)) and $b > \Lambda_2(c)$, then the functional f_{bc} has at least two different critical values.

Proof. By Lemmas 2.9, 2.2 and 2.3 it follows that, if $\Lambda_i(c) < b \leq \Lambda_{i+1}(c) < \frac{1}{\beta_{i+1}(c)}$ (see (2.6)) for $i \geq 2$, there exist $e^* \in H_2 \setminus \{0\}$ and $R > \rho > 0$ such that:

$$\inf_{z \in \Sigma_R(e^*, H_i^{\perp})} f_{bc}(z) > \sup_{v \in H_i \atop \|v\|_I _2 = \rho} f_{bc}(v),$$

where $\Sigma_R(e^*, H_i^{\perp})$ is the boundary of the set $\{z = w + \sigma e^* \mid w \in H_i^{\perp}, \sigma \geq 0, \int |\Delta z|^2 - c \int |\nabla z|^2 \leq R^2 \}$ in span $(e^*) \oplus H_i^{\perp}$. The claim follows by the variational statement 5.2.

3. Two non trivial solutions when *c* is close to λ_1 and $b \ge \Lambda_2(c)$.

Now we build another linking for the functional $f_{b,c}$ in such a way as to use the "linking scale" Theorem 5.3.

Lemma 3.1. *Let* $k \ge 1$ *. Set:*

$$l_k(b,c) = \inf_{w \in H_k^{\perp}} f_{bc}(w).$$

Assume (G) and $(G_{-\infty})$ (see (1.11)). Then:

(i)
$$0 \le b < \frac{1}{\beta_{k+1}(c)} \implies l_k(b,c) > -\infty$$
, where:
 $\beta_{k+1}(c) = \max\left\{ \int (w^+)^2 | w \in H_k^{\perp}, \ \int |\Delta w|^2 - c \int |\nabla w|^2 = 1 \right\} < \frac{1}{\Lambda_{k+1}(c)}$

(see (2.6));

(ii) $0 \le b \le \Lambda_{k+1}(c) \implies l_k(b, c) \ge 0;$ (iii) $\liminf_{b \to \Lambda_{k+1}(c)} l_k(b, c) \ge 0.$

Proof. First of all we denote by $||w||_c^2 = \int |\Delta w|^2 - c \int |\nabla w|^2$. Since $c < \lambda_{k+1}, ||\cdot||_c$ and $||\cdot||_H$ are norms equivalent in the space H_k^{\perp} . (*i*) If $w \in H_k^{\perp}$, by (2.1) we get:

(3.2)
$$f_{bc}(w) \ge \frac{1}{2} \|w\|_{c}^{2} - \frac{b}{2} \int (w^{+})^{2} - \varepsilon \int w^{2} - h \ge \frac{1}{2} (1 - b\beta_{k+1}(c) - \frac{\varepsilon}{\Lambda_{k+1}(c)}) \|w\|_{c}^{2} - h.$$

Then it follows the existence of a minimum point of f_{bc} on H_k^{\perp} , because of the lower semicontinuity of f_{bc} .

(*ii*) If $0 \le b \le \Lambda_{k+1}(c)$ and $w \in H_k^{\perp}$, by (G) we get:

$$f_{bc}(w) = \frac{1}{2} \|w\|_{c}^{2} - b \int G(x, w) \ge$$

$$\ge \frac{1}{2} \|w\|_{c}^{2} - \frac{b}{2} \int w^{2} \ge \frac{1}{2} (1 - \frac{b}{\Lambda_{k+1}(c)}) \|w\|_{c}^{2} \ge 0.$$

(*iii*) If $\lim_{n} b_n = \Lambda_{k+1}(c)$, we show that $\liminf_{n} l_k(b_n, c) \ge 0$. In (*i*) we have shown the existence of $w_n \in H_k^{\perp}$ such that:

