# ESTIMATING THE RESOLVENT OF ELLIPTIC SECOND-ORDER PARTIAL DIFFERENTIAL OPERATORS 

## DIMITRI MUGNAI - GIORGIO TALENTI

## A Franco Guglielmino con affetto

Sharp estimates for the resolvent of a linear elliptic second-order partial differential operator under Dirichlet homogeneous boundary conditions are derived via a symmetrization technique.

## 1. Introduction.

In this paper we are concerned with partial differential equations having either of the following forms

$$
\begin{equation*}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i}(x) u\right)+(c(x)+\lambda) u=f(x) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}+(c(x)+\lambda) u=f(x) . \tag{2}
\end{equation*}
$$

Entrato in Redazione il 16 aprile 1997.

We suppose the coefficients and the right-hand side are real-valued measurable functions defined in an open subset $G$ of $\mathbb{R}^{n}$. We suppose $\lambda$ is a positive constant parameter and the equations are uniformly elliptic, that is

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \sum_{i=1}^{n} \xi_{i}^{2} \quad \text { for all } x \in G \text { and for all } \xi \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i j} \in L^{\infty}(G) \tag{4}
\end{equation*}
$$

Moreover, either

$$
\begin{equation*}
\left(\int_{G}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{k / 2} d x\right)^{1 / k} \leq B \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{ess} \sup \left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2} \leq B \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c \in L^{n / 2}(G) \text { and } c(x) \geq 0 \text { for all } x \in G \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
f \in L^{p}(G) \tag{8}
\end{equation*}
$$

Here $B$ is some nonnegative constant, $n<k<\infty$, and $p=\frac{2 n}{n+2}$ or $p>1$ according to whether $n>2$ or $n=2$.

We are interested in Dirichlet problems with zero boundary data; thus we look for functions $u$ which satisfy either equation (1) or (2) and obey

$$
\begin{equation*}
u=0 \quad \text { on the boundary } \partial G \text { of } G \tag{9}
\end{equation*}
$$

We deal with weak solutions belonging to Sobolev space $W_{0}^{1,2}(G)$.
The present paper parallels earlier ones where estimates for solutions to boundary value problem for elliptic second-order partial differential equations
in divergence form are obtained via inspection of level sets, isoperimetric inequality and rearrangements of functions. See for instance Alvino-Diaz-LionsTrombetti [2], Alvino-Ferone-Kawohl-Trombetti [3], Alvino-Lions-Trombetti [4], [5], Alvino-Matarasso-Trombetti [6], Alvino-Trombetti [7], [8], Bandle [9], [10], Chiti [13], [12], Diaz [14], [15], [16], Maderna [18], Maderna-PaganiSalsa [19], Maderna-Salsa [20], [21], [22], Pacella-Tricarico [24], Talenti [25], [27], [28], Trombetti-Vazquez [31], Weinberger [33] and the references quoted in [28].

It is closely related to [2], [4], [5], [6], [7], [8], [15], [25], [27] and [31]. We provide some variants and refinements. Comparison results for solutions to both problems (1)-(9) and (2)-(9) are established. Estimates are obtained as a corollary, where the dependence upon parameter $\lambda$ is explicitly displayed. In other words, we obtain estimates of the resolvent operator - the main goal of this paper.

## 2. Notations.

| $\mathbb{R}^{n}$ | $n$-dimensional euclidean space |
| :--- | :--- |
| $G$ | open subset of $\mathbb{R}^{n}$ |
| $\partial G$ | boundary of $G$ |
| $L^{p}(G)$ | Lebesgue space |
| $W^{1,2}(G)$ | Sobolev space |
| $W_{0}^{1,2}(G)$ | closure of $C_{0}^{\infty}(G)$ in $W^{1,2}(G)$ |
| $\|G\|$ | $n$-dimensional measure of $G$ |
| $G^{\star}$ | ball centered at the origin having the same measure as $G$ |
| $\mu_{u}$ | distribution function of $u$ |
| $u^{*}$ | decreasing rearrangement of $u$ |
| $u^{\star}$ | symmetric rerrangement of $u$ |
| $C_{n}$ | measure of the $n$-dimensional unit ball |
| $\kappa_{n}$ | isoperimetric constant |
| Recall that $\mu_{u}$ | is defined by |

$$
\mu_{u}(t)=|\{x \in G:|u(x)|>t\}|
$$

$u^{*}$ is the right-continuous decreasing function from $[0,+\infty)$ into $[0,+\infty]$ equidistributed with $u$, and $u^{\star}$ is the function from $\mathbb{R}^{n}$ into $[0,+\infty]$ defined by $u^{\star}(x)=u^{*}\left(C_{n}|x|^{n}\right)$.

