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ESTIMATING THE RESOLVENT OF ELLIPTIC

SECOND-ORDER PARTIAL DIFFERENTIAL OPERATORS

DIMITRI MUGNAI - GIORGIO TALENTI

A Franco Guglielmino con affetto

Sharp estimates for the resolvent of a linear elliptic second-order partial
differential operator under Dirichlet homogeneous boundary conditions are
derived via a symmetrization technique.

1. Introduction.

In this paper we are concerned with partial differential equations having
either of the following forms

(1) −

n�

i, j=1

∂

∂xi
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We suppose the coef�cients and the right-hand side are real-valued measurable
functions de�ned in an open subsetG of Rn . We suppose λ is a positiveconstant
parameter and the equations are uniformly elliptic, that is

(3)

n�

i, j=1

ai j (x )ξiξj ≥

n�

i=1

ξ2i for all x ∈G and for all ξ ∈ R
n

and

(4) ai j ∈ L∞(G).

Moreover, either

(5)

��

G

� n�

i=1

b2i

�k/2
dx

�1/k

≤ B

or

(6) ess sup
� n�

i=1

b2i

�1/2
≤ B,

and

(7) c ∈ Ln/2(G) and c(x ) ≥ 0 for all x ∈G,

(8) f ∈ L p(G).

Here B is some nonnegative constant, n < k < ∞, and p =
2n

n + 2
or p > 1

according to whether n > 2 or n = 2.
We are interested in Dirichlet problems with zero boundary data; thus we

look for functions u which satisfy either equation (1) or (2) and obey

(9) u = 0 on the boundary ∂G of G .

We deal with weak solutions belonging to Sobolev space W 1,2
0 (G).

The present paper parallels earlier ones where estimates for solutions to
boundary value problem for elliptic second-order partial differential equations
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in divergence form are obtained via inspection of level sets, isoperimetric in-
equality and rearrangements of functions. See for instance Alvino-Diaz-Lions-
Trombetti [2], Alvino-Ferone-Kawohl-Trombetti [3], Alvino-Lions-Trombetti
[4], [5], Alvino-Matarasso-Trombetti [6], Alvino-Trombetti [7], [8], Bandle [9],
[10], Chiti [13], [12], Diaz [14], [15], [16], Maderna [18], Maderna-Pagani-
Salsa [19], Maderna-Salsa [20], [21], [22], Pacella-Tricarico [24], Talenti [25],
[27], [28], Trombetti-Vazquez [31], Weinberger [33] and the references quoted
in [28].

It is closely related to [2], [4], [5], [6], [7], [8], [15], [25], [27] and [31].
We provide some variants and re�nements. Comparison results for solutions to
both problems (1)�(9) and (2)�(9) are established. Estimates are obtained as a
corollary, where the dependence upon parameter λ is explicitly displayed. In
other words, we obtain estimates of the resolvent operator � the main goal of
this paper.

2. Notations.

R
n n-dimensional euclidean space

G open subset of R
n

∂G boundary of G

Lp(G) Lebesgue space

W 1,2(G) Sobolev space

W 1,2
0 (G) closure of C∞

0 (G) in W
1,2(G)

|G| n-dimensional measure of G

G� ball centered at the origin having the same measure as G

µu distribution function of u

u∗ decreasing rearrangement of u

u� symmetric rerrangement of u

Cn measure of the n-dimensional unit ball

κn isoperimetric constant

Recall that µu is de�ned by

µu(t) = |{x ∈G : |u(x )| > t}|,

u∗ is the right-continuous decreasing function from [0, +∞) into [0, +∞]
equidistributed with u, and u� is the function from R

n into [0, +∞] de�ned
by u�(x ) = u∗(Cn |x |n).
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Finally recall

κn =
1

nC
1/n
n

,

the smallest constant which makes the following isoperimetric inequality

(measure of E )1−1/n ≤ κn(perimeter of E )

true for every measurable subset E of R
n having �nite measure.

For the properties of the objects de�ned above see [17], [25], [26], [27] and
[30].