(3.3)
$$\frac{1}{2} \|w_n\|_c^2 - b_n \int G(x, w_n) = l_k(b_n, c) \le \le \frac{1}{2} \|w\|_c^2 - b_n \int G(x, w), \quad \forall w \in H_k^{\perp}.$$

Arguing by contradiction, we suppose $\lim_{n} ||w_{n}||_{c} = +\infty$. Up a subsequence, we have $\lim_{n} \frac{w_{n}}{||w_{n}||_{c}} = w$ weakly in *H*, strongly in $L^{2}(\Omega)$ and a.e. in Ω , with $||w||_{c} \leq 1$. Now we observe that by (2.1) we get:

$$l_{k}(b_{n}, c) \geq \frac{1}{2} \|w_{n}\|_{c}^{2} - \frac{b_{n}}{2} \int (w_{n}^{+})^{2} - b_{n} \int_{\{x \in \Omega: w_{n}(x) \leq 0\}} G(x, w_{n})$$

As a result by this fact and by (3.3) it follows:

$$0 \ge \limsup_{n} \frac{l_{k}(b_{n}, c)}{\|w_{n}\|_{c}^{2}} \ge \liminf_{n} \frac{l_{k}(b_{n}, c)}{\|w_{n}\|_{c}^{2}} \ge \frac{1}{2} \left(1 - \Lambda_{k+1}(c) \int (w^{+})^{2}\right) - \Lambda_{k+1}(c) \limsup_{n} \int_{\{x \in \Omega: w_{n}(x) \le 0\}} \frac{G(x, w_{n})}{\|w_{n}\|_{c}^{2}}.$$

Moreover, by (G) and $(G_{-\infty})$, using Fatou's lemma, we get:

$$\limsup_{n} \int_{\{x \in \Omega: w_n(x) \le 0\}} \frac{G(x, w_n)}{\|w_n\|_c^2} \le 0;$$

then $1 - \Lambda_{k+1}(c) \int (w^+)^2 \le 0$.

By (2.5) a contradiction arises, since $\int (w^+)^2 \leq \beta_{k+1}(c) ||w||_c^2 \leq \beta_{k+1}(c)$ and $\beta_{k+1}(c) < \frac{1}{\Lambda_{k+1}(c)}$. Finally, since $(w_n)_{n \in \mathbb{N}}$ is bounded in H, up to a subsequence, we can suppose $\lim_n w_n = w_0$ weakly in H and strongly in $L^2(\Omega)$. By (3.3) we deduce:

$$\frac{1}{2} \|w_0\|_c^2 - \Lambda_{k+1}(c) \int G(x, w_0) \le \liminf_n l_k(b_n, c) \le \\ \le \frac{1}{2} \|w\|_c^2 - \Lambda_{k+1}(c) \int G(x, w), \quad \forall w \in H_k^{\perp},$$

then by (ii):

$$\liminf_{n} l_{k}(b_{n}, c) \geq l_{k}(\Lambda_{k+1}(c), c) = \frac{1}{2} \|w_{0}\|_{c}^{2} - \Lambda_{k+1}(c) \int G(x, w_{0}) \geq 0. \qquad \Box$$

Lemma 3.4. *Let* $k \ge 1$ *. Set:*

$$m_k(b,c;\rho) = \sup_{\substack{v \in H_k \\ \|v\|_{L^2} = \rho}} f_{bc}(v).$$

Assume (G_0) (see (1.11)). Then:

$$\limsup_{\rho\to 0}\frac{m_k(b,c;\rho)}{\rho^2}\leq \frac{1}{2}\big(\Lambda_k(c)-b\big).$$

Proof. By (2.4) it follows that for any $\varepsilon > 0$ and for ρ small enough:

$$\frac{m_k(b,c;\rho)}{\rho^2} \leq \frac{1}{2} \big(\Lambda_k(c) - b + \varepsilon b \big).$$

