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ESTIMATING THE RESOLVENT OF ELLIPTIC
SECOND-ORDER PARTIAL DIFFERENTIAL OPERATORS

DIMITRI MUGNAI - GIORGIO TALENTI

A Franco Guglielmino con affetto

Sharp estimates for the resolvent of a linear elliptic second-order partial
differential operator under Dirichlet homogeneous boundary conditions are
derived via a symmetrization technique.

1. Introduction.

In this paper we are concerned with partial differential equations having
either of the following forms

n

O =3 () = G + (02 = 0,
J i=1 !

2) — Z %(%j()ﬁ%) + Zbi(x)% + (C(x) + A)u = fx).
i Y i=1 !

ij=1
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We suppose the coefficients and the right-hand side are real-valued measurable
functions defined in an open subset G of R”. We suppose A is a positive constant
parameter and the equations are uniformly elliptic, that is

3) > a(0)&E = Y & forall x € G and forall & € R”
i, j=1 i=1

and

C)) a;j € L¥(G).

Moreover, either

" k/2 HE
2
5) (L(;b) dx) <B

or
n )\ 172
(6) ess sup(Z bi) < B,
i=1
and
(7 ce L"*(G)and c(x) > O forall x € G,
) feLP(G).
. . 2n
Here B is some nonnegative constant, n < k < 00, and p = 2 orp>1
n

according to whether n > 2 or n = 2.
We are interested in Dirichlet problems with zero boundary data; thus we
look for functions u# which satisfy either equation (1) or (2) and obey

9 u =0 onthe boundary 0G of G.
We deal with weak solutions belonging to Sobolev space WO1 2(G).

The present paper parallels earlier ones where estimates for solutions to
boundary value problem for elliptic second-order partial differential equations
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in divergence form are obtained via inspection of level sets, isoperimetric in-
equality and rearrangements of functions. See for instance Alvino-Diaz-Lions-
Trombetti [2], Alvino-Ferone-Kawohl-Trombetti [3], Alvino-Lions-Trombetti
[4], [5], Alvino-Matarasso-Trombetti [6], Alvino-Trombetti [7], [8], Bandle [9],
[10], Chiti [13], [12], Diaz [14], [15], [16], Maderna [18], Maderna-Pagani-
Salsa [19], Maderna-Salsa [20], [21], [22], Pacella-Tricarico [24], Talenti [25],
[27], [28], Trombetti-Vazquez [31], Weinberger [33] and the references quoted
in [28].

It is closely related to [2], [4], [5], [6], [7], [8], [15], [25], [27] and [31].
We provide some variants and refinements. Comparison results for solutions to
both problems (1)—(9) and (2)—(9) are established. Estimates are obtained as a
corollary, where the dependence upon parameter A is explicitly displayed. In
other words, we obtain estimates of the resolvent operator — the main goal of
this paper.

2. Notations.

R" n-dimensional euclidean space
G open subset of R"

G boundary of G

LP(G) Lebesgue space

Wl2(G) Sobolev space
W,2(G)  closure of C°(G) in WHA(G)

|G| n-dimensional measure of G

G* ball centered at the origin having the same measure as G
Uy distribution function of u

u* decreasing rearrangement of u

u* symmetric rerrangement of u

C, measure of the n-dimensional unit ball

Kn isoperimetric constant

Recall that p,, is defined by
pu(t) = {x € G+ |u(x)| > t}],
*

u* is the right-continuous decreasing function from [0, +o00) into [0, +00]
equidistributed with u, and u* is the function from R” into [0, +o00] defined
by u*(x) = u*(Cy|x|").
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Finally recall
1
nCy/"’
the smallest constant which makes the following isoperimetric inequality

Ky, =

1-1/n

(measure of E) < K, (perimeter of E)

true for every measurable subset E of R” having finite measure.
For the properties of the objects defined above see [17], [25], [26], [27] and
[30].

3. Main results.

Theorem 1. Let u belong to WO1 ’2(G) and satisfy equation (1). Suppose (5)
holds. Then a measurable function g from [0, +00) into [0, +00] exists such
that

nicy | G|/ 1/k
(10) {nC,,/ g(r)kr"—ldr} < B,
0

and the solution w belonging to WOI’Z(G*) to the following problem

—Aw———@ )}j {—ﬂumﬁ

(11)
+ a—qj(CD, \P)(Aw - f*(|x|)) -0 inG*
w=0 on dG*,
satisfies
(12) fs u*(t)dt < /s w*(t) dt
0 0

for every s such that0 <s < |G]|.
Here

® = [x " g(xhw(x),
Cy x| C, |x|"
w:%/ wmm+/ £,
0 0

F(P, V) = max{P/2, ® + V}.
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Theorem 2. Let u be as in Theorem 1. Suppose that (6) holds; then the solution
w of the following problem

—Aw — B—(<I> W)Z {IXIw} +
(13)
+ —qJ(dD, W)(kw _ f*(|x|)) —0 inG*

w=0 on 3G*,
satisfies (12) for every s such that 0 < s < |G]|.