3. Main results.

Theorem 1. Let u belong to W 1,2
0 (G) and satisfy equation (1). Suppose (5)

holds. Then a measurable function g from [0, +∞) into [0, +∞] exists such
that

(10)
�
nCn

� nκn |G|1/n

0

g(r)krn−1dr
�1/k

≤ B,

and the solution w belonging to W 1,2
0 (G�) to the following problem

(11)






−�w −
∂F

∂�
(�, �)

n�

i=1

∂

∂xi

�
xi

|x |
g(|x |)w

�

+

+
∂F

∂�
(�, �)

�
λw − f �(|x |)

�
= 0 in G�

w = 0 on ∂G�,

satis�es

(12)

� s

0

u∗(t) dt ≤

� s

0

w∗(t) dt

for every s such that 0 ≤ s ≤ |G|.
Here

� = |x |n−1g(|x |)w(x ),

� = −λ

� Cn |x|
n

0

w∗(t) dt +

� Cn |x|
n

0

f ∗(t) dt,

F (�, �) = max{�/2, � + �}.
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Theorem 2. Let u be as in Theorem 1. Suppose that (6) holds; then the solution
w of the following problem

(13)






−�w − B
∂F

∂�
(�, �)

n�

i=1

∂

∂xi

�
xi

|x |
w

�

+

+
∂F

∂�
(�, �)

�
λw − f �(|x |)

�
= 0 in G�

w = 0 on ∂G�,

satis�es (12) for every s such that 0 ≤ s ≤ |G|.
Here

� = B|x |n−1w(x )

and � is as in Theorem 1, as well as F .

Theorem 3. Let u belong to W 1,2
0 (G) and satisfy equation (2). Suppose that

(5) holds and g is as in Theorem 1. Then the following problem

(14)






−�w +

n�

i=1

g(|x |)
xi

|x |

∂w

∂xi
+ λw = f � in G�

w = 0 on ∂G�,

has a solution in W 1,2
0 (G�); such solution satis�es

� s

0

exp
�
−

� nκn t
1/n

0

g(r) dr
�
u∗(t) dt ≤(15)

≤

� s

0

exp
�
−

� nκn t
1/n

0

g(r) dr
�
w∗(t) dt

for every s such that 0 ≤ s ≤ |G|.

Theorem 4. Let u be as in Theorem 3, and suppose that (6) holds; then the
following problem

(16)






−�w + B

n�

i=1

xi

|x |

∂w

∂xi
+ λw = f � in G�

w = 0 on ∂G�,

has a solution in W 1,2
0 (G�), and such solution satis�es

(17)

� s

0

exp
�
−nκn Bt

1/n
�
u∗(t) dt ≤

� s

0

exp
�
−nκn Bt

1/n
�
w∗(t) dt

for every s such that 0 ≤ s ≤ |G|.
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Theorem 1 is demonstrated in Section 5. Theorem 2 can be proved quite in
the same way as Theorem 1. Theorem 3 is a relative of Theorem 4, in the same
way as Theorem 1 is a relative of Theorem 2. Theorem 3 can be proved by the
same arguments involved in Theorem 1 plus Gronwall�s Lemma. Theorem 4 is
a special case of [4], Theorem 1. The proofs of Theorems 2, 3 and 4 will be
omitted.

4. Some applications.

Theorem 5. Consider the problem made up by equation (2) and boundary
condition (9) under hypotheses (3), (4), (6), (7) and (8). Assume |G| < +∞
and p > n/2. Then its weak solution obeys

(18) ess sup |u| ≤ D� f �L p(G).

Constant D is de�ned as follows:

a =
n − 1

2

�
1−

B
√
B2 + 4λ

�
,

b = nκn|G|1/n
�
B2 + 4λ,

I(y) = exp
��1

2
−

B
√
B2 + 4λ

�
y
�
×

×
�
U (a, n − 1, y)−

U (a, n − 1, b)

M(a, n − 1, b)
M(a, n − 1, y)

�
,

p� =
p

p − 1
,

(19) D =
�(a)(B2 + 4λ)n/(2p)−1

n1/pC
1/p
n (n − 2)!

�� b

0

I(y)p
�

yn−1dy

�1/p�

.

Here U and M are Kummer�s functions. D is the smallest constant that
makes (18) true under the assumptions above.
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Proof. The very de�nition of u∗ gives

(20) ess sup |u| = u∗(0),

and inequality (17) gives

(21) u∗(0) ≤ w∗(0).

Observe that the solution w to problem (16) is radially symmetric and radially
decreasing, in other words

w(x ) = w∗(Cn |x |n).

Therefore (16) reads:

(22)






−
d2w

d|x |2
−
�n − 1

|x |
− B

� dw

d|x |
+ λw = f ∗(Cn |x |n),

w(x ) = 0 if |x | = nκn|G|1/n.