Then the claim follows. \Box

Theorem 3.5. Assume (g) (see (1.3)), (1.11) and (1.6). Let $\lambda_1 \leq c < \lambda^*$ (see (2.8)). For any $\lambda_i > \lambda_2$ there exists $\varepsilon > 0$ such that for any $b \in]\Lambda_i(c)$, $\Lambda_i(c) + \varepsilon[$ the functional f_{bc} has at least three different critical values. *Proof.* Let $\lambda_1 \leq c < \lambda^* < \lambda_2 \leq \cdots \leq \lambda_k < \lambda_{k+1} = \cdots = \lambda_i < \lambda_{i+1}$. First of all since $c < \lambda_i < \lambda_{iH}$ and $\Lambda_{k+1}(c) = \Lambda_i(c) < b < \frac{1}{\beta_i(c)}$ by Lemmas 2.2, 2.3 and Remark 2.11 (where index h + 1 is replaced by i) it follows that there exist $R_i > \rho_i > 0$ such that:

(3.6)
$$\inf_{z \in \Sigma_{R_i}(e_i, H_i^{\perp})} f_{bc}(z) > \sup_{\substack{v \in H_i \\ \|v\|_{I_2} = \rho_i}} f_{bc}(v),$$

where: $\Sigma_{R_i}(e_i, H_i^{\perp}) = \{ w \in H_i^{\perp} \mid \int |\Delta w|^2 - c \int |\nabla w|^2 \leq R_i^2 \} \cup \{ z = w + \sigma e_i \mid w \in H_i^{\perp}, \sigma \geq 0, \int |\Delta z|^2 - c \int |\nabla z|^2 = R_i^2 \}.$ Secondly by Lemmas 3.1 and 3.4 it follows that there exists $\varepsilon > 0$ such that for any $b \in [\Lambda_{k+1}(c), \Lambda_{k+1}(c) + \varepsilon]$ there exists $\rho_k > 0$ such that:

(3.7)
$$\inf_{w \in H_k^{\perp}} f_{bc}(w) = l_k(b, c) > m_k(b, c; \rho_k) = \sup_{\substack{v \in H_i \\ \|v\|_{I^2} = \rho_i}} f_{bc}(v).$$

Finally since $c < c^*$ and $0 < b < \frac{1}{\beta_{k+1}(c)}$ by Lemma 2.9 it follows that there exist $e^* \in H_k \setminus \{0\}$ and $R_k > \max\{R_i, \rho_k\}$ such that:

(3.8)
$$\inf_{z \in \Sigma_{R_k}(e^*, H_k^{\perp})} f_{bc}(z) > \sup_{\substack{v \in H_i \\ \|v\|_{r,2} = \rho_i}} f_{bc}(v).$$

where: $\Sigma_{R_k}(e^*, H_k^{\perp}) = \{ w \in H_k^{\perp} \mid \int |\Delta w|^2 - c \int |\nabla w|^2 \leq R_k^2 \} \cup \{ z = w + \sigma e^* \mid w \in H_k^{\perp}, \sigma \geq 0, \int |\Delta z|^2 - c \int |\nabla z|^2 = R_k^2 \}$. By (3.6), (3.7) and (3.8) using Theorem 5.3, we get the claim. \Box

4. A non trivial solution when $c > \lambda_1$ and $b \leq \Lambda_1(c)$.

By the Mountain Pass Theorem we are able to prove that in this case the functional $f_{b,c}$ has a strictly positive critical value. We start with some technical lemmas.