Here
® = B|x|" 'w(x)

and VV is as in Theorem 1, as well as F .

Theorem 3. Let u belong to WO1 2(G) and satisfy equation (2). Suppose that
(5) holds and g is as in Theorem 1. Then the following problem

—Aw-l‘zg(bcl)ﬁa——l—kw—f in G*

w=20 on G*,

(14)

has a solution in WOI’Z(G*); such solution satisfies

s nic, /"
(15) / exp(—/ g(r)dr)u*(t)dt <
0 0
s nic,t'/"
5] exp(—/ g(r)dr)w*(t)dt
0 0

for every s such that0 <s < |G]|.

Theorem 4. Let u be as in Theorem 3, and suppose that (6) holds; then the
following problem

;0
Aw+BZx——w+w X inG*

(16) x| dx;

w=0 on dG*,
has a solution in Wol’z(G*), and such solution satisfies
(17) / exp(—nKnBtl/n)u*(t)dt < / exp(—nKnBtl/n)w*(t)dt
0 0

for every s such that0 <s < |G]|.
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Theorem 1 is demonstrated in Section 5. Theorem 2 can be proved quite in
the same way as Theorem 1. Theorem 3 is a relative of Theorem 4, in the same
way as Theorem 1 is a relative of Theorem 2. Theorem 3 can be proved by the
same arguments involved in Theorem 1 plus Gronwall’s Lemma. Theorem 4 is
a special case of [4], Theorem 1. The proofs of Theorems 2, 3 and 4 will be
omitted.

4. Some applications.

Theorem 5. Consider the problem made up by equation (2) and boundary
condition (9) under hypotheses (3), (4), (6), (7) and (8). Assume |G| < +00
and p > n/2. Then its weak solution obeys

(18) esssup |u| < D|| fllzrc)-

Constant D is defined as follows:

n—1<1 B )

a= _—),

2 VB? +4)
b = nk,|G|""V B2 + 4,

() = exp[(l - L)y]x

2 /B2 440
x(U( Ly U(a,n—l,b)M( ! ))
a,n—1, _— - a,n—1, .
Y M@, n—1,b) Y
y =L
p—1
1/p'
T(a)(B* +41)"/C»-! /” et
19 D= ()’ y'd .
(19) WPC7 (n — D)1 A My dy

Here U and M are Kummer’s functions. D is the smallest constant that
makes (18) true under the assumptions above.
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Proof. The very definition of u* gives
(20) ess sup |u| = u*(0),
and inequality (17) gives
(21) u*(0) < w*(0).

Observe that the solution w to problem (16) is radially symmetric and radially
decreasing, in other words

w(x) = w*(Cp [x]").
Therefore (16) reads:

d*w n—1 dw
_AW (P B Lw = G,
22) I <u| )mﬂ+“’f('”)

wx) =0 if |x| = nk,|G|"".

Two linearly independent solutions of the homogeneous equation

v ("_1 B)dw +Aw =0
SF_ (2= p\2E w =0,
dr2 r dr
—2)!
whose wronskian is —uﬁZ—"rl—"e(ﬂ—M)” are
I'(a)

wir)=e “M@a,n—1,B8r) and wr(r)=e “U(a,n — 1, Br).

Here

_B+BZt4x
o= + 7 + and B =+ B?+ 4A.

Recall that M(a, c, z) and U(a, c, z) are the solutions of Kummer’s equation

d*w dw
ZF-F(C—Z)d—Z —aw =20
given by
T(c) = Ta+k)
M ) == IR
@9 = 10 2 T(c+ k) k!

k=0
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if ¢ is not a negative integer, and

U,c,z) =

T M(a,c, 2) e M@+1—-c,2—-c2)
[F(C)F(a Ti-o ° T@lQ2—c) ]
For more informations see [1] and [23].