Finally recall

$$
\kappa_{n}=\frac{1}{n C_{n}^{1 / n}}
$$

the smallest constant which makes the following isoperimetric inequality

$$
(\text { measure of } E)^{1-1 / n} \leq \kappa_{n}(\text { perimeter of } E)
$$

true for every measurable subset $E$ of $\mathbb{R}^{n}$ having finite measure.
For the properties of the objects defined above see [17], [25], [26], [27] and [30].

## 3. Main results.

Theorem 1. Let $u$ belong to $W_{0}^{1,2}(G)$ and satisfy equation (1). Suppose (5) holds. Then a measurable function $g$ from $[0,+\infty)$ into $[0,+\infty]$ exists such that

$$
\begin{equation*}
\left\{n C_{n} \int_{0}^{n \kappa_{n}|G|^{1 / n}} g(r)^{k} r^{n-1} d r\right\}^{1 / k} \leq B \tag{10}
\end{equation*}
$$

and the solution $w$ belonging to $W_{0}^{1,2}\left(G^{\star}\right)$ to the following problem

$$
\begin{cases}-\Delta w-\frac{\partial \mathcal{F}}{\partial \Phi}(\Phi, \Psi) \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left\{\frac{x_{i}}{|x|} g(|x|) w\right\}+ &  \tag{11}\\ \quad+\frac{\partial \mathcal{F}}{\partial \Psi}(\Phi, \Psi)\left(\lambda w-f^{\star}(|x|)\right)=0 & \text { in } G^{\star} \\ w=0 & \end{cases}
$$

satisfies

$$
\begin{equation*}
\int_{0}^{s} u^{*}(t) d t \leq \int_{0}^{s} w^{*}(t) d t \tag{12}
\end{equation*}
$$

for every s such that $0 \leq s \leq|G|$.
Here

$$
\begin{gathered}
\Phi=|x|^{n-1} g(|x|) w(x) \\
\Psi=-\lambda \int_{0}^{C_{n}|x|^{n}} w^{*}(t) d t+\int_{0}^{C_{n}|x|^{n}} f^{*}(t) d t \\
\mathcal{F}(\Phi, \Psi)=\max \{\Phi / 2, \Phi+\Psi\}
\end{gathered}
$$

Theorem 2. Let u be as in Theorem 1. Suppose that (6) holds; then the solution $w$ of the following problem
satisfies (12) for everys such that $0 \leq s \leq|G|$.
Here

$$
\Phi=B|x|^{n-1} w(x)
$$

and $\Psi$ is as in Theorem 1, as well as $\mathcal{F}$.
Theorem 3. Let $u$ belong to $W_{0}^{1,2}(G)$ and satisfy equation (2). Suppose that (5) holds and $g$ is as in Theorem 1. Then the following problem

$$
\begin{cases}-\Delta w+\sum_{i=1}^{n} g(|x|) \frac{x_{i}}{|x|} \frac{\partial w}{\partial x_{i}}+\lambda w=f^{\star} & \text { in } G^{\star}  \tag{14}\\ w=0 & \text { on } \partial G^{\star}\end{cases}
$$

has a solution in $W_{0}^{1,2}\left(G^{\star}\right)$; such solution satisfies

$$
\begin{align*}
& \int_{0}^{s} \exp \left(-\int_{0}^{n \kappa_{n} t^{1 / n}} g(r) d r\right) u^{*}(t) d t \leq  \tag{15}\\
& \leq \int_{0}^{s} \exp \left(-\int_{0}^{n \kappa_{n} t^{1 / n}} g(r) d r\right) w^{*}(t) d t
\end{align*}
$$

for every s such that $0 \leq s \leq|G|$.
Theorem 4. Let $u$ be as in Theorem 3, and suppose that (6) holds; then the following problem

$$
\begin{cases}-\Delta w+B \sum_{i=1}^{n} \frac{x_{i}}{|x|} \frac{\partial w}{\partial x_{i}}+\lambda w=f^{\star} & \text { in } G^{\star}  \tag{16}\\ w=0 & \text { on } \partial G^{\star}\end{cases}
$$

has a solution in $W_{0}^{1,2}\left(G^{\star}\right)$, and such solution satisfies

$$
\begin{equation*}
\int_{0}^{s} \exp \left(-n \kappa_{n} B t^{1 / n}\right) u^{*}(t) d t \leq \int_{0}^{s} \exp \left(-n \kappa_{n} B t^{1 / n}\right) w^{*}(t) d t \tag{17}
\end{equation*}
$$

for every s such that $0 \leq s \leq|G|$.