Lemma 4.1. Assume (G) and (G₀) (see (1.11)). Let $b \le 0$. Then for any $\varepsilon > 0$ there exists a function $\theta : H \longrightarrow \mathbb{R}$ such that:

$$f_{b,c}(u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - \frac{b}{2} (1-\varepsilon) \int u^2 - ||u||_H u^2 \theta(u) \quad \text{with} \quad \lim_{u \to 0} \theta(u) = 0.$$

Proof. First of all, (G_0) implies that for any $\varepsilon > 0$ there exists $\rho > 0$ s.t. if $|s| \le \rho$ then $2G(x, s) \ge (1 - \varepsilon)s^2$ a.e. in Ω . Then we can compute:

(4.2)
$$f_{b,c}(u) = \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \le \rho\}} G(x, u) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) - b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) \ge \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\Delta u|^2 - c \int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int_{\{x \in \Omega: |u(x)| \ge \rho\}} G(x, u) = \frac{1}{2} \left(\int |\nabla u|^2 \right) + b \int$$

$$-\frac{b}{2}(1-\varepsilon)\int u^2 + \frac{b}{2}\int_{\{x\in\Omega:|u(x)|\ge\rho\}} \left(-2G(x,u) + (1-\varepsilon)u^2\right) \ge$$
$$\ge \frac{1}{2}\left(\int |\Delta u|^2 - c\int |\nabla u|^2\right) - \frac{b}{2}(1-\varepsilon)\int u^2 + \frac{b}{2}\int_{\{x\in\Omega:|u(x)|\ge\rho\}} u^2$$

because of (G). On the other hand using Hölder inequality we get:

(4.3)
$$\int_{\{x \in \Omega: |u(x)| \ge \rho\}} u^2 \le S \|u\|_H u^2 (\max\{x \in \Omega: |u(x)| \ge \rho\})^p,$$

for some positive constants *S* and *p*. By (4.2) and (4.3) the claim follows. \Box **Lemma 4.4.** Assume (G) and (G₀) (see (1.11)). If $\lambda_k \leq c < \lambda_{k+1}$ for $k \geq 1$ and $b < \Lambda_1(c)$ then there exists $\rho > 0$ such that:

$$\inf_{u\in\gamma_{\rho}(H)}f_{b,c}(u)>0,$$

where:

(4.5) $\gamma_{\rho}(H) = \left\{ u = v + w \in H_k \oplus H_k^{\perp} \mid \int v^2 + \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) = \rho^2 \right\},$

is homeomorphic to a sphere.

Proof. Let u = v + w with $v \in H_k$ and $w \in H_k^{\perp}$. By Lemma 4.1, since b < 0, we get:

$$\begin{split} f_{b,c}(v+w) &\geq \frac{1}{2} \Big(\int |\Delta v|^2 - c \int |\nabla v|^2 \Big) + \frac{1}{2} \Big(\int |\Delta w|^2 - c \int |\nabla w|^2 \Big) - \\ &- \frac{b}{2} (1-\varepsilon) \int v^2 - \frac{b}{2} (1-\varepsilon) \int w^2 - (\|v\|_H^2 + \|w\|_H^2) \theta(v+w) \geq \\ &\geq \frac{1}{2} \big(\Lambda_1(c) - b(1-\varepsilon) - a\theta(v+w) \big) \int v^2 + \frac{1}{2} \big(1 - a\theta(v+w) \big) \cdot \\ &\cdot \Big(\int |\Delta w|^2 - c \int |\nabla w|^2 \Big), \end{split}$$

where *a* is a positive constant. Now we point out that if $||v + w||_h^2$ and $\int v^2 + \left(\int |\Delta w|^2 - c \int |\nabla w|^2\right)$ are equivalent norms on the space *H*. Thus the claim follows, if $\rho > 0$ is small enough. \Box

Lemma 4.6. Assume (G) and $(G_{-\infty})$ (see (1.11)). If $\lambda_1 < c$ and b < 0 then: $\lim_{s \to +\infty} f_{b,c}(-se_1) = -\infty.$

266

Proof. We have:

$$f_{b,c}(-se_1) = s^2 \left(\Lambda_1(c) - b \int \frac{G(x, -se_1)}{s^2} \right);$$

moreover by (*G*) and ($G_{-\infty}$) we easily get:

$$\lim_{s \to +\infty} \int \frac{G(x, -se_1)}{s^2} = 0$$

and so the claim follows. \Box

Theorem 4.7. Assume (g) (see (1.3)), (1.11) and (1.6). Let $\lambda_1 < c$ and $b < \Lambda_1(c)$.