Two linearly independent solutions of the homogeneous equation

d2w

dr2
−
�n − 1

r
− B

�dw

dr
+ λw = 0,

whose wronskian is −
(n − 2)!

�(a)
β2−nr1−ne(β−2α)r , are

w1(r) = e−αr M(a, n − 1, βr) and w2(r) = e−αrU (a, n − 1, βr).

Here

α =
−B +

√
B2 + 4λ

2
and β =

�
B2 + 4λ.

Recall that M(a, c, z) and U (a, c, z) are the solutions of Kummer�s equation

z
d2w

dz2
+ (c − z)

dw

dz
− aw = 0

given by

M(a, c, z) =
�(c)

�(a)

∞�

k=0

�(a + k)

�(c + k)

zk

k!
,
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if c is not a negative integer, and

U (a, c, z) =
π

sinπc

� M(a, c, z)

�(c)�(a + 1− c)
− z1−c M(a + 1− c, 2− c, z)

�(a)�(2− c)

�
.

For more informations see [1] and [23].
The solution to problem (22) such that

�

G�

� dw

d|x |

�2
dx < +∞

is then

(23) w(x ) =
�
a1(|x |)+ A

�
w1(|x |)+ a2(|x |)w2(|x |),

where

a1(r) =
�(a)

(n − 2)!
βn−2

� nκn |G|1/n

r

t n−1e(α−β)tU (a, n − 1, βt) f ∗(Cnt
n) dt,

a2(r) =
�(a)

(n − 2)!
βn−2

� r

0

t n−1e(α−β)t M(a, n − 1, βt) f ∗(Cnt
n) dt,

A = −
�(a)

(n − 2)!
βn−2γ

� nκn |G|1/n

0

t n−1e(α−β)t M(a, n − 1, βt) f ∗(Cnt
n) dt

and

γ =
U (a, n − 1, b)

M(a, n − 1, b)
.

Thus

w(0) =
�(a)

(n − 2)!
βn−2

� nκn |G|1/n

0

t n−1e(α−β)t
�
U (a, n − 1, βt)−

−γ M(a, n − 1, βt)
�
f ∗(Cnt

n) dt .

Hölder inequality and (20) and (21) give (18). �

Theorem 6. Constant D given in Theorem 5 has the following properties:

D

λn/(2p)−1
−→

1

n1/pC
1/p
n 2n/2−1�(n/2)

×(24)

×

�� ∞

0

t (np−2n+2)/2p−2[Kn/2−1(t)]
p�

dt

�1/p�

as λ → +∞;

D = λn/(2p)−1{the r.h.s. of (24)} if |G| = +∞ and B = 0.

Here Kν(z) is the modi�ed Bessel function of second kind and order ν (see,
e.g., [1], [23], [32]).
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Proof. The proof consists of an inspection, based on formula (19) and formula
[1], Chapter 13, Section 13.6, 13.6.21 relating Kummer and Bessel functions.

�

Theorem 7. Let u belong to W 1,2
0 (G) and satisfy (1), let w belong to W 1,2

0 (G�)
and satisfy (11) or (13), according to whether (5) or (6) is in force. Then

(25) �u�Lq (G) ≤ �w�Lq (G�)

for every q larger than or equal to 1.

Proof. Since a function and its decreasing rearrangement are equidistribuited,
(25) follows from (12) and the lemma appearing in [29]. �

Theorem 8. If u and w are as in the previous theorem, m(G) = +∞ and
q > p > 1, then

(26) �u�L(p,q) ≤ �w�L(p,q).

Here L(p, q) stands for Lorentz space. For its de�nition we refer to [34].

Miscellaneous estimates, which easily follow from the previous theorems,
are listed below. (Standard integrals of Bessel functions, and Bliss inequality �
see [11] � are involved.)

• If |G| = +∞, B = 0 and p > n/2, then

�u�L p(G) ≤
1

λ
� f �L p(G).

• If |G| = +∞, B = 0 and q > p > 1, then

�u�L(p,q) ≤
K 1/q

λ
� f �L p(G),

where

K =
p

q(p − 1)

�
�(qp/(q − p))

�(p/(q − p))�(p(q − 1)/(q − p))

�q/p−1

.
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5. Proof of Theorem 1.

We need the following lemmas.

Lemma 1. For every measurable function f and for every measurable set E
we have

(27)

�

E

| f (x )| dx ≤

� |E |

0

f ∗( f ) ds.