Theorem 1 is demonstrated in Section 5. Theorem 2 can be proved quite in the same way as Theorem 1. Theorem 3 is a relative of Theorem 4, in the same way as Theorem 1 is a relative of Theorem 2 . Theorem 3 can be proved by the same arguments involved in Theorem 1 plus Gronwall's Lemma. Theorem 4 is a special case of [4], Theorem 1. The proofs of Theorems 2,3 and 4 will be omitted.

## 4. Some applications.

Theorem 5. Consider the problem made up by equation (2) and boundary condition (9) under hypotheses (3), (4), (6), (7) and (8). Assume $|G|<+\infty$ and $p>n / 2$. Then its weak solution obeys

$$
\begin{equation*}
\text { ess sup }|u| \leq D\|f\|_{L^{p}(G)} \tag{18}
\end{equation*}
$$

Constant $D$ is defined as follows:

$$
\begin{gather*}
a=\frac{n-1}{2}\left(1-\frac{B}{\sqrt{B^{2}+4 \lambda}}\right), \\
b=n \kappa_{n}|G|^{1 / n} \sqrt{B^{2}+4 \lambda}, \\
\mathscr{I}(y)=\exp \left[\left(\frac{1}{2}-\frac{B}{\sqrt{B^{2}+4 \lambda}}\right) y\right] \times \\
\times\left(U(a, n-1, y)-\frac{U(a, n-1, b)}{M(a, n-1, b)} M(a, n-1, y)\right), \\
p^{\prime}=\frac{p}{p-1}, \\
D=\frac{\Gamma(a)\left(B^{2}+4 \lambda\right)^{n /(2 p)-1}}{n^{1 / p} C_{n}^{1 / p}(n-2)!}\left\{\int_{0}^{b} \check{L}(y)^{p^{\prime}} y^{n-1} d y\right\}^{1 / p^{\prime}} . \tag{19}
\end{gather*}
$$

Here $U$ and $M$ are Kummer's functions. $D$ is the smallest constant that makes (18) true under the assumptions above.

Proof. The very definition of $u^{*}$ gives

$$
\begin{equation*}
\text { ess sup }|u|=u^{*}(0) \tag{20}
\end{equation*}
$$

and inequality (17) gives

$$
\begin{equation*}
u^{*}(0) \leq w^{*}(0) \tag{21}
\end{equation*}
$$

Observe that the solution $w$ to problem (16) is radially symmetric and radially decreasing, in other words

$$
w(x)=w^{*}\left(C_{n}|x|^{n}\right)
$$

Therefore (16) reads:

$$
\left\{\begin{array}{l}
-\frac{d^{2} w}{d|x|^{2}}-\left(\frac{n-1}{|x|}-B\right) \frac{d w}{d|x|}+\lambda w=f^{*}\left(C_{n}|x|^{n}\right)  \tag{22}\\
w(x)=0 \quad \text { if }|x|=n \kappa_{n}|G|^{1 / n}
\end{array}\right.
$$

Two linearly independent solutions of the homogeneous equation

$$
\frac{d^{2} w}{d r^{2}}-\left(\frac{n-1}{r}-B\right) \frac{d w}{d r}+\lambda w=0
$$

whose wronskian is $-\frac{(n-2)!}{\Gamma(a)} \beta^{2-n} r^{1-n} e^{(\beta-2 \alpha) r}$, are

$$
w_{1}(r)=e^{-\alpha r} M(a, n-1, \beta r) \text { and } w_{2}(r)=e^{-\alpha r} U(a, n-1, \beta r)
$$

Here

$$
\alpha=\frac{-B+\sqrt{B^{2}+4 \lambda}}{2} \text { and } \beta=\sqrt{B^{2}+4 \lambda}
$$

Recall that $M(a, c, z)$ and $U(a, c, z)$ are the solutions of Kummer's equation

$$
z \frac{d^{2} w}{d z^{2}}+(c-z) \frac{d w}{d z}-a w=0
$$

given by

$$
M(a, c, z)=\frac{\Gamma(c)}{\Gamma(a)} \sum_{k=0}^{\infty} \frac{\Gamma(a+k)}{\Gamma(c+k)} \frac{z^{k}}{k!}
$$

if $c$ is not a negative integer, and

$$
U(a, c, z)=\frac{\pi}{\sin \pi c}\left[\frac{M(a, c, z)}{\Gamma(c) \Gamma(a+1-c)}-z^{1-c} \frac{M(a+1-c, 2-c, z)}{\Gamma(a) \Gamma(2-c)}\right]
$$