Then the functional $f_{b,c}$ has at least two different critical values.

Proof. Let $\lambda_1 < \cdots \leq \lambda_k \leq c < \lambda_{k+1}$ for some $1 \leq k$. Firstly, since $b < \Lambda_1(c)$, by Lemma 4.4 there exists a set:

$$\Gamma_{\rho}(H) = \left\{ v + w \in H_k \oplus H_k^{\perp} \mid \int v^2 + \left(\int |\Delta w|^2 - c \int |\nabla w|^2 \right) \le \rho \right\},$$

homeomorphic to a ball in H, whose boundary is the set $\gamma_{\rho}(H)$ (see (4.5)), such that:

(4.8)
$$\inf_{u\in\gamma_{\rho}(H)}f_{b,c}(u)>0.$$

Moreover (*G*) implies $f_{b,c}(0) = 0$, with $0 \in \Gamma_{\rho}(H)$. Finally Lemma 4.6 ensures the existence of $s^* > 0$ such that $-s^*e_1 \notin \Gamma_{\rho}(H)$ and $f_{b,c}(-s^*e_1) < 0$. Thus the classical mountain pass theorem (see [3]) claims the existence of a critical value c_1 of $f_{b,c}$ such that:

$$c_1 \geq \inf_{u \in \gamma_{\rho}(H)} f_{b,c}(u) > 0.$$

It is evident that the trivial solution is the minimum of the functional $f_{b,c}$ on the set $\Gamma_{\rho}(H)$.

5. Variational setting.

In this section we recall two theorems (see [6], [7], [11] and [12]) of existence of critical points for a functional, which have been used in the previous sections.

Definition 5.1. *Let X* be an Hilbert space, $Y \subset X$, $\rho > 0$ and $e \in X \setminus Y$, $e \neq 0$. *Set:*

$$B_{\rho}(Y) = \{x \in Y \mid ||x||_{X} \leq \rho\},\$$

$$S_{\rho}(Y) = \{x \in Y \mid ||x||_{X} = \rho\},\$$

$$\Delta_{\rho}(e, Y) = \{\sigma e + v \mid \sigma \geq 0, v \in Y, ||\sigma e + v||_{X} \leq \rho\},\$$

$$\Sigma_{\rho}(e, Y) = \{\sigma e + v \mid \sigma \geq 0, v \in Y, ||\sigma e + v||_{X} = \rho\}\cup\$$

$$\cup \{v \mid v \in Y, ||v||_{X} \leq \rho\}.$$

First of all we recall a theorem of existence of two critical levels for a functional which is a variation of linking theorem (see Theorem 3.4 of [6] and [12]).

Theorem 5.2 ("a variation of linking"). Let X be an Hilbert space, which is topological direct sum of the subspaces X_1 and X_2 . Let $F \in C^1(X, \mathbb{R})$. Moreover assume:

- (a) dim $X_1 < +\infty$;
- (b) there exist $\rho > 0$, R > 0 and $e \in X_1$, $e \neq 0$ such that $\rho < R$ and $\sup_{S_{\rho}(X_1)} F < \inf_{\Sigma_R(e,X_2)} F$;
- (c) $-\infty < a = \inf_{\Delta_R(e,X_2)} F;$
- (d) (P.S.)_c holds for any $c \in [a, b]$, where $b = \sup_{B_{\rho}(X_1)} F$.

Then there exist at least two critical levels c_1 and c_2 for the functional F such that:

$$\inf_{\Delta_R(e,X_2)} F \le c_1 \le \sup_{S_{\rho}(X_1)} F < \inf_{\Sigma_R(e,X_2)} F \le c_2 \le \sup_{B_{\rho}(X_1)} F.$$

Finally we recall a theorem of existence of three critical levels for a functional (see Theorem 8.4 of [7]).