Moreover if E equals a level set {x ∈ G : | f (x )| > t} and t is positive, then
equality holds in (27).

Lemma 2. Let u ∈W 1,2
0 (G) and let µ be the distribution function of u. Then

(28) κ2nµ(t)
2/n−2[−µ�(t)]

�
−

d

dt

�

{x∈G:|u(x)|>t}

|∇u|2dx
�

≥ 1,

for almost every t from 0 to ess sup |u|. As usual, ∇ stands for gradient, so that

|∇u|2 =
n�

i=1

u2xi .

Lemma 1 is a special case of Hardy-Littlewood theorem, see [17], The-
orem 378 or [26], Theorem 1.A. Lemma 2 is proved in [25], via Fleming-
Rishel coarea formula and the isoperimetric inequality. An alternative form
of Lemma 2 appears in [26], Lemma 1.E.

Proof of Theorem 1. Suppose u is a weak solution of problem (1) and (9), that
is u ∈W 1,2

0 (G) and

(29)

�

G




n�

i,k=1

aikuxi φxk +

n�

i=1

biuφxi + cuφ



 dx =

�

G

f φ dx

for every test function φ from W 1,2
0 (G). (All the integrals in (29) converge

because of the hypothesis made on the coef�cients, and Sobolev embedding
theorem.)

We proceed as in [27]. We take φ = S ◦ u, where S is the continuous
function de�ned as follows. Let 0 ≤ s < t ; then S(u) = 0 if |u| < s ,
S(u) = signu if |u| > t and S is linear otherwise. Plugging such φ into
(29) then passing to the limit as s ↑ t results in the following inequality

−
d

dt

�

{x∈G:|u(x)|>t}

|∇u|2 dx + λ

�

{x∈G:|u(x)|>t}

|u| dx +(30)



ESTIMATING THE RESOLVENT OF ELLIPTIC. . . 283

− t

�

−
d

dt

�

{x∈G:|u(x)|>t}

n�

1

b2i dx

�1/2�
d

dt

�

{x∈G:|u(x)|>t}

|∇u|2dx

�1/2

≤

≤

�

{x∈G:|u(x)|>t}

| f | dx

for almost every positive t .
We use the following notations:

ξ =
�
−

d

dt

�

{x∈G:|u(x)|>t}

|∇u|2 dx
�1/2

,

ζ =
t

2

�
−

d

dt

�

{x∈G:|u(x)|>t}

n�

i=1

b2i dx
�1/2

and

h =

� µ(t )

0

�
f ∗(r) − λu∗(r)

�
dr.

Inequality (30) and Lemma 1 imply that ξ (ξ − 2ζ ) ≤ h. Hence

ξ ≤ ζ +
�

ζ 2 + h.

If we let d = κnµ(t)
1/n−1

√
−µ�(t), Lemma 2 gives ξ ≥ 1/d , so

(31)
1

d
− ζ ≤

�
ζ 2 + h.

The left-hand side of (31) can be positive or not. In the former case we obtain
1 ≤ 2ζd + hd2. In any case we have

(32) 1 ≤ max
�
ζd, 2ζd + hd2

�
.

Thus we have proved that

1 ≤ max

�
κn

2
t
�

−
d

dt

�

{x∈G:|u(x)|>t}

n�

i=1

b2i dx
�1/2

µ(t)1/n−1
�

−µ�(t) ,(33)

κnt
�

−
d

dt

�

{x∈G:|u(x)|>t}

n�

i=1

b2i dx
�1/2

µ(t)1/n−1
�

−µ�(t)+

+ κ2nµ(t)
2/n−2[−µ�(t)]

� µ(t )

0

�
f ∗(r) − λu∗(r)

�
dr

�
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for almost every t from (0, ess sup |u|).
As shown in [27], the function g de�ned by

(34) g(nκns
1/n) =

�
d

ds

�

{x∈G:|u(x)|>u∗(s)}

n�

1

bi(x )
2 dx

�1/2

is such that

(35)

�

−
d

dt

�

{x∈G:|u(x)|>t}

n�

1

b2i dx

�1/2
=
�

−µ�(t)g
�
nκnµ(t)

1/n
�

for almost every t from (0, ess sup |u|), and

(36)

�

nCn

� nκn |G|1/n

0

g(r)krn−1 dr

�1/k
≤

��

G

� n�

i

bi (x )
2
�k/2

dx

�1/k
.