For more informations see [1] and [23].
The solution to problem (22) such that

$$
\int_{G^{\star}}\left(\frac{d w}{d|x|}\right)^{2} d x<+\infty
$$

is then

$$
\begin{equation*}
w(x)=\left(a_{1}(|x|)+A\right) w_{1}(|x|)+a_{2}(|x|) w_{2}(|x|) \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{1}(r) & =\frac{\Gamma(a)}{(n-2)!} \beta^{n-2} \int_{r}^{n \kappa_{n}|G|^{1 / n}} t^{n-1} e^{(\alpha-\beta) t} U(a, n-1, \beta t) f^{*}\left(C_{n} t^{n}\right) d t \\
a_{2}(r) & =\frac{\Gamma(a)}{(n-2)!} \beta^{n-2} \int_{0}^{r} t^{n-1} e^{(\alpha-\beta) t} M(a, n-1, \beta t) f^{*}\left(C_{n} t^{n}\right) d t \\
A & =-\frac{\Gamma(a)}{(n-2)!} \beta^{n-2} \gamma \int_{0}^{n \kappa_{n}|G|^{1 / n}} t^{n-1} e^{(\alpha-\beta) t} M(a, n-1, \beta t) f^{*}\left(C_{n} t^{n}\right) d t
\end{aligned}
$$

and

$$
\gamma=\frac{U(a, n-1, b)}{M(a, n-1, b)}
$$

Thus

$$
\begin{gathered}
w(0)=\frac{\Gamma(a)}{(n-2)!} \beta^{n-2} \int_{0}^{n \kappa_{n}|G|^{1 / n}} t^{n-1} e^{(\alpha-\beta) t}\{U(a, n-1, \beta t)- \\
-\gamma M(a, n-1, \beta t)\} f^{*}\left(C_{n} t^{n}\right) d t
\end{gathered}
$$

Hölder inequality and (20) and (21) give (18).
Theorem 6. Constant $D$ given in Theorem 5 has the following properties:

$$
\begin{gather*}
\frac{D}{\lambda^{n /(2 p)-1}} \longrightarrow \frac{1}{n^{1 / p} C_{n}^{1 / p} 2^{n / 2-1} \Gamma(n / 2)} \times  \tag{24}\\
\times\left(\int_{0}^{\infty} t^{(n p-2 n+2) / 2 p-2}\left[K_{n / 2-1}(t)\right]^{p^{\prime}} d t\right)^{1 / p^{\prime}} \text { as } \lambda \rightarrow+\infty \\
D=\lambda^{n /(2 p)-1}\{\text { the r.h.s. of }(24)\} \quad \text { if }|G|=+\infty \text { and } B=0 .
\end{gather*}
$$

Here $K_{v}(z)$ is the modified Bessel function of second kind and order $v$ (see, e.g., [1], [23], [32]).

Proof. The proof consists of an inspection, based on formula (19) and formula [1], Chapter 13, Section 13.6, 13.6.21 relating Kummer and Bessel functions.

Theorem 7. Let $u$ belong to $W_{0}^{1,2}(G)$ and satisfy (1), let $w$ belong to $W_{0}^{1,2}\left(G^{\star}\right)$ and satisfy (11) or (13), according to whether (5) or (6) is in force. Then

$$
\begin{equation*}
\|u\|_{L^{q}(G)} \leq\|w\|_{L^{q}\left(G^{\star}\right)} \tag{25}
\end{equation*}
$$

for every q larger than or equal to 1 .
Proof. Since a function and its decreasing rearrangement are equidistribuited, (25) follows from (12) and the lemma appearing in [29].

Theorem 8. If $u$ and $w$ are as in the previous theorem, $m(G)=+\infty$ and $q>p>1$, then

$$
\begin{equation*}
\|u\|_{L(p, q)} \leq\|w\|_{L(p, q)} . \tag{26}
\end{equation*}
$$

Here $L(p, q)$ stands for Lorentz space. For its definition we refer to [34].
Miscellaneous estimates, which easily follow from the previous theorems, are listed below. (Standard integrals of Bessel functions, and Bliss inequality see [11] - are involved.)