Theorem 5.3 ("linking scale"). Let X be an Hilbert space, which is topological direct sum of the four subspaces X_0 , X_1 , X_2 and X_3 . Let $F \in C^1(X, \mathbb{R})$. Moreover assume:

- (a) dim $X_i < +\infty$ for i = 0, 1, 2;
- (b) there exist $\rho > 0$, R > 0 and $e \in X_2$, $e \neq 0$ such that:

$$\rho < R \quad and \quad \sup_{S_{\rho}(X_0 \oplus X_1 \oplus X_2)} F < \inf_{\Sigma_R(e,X_3)} F;$$

(c) there exist $\rho' > 0$, R' > 0 and $e' \in X_1$, $e' \neq 0$ such that:

$$\rho' < R'$$
 and $\sup_{S'_{\rho}(X_0 \oplus X_1)} F < \inf_{\Sigma'_{R}(e', X_2 \oplus X_3)} F;$

 $\begin{array}{ll} (d) & R \leq R' & \Big(\Longrightarrow & \Delta_R(e, X_3) \subset \Sigma'_R(e', X_2 \oplus X_3) \Big); \\ (e) & -\infty < a = \inf_{\Delta'_R(e, X_2 \oplus X_3)} F; \\ (f) & (P.S.)_c \ holds \ for \ any \ c \in [a, b], \ where \ b = \sup_{B_\rho(X_0 \oplus X_1 \oplus X_2)} F. \end{array}$

Then there exist three critical levels c_1 , c_2 and c_3 for the functional F such that:

$$a \le c_3 \le \sup_{\substack{S'_{\rho}(X_0 \oplus X_1)}} F < \inf_{\substack{\Sigma'_{R}(e', X_2 \oplus X_3)}} F \le$$
$$\le \inf_{\Delta_{R}(e, X_3)} F \le c_2 \le \sup_{\substack{S_{\rho}(X_0 \oplus X_1 \oplus X_2)}} F < \inf_{\sum_{R}(e, X_3)} F \le c_1 \le b.$$

6. An uniqueness result when $c = \lambda_1$ and b < 0.

We will prove the following uniqueness result.

Proposition 6.1. Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be such that:

(6.2)
$$\begin{cases} (i) & g \text{ is Lipschitz, is } C^1 \text{ except at a point } s_0 \text{ with } g(s_0) \neq 0 \\ & and \ g(0) = 0; \\ (ii) & g'(s) \ge 0 \ \forall s \in \mathbb{R} \setminus \{s_0\} \text{ and } g'(0) \neq 0. \end{cases}$$

Moreover assume:

(6.3)
$$\begin{cases} (iii) \quad |g(s)| \le a_0 + b_0|s|, \forall s \in \mathbb{R}, with a_0, b_0 \in \mathbb{R}; \\ (iv) \quad \lim_{s \to +\infty} \frac{g(s)}{s} = 1; \\ (v) \quad 2G(s) - g(s)s \ge \alpha_0 s^- - \alpha_1 \,\forall s \in \mathbb{R}, with \alpha_0, \alpha_1 \in \mathbb{R}^+; \\ (vi) \quad G(s) \ge 0 \,\forall s \in \mathbb{R}. \end{cases}$$

If $c = \lambda_1$ and b < 0, then the functional f_{b,λ_1} has an unique trivial critical point, which is a local minimum point, so the problem (1.1) has only the trivial solution.

Proof. First of all by (vi) of (6.3) we have $f_{b,\lambda_1}(0) = 0$ and $f_{b,\lambda_1}(u) \ge 0$ $\forall u \in H$.