The solution to problem (22) such that

/G* (%)de < 400

sinmc

is then
(23) w(x) = (ar(Ix]) + A)wi(Ix]) + ax(|x Dwa(|x]),
where
F(a) L nKn‘G‘]/” 1 ( —ﬂ)l‘ % n
a(r)y = ———p8" " e P U, n — 1, Br) fF(C,t") dt,
(n—2)! r
F r
ar)(r) = @) B2 / 1" 1@ PIM(a, n — 1, Bt) f¥(C,t") dt,
(n —2)! 0
r nic, |G[V/"
A=W g2y / " e P M(a,n — 1, Br) f*(Cpt") dt
(n —2)! 0
and
_ U(a,n—1,b)
Y= M@ n—-1.b)
Thus
T ., men G n—1_(a—B)
w(O)_mﬂ ) " e {U@,n—1,B1)—

—yM(a,n — 1, Br)} f*(Cut")dt.
Holder inequality and (20) and (21) give (18). U
Theorem 6. Constant D given in Theorem 5 has the following properties:
D 1
an/2p)—1 — nl/pcrll/[’zn/Z—l I'(n/2) x

(24)

S , I/p
X </ t(n[’—2n+2)/2[7—2[Kn/2_1(t)][’ df) as A — 400;
0

D = AP Utherhs. of 24)} if |G| = +00 and B = 0.

Here K ,(z) is the modified Bessel function of second kind and order v (see,
e.g., [11, 23], [32]).
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Proof. The proof consists of an inspection, based on formula (19) and formula
[1], Chapter 13, Section 13.6, 13.6.21 relating Kummer and Bessel functions.
O

Theorem 7. Let u belong to WOI’Z(G) and satisfy (1), let w belong to WOI’Z(G*)
and satisfy (11) or (13), according to whether (5) or (6) is in force. Then

(25) ||”||L‘?(G) =< ||w||Lq(G*)

for every q larger than or equal to 1.

Proof. Since a function and its decreasing rearrangement are equidistribuited,
(25) follows from (12) and the lemma appearing in [29]. O

Theorem 8. If u and w are as in the previous theorem, m(G) = +o00 and

q > p > 1, then

(26) lullLip,g) < lwllLip.g)-

Here L(p, q) stands for Lorentz space. For its definition we refer to [34].

Miscellaneous estimates, which easily follow from the previous theorems,
are listed below. (Standard integrals of Bessel functions, and Bliss inequality —
see [11] — are involved.)

e If |G| =400, B=0and p > n/2, then

1
lullLrc) < x”f”LP(G)-

e If |G| =400, B=0and g > p > 1, then

1/q

A

lullip.g) < | fllzrG)s

where

__p [ (gp/(q — P) ]‘””‘1
qg(p— 1) LT(p/(q — p)T(plg — 1)/(g — p)) '
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5. Proof of Theorem 1.
We need the following lemmas.

Lemma 1. For every measurable function f and for every measurable set E
we have

|E|
@ [isiax < [ repas
E 0
Moreover if E equals a level set {x € G : |f(x)| > t} and t is positive, then
equality holds in (27).

Lemma 2. Let u € Wy'>(G) and let ju be the distribution function of u. Then

, d
(28) ()" = (t)]{—d— f |W|2dx} > 1,
U J{xeGlu@)|>1)

for almost every t from 0 to ess sup |u|. As usual, V stands for gradient, so that
n

2 _ 2
|Vul|? = ;”xr
i=

Lemma 1 is a special case of Hardy-Littlewood theorem, see [17], The-
orem 378 or [26], Theorem 1.A. Lemma 2 is proved in [25], via Fleming-
Rishel coarea formula and the isoperimetric inequality. An alternative form
of Lemma 2 appears in [26], Lemma 1.E.

Proof of Theorem 1. Suppose u is a weak solution of problem (1) and (9), that
is u € Wy %(G) and

(29) / > Gty by, + Y biugy, + cug | dx = / fodx
G i1 G

i,k=1

for every test function ¢ from Wol’z(G). (All the integrals in (29) converge
because of the hypothesis made on the coefficients, and Sobolev embedding
theorem.)

We proceed as in [27]. We take ¢ = § o u, where S is the continuous
function defined as follows. Let 0 < s < t; then S(u) = 0 if |u| < s,
S(u) = signu if |u| > ¢t and S is linear otherwise. Plugging such ¢ into
(29) then passing to the limit as s 1 ¢ results in the following inequality

d
(30) - |Vu|? dx +A/ lul dx +
dt JixeG:lu)|>1} (x€G:u(x)|>1}
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d n 172 d 1/2
—t ——/ Zbizdx —/ |Vu|>dx <
dt JixeG:umi=n 5 dt JixeG:lu=1)

<[ |ldx
{xeG:lu(x)|>t}

for almost every positive .
We use the following notations:

d 1/2
_ <__/ |Vu|2dx) ,
dt JixeG:uw)>1)

n

t J 12
o S
2( dt (xeG:|u(x)|>1} ;

h = /()M(t)<f*(r) — )»u*(r)) dr.

Inequality (30) and Lemma 1 imply that £(§ — 2¢) < h. Hence
E<t+21h

If we let d =k, u(t)"/"~1\/—1/(t), Lemma 2 gives £ > 1/d, so
1

(31) E—CS\/CZ—I-h.