- If $|G|=+\infty, B=0$ and $p>n / 2$, then

$$
\|u\|_{L^{p}(G)} \leq \frac{1}{\lambda}\|f\|_{L^{p}(G)} .
$$

- If $|G|=+\infty, B=0$ and $q>p>1$, then

$$
\|u\|_{L(p, q)} \leq \frac{K^{1 / q}}{\lambda}\|f\|_{L^{p}(G)}
$$

where

$$
K=\frac{p}{q(p-1)}\left[\frac{\Gamma(q p /(q-p))}{\Gamma(p /(q-p)) \Gamma(p(q-1) /(q-p))}\right]^{q / p-1}
$$

## 5. Proof of Theorem 1.

We need the following lemmas.
Lemma 1. For every measurable function $f$ and for every measurable set $E$ we have

$$
\begin{equation*}
\int_{E}|f(x)| d x \leq \int_{0}^{|E|} f^{*}(f) d s \tag{27}
\end{equation*}
$$

Moreover if $E$ equals a level set $\{x \in G:|f(x)|>t\}$ and $t$ is positive, then equality holds in (27).

Lemma 2. Let $u \in W_{0}^{1,2}(G)$ and let $\mu$ be the distribution function of $u$. Then

$$
\begin{equation*}
\kappa_{n}^{2} \mu(t)^{2 / n-2}\left[-\mu^{\prime}(t)\right]\left\{-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}}|\nabla u|^{2} d x\right\} \geq 1 \tag{28}
\end{equation*}
$$

for almost every t from 0 to ess sup $|u|$. As usual, $\nabla$ stands for gradient, so that $|\nabla u|^{2}=\sum_{i=1}^{n} u_{x_{i}}^{2}$.

Lemma 1 is a special case of Hardy-Littlewood theorem, see [17], Theorem 378 or [26], Theorem 1.A. Lemma 2 is proved in [25], via FlemingRishel coarea formula and the isoperimetric inequality. An alternative form of Lemma 2 appears in [26], Lemma 1.E.
Proof of Theorem 1. Suppose $u$ is a weak solution of problem (1) and (9), that is $u \in W_{0}^{1,2}(G)$ and

$$
\begin{equation*}
\int_{G}\left[\sum_{i, k=1}^{n} a_{i k} u_{x_{i}} \phi_{x_{k}}+\sum_{i=1}^{n} b_{i} u \phi_{x_{i}}+c u \phi\right] d x=\int_{G} f \phi d x \tag{29}
\end{equation*}
$$

for every test function $\phi$ from $W_{0}^{1,2}(G)$. (All the integrals in (29) converge because of the hypothesis made on the coefficients, and Sobolev embedding theorem.)

We proceed as in [27]. We take $\phi=S \circ u$, where $S$ is the continuous function defined as follows. Let $0 \leq s<t$; then $S(u)=0$ if $|u|<s$, $S(u)=\operatorname{sign} u$ if $|u|>t$ and $S$ is linear otherwise. Plugging such $\phi$ into (29) then passing to the limit as $s \uparrow t$ results in the following inequality

$$
\begin{equation*}
-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}}|\nabla u|^{2} d x+\lambda \int_{\{x \in G:|u(x)|>t\}}|u| d x+ \tag{30}
\end{equation*}
$$

$$
\begin{aligned}
-t\left(-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}} \sum_{1}^{n} b_{i}^{2} d x\right)^{1 / 2} & \left(\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}}|\nabla u|^{2} d x\right)^{1 / 2} \leq \\
& \leq \int_{\{x \in G:|u(x)|>t\}}|f| d x
\end{aligned}
$$

for almost every positive $t$.
We use the following notations:

$$
\begin{aligned}
& \xi=\left(-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}}|\nabla u|^{2} d x\right)^{1 / 2} \\
& \zeta=\frac{t}{2}\left(-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}} \sum_{i=1}^{n} b_{i}^{2} d x\right)^{1 / 2}
\end{aligned}
$$

and

$$
h=\int_{0}^{\mu(t)}\left(f^{*}(r)-\lambda u^{*}(r)\right) d r
$$

Inequality (30) and Lemma 1 imply that $\xi(\xi-2 \zeta) \leq h$. Hence

$$
\xi \leq \zeta+\sqrt{\zeta^{2}+h}
$$

If we let $d=\kappa_{n} \mu(t)^{1 / n-1} \sqrt{-\mu^{\prime}(t)}$, Lemma 2 gives $\xi \geq 1 / d$, so

$$
\begin{equation*}
\frac{1}{d}-\zeta \leq \sqrt{\zeta^{2}+h} \tag{31}
\end{equation*}
$$

The left-hand side of (31) can be positive or not. In the former case we obtain $1 \leq 2 \zeta d+h d^{2}$. In any case we have

$$
\begin{equation*}
1 \leq \max \left\{\zeta d, 2 \zeta d+h d^{2}\right\} \tag{32}
\end{equation*}
$$