Secondly we remark that critical points of $f_{b,\lambda_1}(u)$ are isolated. In fact if u_0 is a critical point of f_{b,λ_1} by (*iii*) of (6.3) using standard regularity results we have that $u_0 \in C_0(\Omega)$. Thus by (6.2)

(6.4)
$$f_{b,\lambda_1}''(u_0)(v)^2 = \int (\Delta v)^2 - \lambda_1 \int |\nabla v|^2 - b \int g'(u_0)v^2 \ge 0 \quad \forall v \in H.$$

If $f_{b,\lambda_1}''(u_0)(v)^2 = 0$ then by (6.4) and (*ii*) of (6.2) we get $\int (\Delta v)^2 - \lambda_1 \int |\nabla v|^2 = 0$, which implies $v = \sigma e_1$ for $\sigma \in \mathbb{R}$ and $\int g'(u_0)e_1^2 = 0$, which implies $g'(u_0) = 0$ in Ω . A contradiction arises since $u_0(x) = 0$ on $\partial \Omega$ and (6.2) holds. Then we have $f_{b,\lambda_1}''(u_0)(v)^2 > 0 \quad \forall v \in H \setminus \{0\}$. Therefore critical points of f_{b,λ_1} are isolated, since any critical point of f_{b,λ_1} is a strict local minimum point.

Finally if the functional f_{b,λ_1} has two different critical points, they are two local minima points. So by (*i*) of (6.2) and (6.3) using Theorem 6.5.3, page 354, of [2] we state the existence of a third critical point which is not a minimum point and a contradiction arises.

REFERENCES

- [1] A. Ambrosetti P. Rabinowitz, *Dual variational methods in critical point theory and applications*, Journ. Funct. Anal., 14 (1973), pp. 349-381.
- [2] M.S. Berger, Nonlinearity and functional analysis, Academic Press, 1977.
- [3] J. Ekeland R. Temam, *Convex analysis and variational problems*, North Holland Publishing Company, 1976.
- [4] A.C. Lazer P.J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Review, 32 (1990), pp. 537-578.
- [5] A.C. Lazer P.J. McKenna, Global bifurcation and a Theorem of Tarantello, Journ. Math. Anal. Appl., 181 (1994), pp. 648-655.
- [6] A. Marino A.M. Micheletti A. Pistoia, Some variational results on semilinear problems with asymptotically nonsimmetric behavior, Nonlinear Analysis " A tribute in honor of G. Prodi", S.N.S. Pisa, (1991), pp. 243-256.
- [7] A. Marino A.M. Micheletti A. Pistoia, *A non symmetric asymptotically linear elliptic problem*, Topol. Meth. Nonlin. Anal., 4 (1994), pp. 289-339.

- [8] P.J. McKenna W. Walter, *Nonlinear oscillations in a suspension bridge*, Arch. Ration. Mech. Anal., 98 (1987), pp. 167-177.
- [9] P.J. McKenna W. Walter, *Traveling waves in a suspension bridge*, SIAM J. Appl. Math., 50 (1990), pp. 703-715.
- [10] A.M. Micheletti A. Pistoia, *Multiplicity results for a fourth-order semilinear elliptic problem*, to appear on Nonlinear Analysis T.M.A.
- [11] A.M. Micheletti A. Pistoia, *Non trivial solutions for some fourth-order semilinear elliptic problems*, to appear on Nonlinear Analysis T.M.A.
- [12] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 65, Amer. Math. Soc. Providence, R.I., 1986.
- [13] M. Schechter K. Tintarev, *Pairs of critical points produced by linking subsets with application to semilinear elliptic problems*, Bull. Soc. Math. Belg.,44 (3) B (1992), pp. 249-261.
- [14] G. Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat., 5 (1992), pp. 561-565.

Dipartimento di Matematica Applicata "Ulisse Dini", Facoltà di Ingegneria, Via Bonanno 25, 56100 Pisa (ITALY) e-mail: pistoia@dm.unipi.it