Thus (33) becomes

1 ≤ [−µ�(t)] max

�
κn

2
tg(nκnµ(t)

1/n)µ(t)1/n−1,(37)

κntg(nκnµ(t)
1/n)µ(t)1/n−1 − λκ2nµ(t)

2/n−2

� µ(t )

0

u∗(r) dr +

+ κ2nµ(t)2/n−2
� µ(t )

0

f ∗(r) dr

�

for almost every t from (0, ess sup |u|).
We claim that

−
du∗

ds
(s) ≤ max

�
κn

2
s1/n−1g(nκns

1/n)u∗(s),(38)

κns
1/n−1g(nκns

1/n)u∗(s)− λκ2n s
2/n−2

� s

0

u∗(r) dr +

+ κ2n s
2/n−2

� s

0

f ∗(r) dr

�

for almost every s from (0, |G|).
Indeed, the very de�nition of u∗ ensures that

u∗ =

� +∞

0

χ
[0,µ(t )]

dt,
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where χ stands for characteristic function. Hence

� |G|

0

u∗(s)φ�(s)ds =

� +∞

0

φ(µ(t))dt

for every φ in C∞
0

�
(0, |G|)

�
; consequently

� |G|

0

φ(s)
�
−
du∗

ds
(s)
�
ds =

� +∞

0

φ(µ(t)) dt,

since u∗ is absolutely continuous (see [27]). Suppose φ ≥ 0. Then

� |G|

0

φ(s)
�
−
du∗

ds
(s)
�
ds ≤

� +∞

0

φ(µ(t)){the braces in (37)}[−µ�(t)] dt ≤

≤

� +∞

0

φ(µ(t)){...}[−dµ(t)] =

� |G|

0

φ(s){the right-hand side of (38)} ds.

Inequality (38) follows, for φ is arbitrary.
If we put

U (s) =

� s

0

u∗(t) dt,

h(s) = κ2n

� s

0

f ∗(t) dt,

F(s, y, t) = max
�κn

2
s1/n−1g(nκns

1/n)t,(39)

κns
1/n−1g(nκns

1/n)t − λκ2n s
2/n−2 y + s2/n−2h(s)

�
,

(38) gives

(40) −U ��(s) ≤ F
�
s,U (s),U �(s)

�

for almost every s belonging to (0, |G|). Observe that U satis�es also

(41) U (0) = 0, U �(|G|) = 0.

Let v be the solution to the following boundary value problem

(42)

�
−v��(s) = F

�
s, v(s), v�(s)

�
,

v(0) = 0, v�(|G|) = 0.
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We want to show that U (s) ≤ v(s) for every s between 0 and |G|.
If we let ω = v −U , we have

�
−ω��(s) ≥ F

�
s, v(s), v�(s)

�
− F

�
s,U (s),U �(s)

�
,

ω(0) = 0, ω�(|G|) = 0.

But F(s, · , ·) is convex, thus

F(s, v, v�)− F(s,U,U �) ≥ FU (s,U,U �)(v −U ) + FU � (s,U,U �)(v� −U �),

where
�
FU (s, · , ·), FU �(s, · , ·)

�
is a subgradient of F . Observe that FU ≤ 0, as

(39) shows.
In other words, ω satis�es

(43)

�
−ω��(s) ≥ −α(s)ω�(s)− β(s)ω(s),

ω(0) = 0, ω�(|G|) = 0,

where β is a nonnegative function.
Let�s show that any suf�ciently smooth solution ω to problem (43) is

nonnegative.
Let us consider the function z de�ned by

z(s) = −ω��(s)+ α(s)ω�(s)+ β(s)ω(s),

which is nonnegative. If y(s) = exp
�
−
� s

0 α(r) dr
�
, ω minimizes the following

functional

J (φ) =

� |G|

0

y{(φ�)2 + βφ2 − 2zφ}ds

in the following function class
�
φ ∈ W 1,2

�
(0, |G|)

�
: φ(0) = φ�(|G|) = 0

�
.

Observe that J is strictly convex, and J (|φ|) ≤ J (φ) for every competing
function φ . Consequently the minimizer is unique and nonnegative. We
conclude that ω is nonnegative, as claimed.

A straightforward inspection shows that (11) and (12) imply
� s

0

w∗(t) dt = v(s)

for every s belonging to [0, |G|].
Theorem 1 is thus completely proved. �
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