Thus we have proved that
(33) $1 \leq \max \left\{\frac{\kappa_{n}}{2} t\left[-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}} \sum_{i=1}^{n} b_{i}^{2} d x\right]^{1 / 2} \mu(t)^{1 / n-1} \sqrt{-\mu^{\prime}(t)}\right.$,

$$
\begin{aligned}
& \kappa_{n} t\left[-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}} \sum_{i=1}^{n} b_{i}^{2} d x\right]^{1 / 2} \mu(t)^{1 / n-1} \sqrt{-\mu^{\prime}(t)}+ \\
& \left.\quad+\kappa_{n}^{2} \mu(t)^{2 / n-2}\left[-\mu^{\prime}(t)\right] \int_{0}^{\mu(t)}\left(f^{*}(r)-\lambda u^{*}(r)\right) d r\right\}
\end{aligned}
$$

for almost every $t$ from ( 0 , ess sup $|u|$ ).
As shown in [27], the function $g$ defined by

$$
\begin{equation*}
g\left(n \kappa_{n} s^{1 / n}\right)=\left[\frac{d}{d s} \int_{\left\{x \in G:|u(x)|>u^{*}(s)\right\}} \sum_{1}^{n} b_{i}(x)^{2} d x\right]^{1 / 2} \tag{34}
\end{equation*}
$$

is such that

$$
\begin{equation*}
\left[-\frac{d}{d t} \int_{\{x \in G:|u(x)|>t\}} \sum_{1}^{n} b_{i}^{2} d x\right]^{1 / 2}=\sqrt{-\mu^{\prime}(t)} g\left(n \kappa_{n} \mu(t)^{1 / n}\right) \tag{35}
\end{equation*}
$$

for almost every $t$ from ( 0 , ess sup $|u|$ ), and

$$
\begin{equation*}
\left\{n C_{n} \int_{0}^{n \kappa_{n}|G|^{1 / n}} g(r)^{k} r^{n-1} d r\right\}^{1 / k} \leq\left\{\int_{G}\left(\sum_{i}^{n} b_{i}(x)^{2}\right)^{k / 2} d x\right\}^{1 / k} \tag{36}
\end{equation*}
$$

Thus (33) becomes

$$
\begin{gather*}
1 \leq\left[-\mu^{\prime}(t)\right] \max \left\{\frac{\kappa_{n}}{2} \operatorname{tg}\left(n \kappa_{n} \mu(t)^{1 / n}\right) \mu(t)^{1 / n-1},\right.  \tag{37}\\
\kappa_{n} \operatorname{tg}\left(n \kappa_{n} \mu(t)^{1 / n}\right) \mu(t)^{1 / n-1}-\lambda \kappa_{n}^{2} \mu(t)^{2 / n-2} \int_{0}^{\mu(t)} u^{*}(r) d r+ \\
\left.+\kappa_{n}^{2} \mu(t)^{2 / n-2} \int_{0}^{\mu(t)} f^{*}(r) d r\right\}
\end{gather*}
$$

for almost every $t$ from ( 0 , ess sup $|u|$ ).
We claim that

$$
\begin{gather*}
-\frac{d u^{*}}{d s}(s) \leq \max \left\{\frac{\kappa_{n}}{2} s^{1 / n-1} g\left(n \kappa_{n} s^{1 / n}\right) u^{*}(s),\right.  \tag{38}\\
\kappa_{n} s^{1 / n-1} g\left(n \kappa_{n} s^{1 / n}\right) u^{*}(s)-\lambda \kappa_{n}^{2} s^{2 / n-2} \int_{0}^{s} u^{*}(r) d r+ \\
\left.+\kappa_{n}^{2} s^{2 / n-2} \int_{0}^{s} f^{*}(r) d r\right\}
\end{gather*}
$$

for almost every $s$ from $(0,|G|)$.
Indeed, the very definition of $u^{*}$ ensures that

$$
u^{*}=\int_{0}^{+\infty} \chi_{[0, \mu(t)]} d t
$$

where $\chi$ stands for characteristic function. Hence

$$
\int_{0}^{|G|} u^{*}(s) \phi^{\prime}(s) d s=\int_{0}^{+\infty} \phi(\mu(t)) d t
$$

for every $\phi$ in $C_{0}^{\infty}((0,|G|))$; consequently

$$
\int_{0}^{|G|} \phi(s)\left[-\frac{d u^{*}}{d s}(s)\right] d s=\int_{0}^{+\infty} \phi(\mu(t)) d t
$$

since $u^{*}$ is absolutely continuous (see [27]). Suppose $\phi \geq 0$. Then

$$
\begin{aligned}
& \int_{0}^{|G|} \phi(s)\left[-\frac{d u^{*}}{d s}(s)\right] d s \leq \int_{0}^{+\infty} \phi(\mu(t))\{\text { the braces in }(37)\}\left[-\mu^{\prime}(t)\right] d t \leq \\
& \leq \int_{0}^{+\infty} \phi(\mu(t))\{\ldots\}[-d \mu(t)]=\int_{0}^{|G|} \phi(s)\{\text { the right-hand side of }(38)\} d s
\end{aligned}
$$