The left-hand side of (31) can be positive or not. In the former case we obtain
1 <2¢d + hd?. In any case we have

and

(32) 1 < max {¢d, 2¢d + hd*} .
Thus we have proved that
Kn d : 2 12 1/n—1 ;
(33) 1 < max ?z[ - 3 b dx] w®V =),
U JixeGiluw)l>1) =

Knt|:— i/ ibizdx]lﬂu(t)l/n—l /—M/(t)+
{

dt JixeG u)>1) i=1

+K2 2/n—=2pr__ ./ e * _ *
2P 2=l o) [ (10 = 2t dr
0
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for almost every ¢ from (0, ess sup |u]).
As shown in [27], the function g defined by

d n
(34) g(nl(,,sl/n) = [_/
ds {xeG:lu(x)|>u*(s)} 21:

is such that

172
bi(x)? dx]

d n 172
(35) |: / be dx] = —M’(t)g(nKn/L(t)l/n)
{

dt JixeGiuwi=n 5

for almost every ¢ from (0, ess sup |«|), and

nky |GV 1/k n 1/k
(36) {nC,,/ g rm! dr} < {/ (Z b,~(x)2)k/2 dx} .
0 G5

Thus (33) becomes

(7 I <[] ma"{ I;_ntg(nknu(t)l/ SITORIS

()
atg ) M) a2 [y ar +
0
u(t)

+ ke ()12 f*(r)dr}
0

for almost every ¢ from (0, ess sup |u]).
We claim that

du* Ky

(38) s (s) < max{Esl/"_lg(nlcnsl/")u*(s),

N
ins " g (nic,s VM (s) — )»Kfsz/"_Z/ w*(r)dr +
0

42522 / f*(r)dr}
0

for almost every s from (0, |G|).
Indeed, the very definition of #* ensures that

+00
* __
u _/0 X [0,y 41>
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where yx stands for characteristic function. Hence

|G| +oo
[) u*(s)p'(s)ds = ; (u(t))dt
for every ¢ in C§° ((0, |G|)); consequently
G du* +00
fo #(5)| ()] ds = [ ganar
since u™ is absolutely continuous (see [27]). Suppose ¢ > 0. Then
|G| du* +oo
f #6)| === (®]ds = | g(ue)ithe braces in BT}~/ ()] dr <
0 S 0
+00 G|
< d(uN{...} [—du(t)] = ¢(s){the right-hand side of (38)} ds.
0 0

Inequality (38) follows, for ¢ is arbitrary.

If we put
U(s) = / u*(t)dt,
0
h(s) = K,%f fX(@)dt,
0
_ Kn 1/n—1 1/n
39) F(s,y,t)= max{ Es gni,s /M,
K,,sl/"_lg(n/cnsl/")t — )ulcfsz/"_zy + sz/"_zh(s)},

(38) gives
(40) —U%wf;F@,U@yan)

for almost every s belonging to (0, |G|). Observe that U satisfies also
(41) U@©) =0, U'(IG)) = 0.
Let v be the solution to the following boundary value problem

—U”(S) = F(S, U(S), U/(S)),

(42) {
v(0) =0, V(IG|) =0.
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We want to show that U(s) < v(s) for every s between 0 and |G]|.
If welet w = v — U, we have

{ —'(s) = F(s, v(s), v'(s)) — F(s, U(s), U'(s)),
»(0) =0, /(|G| = 0.

But F(s, -, -) is convex, thus
F(s,v,v)—F(s,U,U") > Fy(s,U, U —=U)+ Fy/(s, U, U)W = U,

where (FU(s, -, ), Fyd(s, -, -)) is a subgradient of F'. Observe that F; <0, as
(39) shows.
In other words, w satisfies

{ —a"(s) > —a(s)o'(s) — B(s)aw(s),

(43)
w(0) =0, &'(IG|) =0,

where f is a nonnegative function.

Let’s show that any sufficiently smooth solution @ to problem (43) is
nonnegative.

Let us consider the function z defined by

2(s) = =" (s) + a(s)w'(s) + B(s)w(s),

which is nonnegative. If y(s) = exp(— fos a(r) dr), o minimizes the following
functional

|G|
J(¢) = fo V(@Y + BS® — 224)ds

in the following function class {¢ € W'2((0, |G])) : ¢(0) = ¢'(|IG|) = 0}.
Observe that J is strictly convex, and J(|¢|) < J(¢) for every competing
function ¢. Consequently the minimizer is unique and nonnegative. We
conclude that @ is nonnegative, as claimed.

A straightforward inspection shows that (11) and (12) imply

fs w* () dt = v(s)
0

for every s belonging to [0, |G|].
Theorem 1 is thus completely proved. ]
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