Inequality (38) follows, for $\phi$ is arbitrary.
If we put

$$
\begin{aligned}
& U(s)=\int_{0}^{s} u^{*}(t) d t \\
& h(s)=\kappa_{n}^{2} \int_{0}^{s} f^{*}(t) d t
\end{aligned}
$$

$$
\begin{align*}
& F(s, y, t)=\max \left\{\frac{\kappa_{n}}{2} s^{1 / n-1} g\left(n \kappa_{n} s^{1 / n}\right) t\right.  \tag{39}\\
& \left.\quad \kappa_{n} s^{1 / n-1} g\left(n \kappa_{n} s^{1 / n}\right) t-\lambda \kappa_{n}^{2} s^{2 / n-2} y+s^{2 / n-2} h(s)\right\}
\end{align*}
$$

(38) gives

$$
\begin{equation*}
-U^{\prime \prime}(s) \leq F\left(s, U(s), U^{\prime}(s)\right) \tag{40}
\end{equation*}
$$

for almost every $s$ belonging to $(0,|G|)$. Observe that $U$ satisfies also

$$
\begin{equation*}
U(0)=0, \quad U^{\prime}(|G|)=0 \tag{41}
\end{equation*}
$$

Let $v$ be the solution to the following boundary value problem

$$
\left\{\begin{array}{l}
-v^{\prime \prime}(s)=F\left(s, v(s), v^{\prime}(s)\right),  \tag{42}\\
v(0)=0, v^{\prime}(|G|)=0
\end{array}\right.
$$

We want to show that $U(s) \leq v(s)$ for every $s$ between 0 and $|G|$.
If we let $\omega=v-U$, we have

$$
\left\{\begin{array}{l}
-\omega^{\prime \prime}(s) \geq F\left(s, v(s), v^{\prime}(s)\right)-F\left(s, U(s), U^{\prime}(s)\right) \\
\omega(0)=0, \omega^{\prime}(|G|)=0
\end{array}\right.
$$

But $F(s, \cdot, \cdot)$ is convex, thus

$$
F\left(s, v, v^{\prime}\right)-F\left(s, U, U^{\prime}\right) \geq F_{U}\left(s, U, U^{\prime}\right)(v-U)+F_{U^{\prime}}\left(s, U, U^{\prime}\right)\left(v^{\prime}-U^{\prime}\right)
$$

where $\left(F_{U}(s, \cdot, \cdot), F_{U^{\prime}}(s, \cdot, \cdot)\right)$ is a subgradient of $F$. Observe that $F_{U} \leq 0$, as (39) shows.

In other words, $\omega$ satisfies

$$
\left\{\begin{array}{l}
-\omega^{\prime \prime}(s) \geq-\alpha(s) \omega^{\prime}(s)-\beta(s) \omega(s)  \tag{43}\\
\omega(0)=0, \omega^{\prime}(|G|)=0
\end{array}\right.
$$

where $\beta$ is a nonnegative function.
Let's show that any sufficiently smooth solution $\omega$ to problem (43) is nonnegative.

Let us consider the function $z$ defined by

$$
z(s)=-\omega^{\prime \prime}(s)+\alpha(s) \omega^{\prime}(s)+\beta(s) \omega(s)
$$

which is nonnegative. If $y(s)=\exp \left(-\int_{0}^{s} \alpha(r) d r\right), \omega$ minimizes the following functional

$$
J(\phi)=\int_{0}^{|G|} y\left\{\left(\phi^{\prime}\right)^{2}+\beta \phi^{2}-2 z \phi\right\} d s
$$

in the following function class $\left\{\phi \in W^{1,2}((0,|G|)): \phi(0)=\phi^{\prime}(|G|)=0\right\}$. Observe that $J$ is strictly convex, and $J(|\phi|) \leq J(\phi)$ for every competing function $\phi$. Consequently the minimizer is unique and nonnegative. We conclude that $\omega$ is nonnegative, as claimed.

A straightforward inspection shows that (11) and (12) imply

$$
\int_{0}^{s} w^{*}(t) d t=v(s)
$$

for every $s$ belonging to $[0,|G|]$.
Theorem 1 is thus completely proved.

## REFERENCES

[1] M. Abramovitz - I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1972.
[2] A. Alvino - J.I. Diaz - P.L. Lions - G. Trombetti, Elliptic Equations and Steiner Symmetrization, Comm. Pure Appl. Math., 49-3 (1996), pp. 217-236.
[3] A. Alvino - V. Ferone - B. Kawohl - G. Trombetti, An inverse isoperimetric comparison result, Inequalities and applications, World Sci. Ser. Appl. Anal., 3, pp. 39-46, World Scientific Publ., 1994.
[4] A. Alvino - P.L. Lions - G. Trombetti, Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Inst. H. Poincaré Analyse non Lin., 7-2 (1990), pp. 37-65.
[5] A. Alvino - P.L. Lions - G. Trombetti, Comparison results for elliptic and parabolic equations via symmetrization: a new approach, Differential and Integral Eqs., 4-1 (1991), pp. 25-50.
[6] A. Alvino - S. Matarasso - G. Trombetti, Variational inequalities and rearrangements, Rend. Mat. Acc. Lincei, (9) 3-4 (1992), pp. 271-285.
[7] A. Alvino - G. Trombetti, Equazioni ellittiche con termini di ordine inferiore e riordinamenti, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 66 (1979), pp. 194-200.
[8] A. Alvino - G. Trombetti, Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri e non, Ricerche di Mat., 30 (1981), pp. 15-33.
[9] C. Bandle, Bounds for the solutions of boundary value problems, J. Math. Anal. Appl., 54 (1976), pp. 706-716.
[10] C. Bandle, On symmetrizations in parabolic equations, J. Analyse Math., 30 (1976), pp. 98-112.
[11] G.A. Bliss, An Integral Inequality, J. London Math. Soc., 5 (1930), pp. 40-46.
[12] G. Chiti, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll UMI, (6) 1-A (1982), pp. 145-151.
[13] G. Chiti, Norme di Orlicz delle soluzioni di una classe di equazioni ellittiche, Boll. UMI, (5) 16-A (1979), pp. 178-185.
[14] J.I. Diaz - J. Mossino, Isoperimetric inequalities in the parabolic obstacle problems, J. Math. Pures Appl., (9) 71-3 (1992), pp. 233-266.
[15] J.I. Diaz, Symmetrization in a parabolic-elliptic system, Adv. Math. Sci. Appl., 5-2 (1995), pp. 659-680.
[16] J.I. Diaz, Symmetrization of nonlinear elliptic and parabolic problems and applications: a particular overview, Progress in PDE: elliptic and parabolic problems, Pitman Research Notes Math. Ser., 266, pp. 1-16, Longman, 1992.
[17] G.H. Hardy - J.E. Littlewood - G. Pólya, Inequalities, Cambridge Univ. Press, 1934.
[18] C. Maderna, Optimal problems for a certain class of nonlinear Dirichlet problems, Boll. UMI Suppl. (1980), 1, pp. 31-43.
[19] C. Maderna - C.D. Pagani - S. Salsa, Quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Eqs, 97-1 (1992), pp. 54-70.
[20] C.Maderna - S. Salsa, Dirichlet problems for elliptic equations with nonlinear first order terms: a comparison result, Ann. Mat. Pura Appl., (4) 148 (1987), pp. 277288.
[21] C. Maderna - S. Salsa, Sharp estimates for solutions to a certain type of singular elliptic boundary value problem in two dimensions, Applicable Anal., 12-4 (1981), pp. 307-321.
[22] C. Maderna - S. Salsa, Symmetrization in Neumann problems, Applicable Anal., 9-4 (1979), pp. 247-256.
[23] W. Magnus - F. Oberhettinger - R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, 1966.
[24] F. Pacella - M. Tricarico, Symmetrization for a class of elliptic equations with mixed boundary conditions, Atti Sem. Mat. Fis. Univ. Modena, 34 (1985/86).
[25] G. Talenti, Elliptic Equations and Rearrangements, Ann. Scuola Norm. Sup. Pisa, (4) 3 (1976), pp. 697-718.
[26] G. Talenti, Inequalities in Rearrangement Invariant Function Spaces, Nonlinear Analysis, Function Spaces and Applications 5, M. Krbec \& A. Kufner \& B. Opic \& J. Rahosmih Editors, pp. 177-231, Prague, 1994.
[27] G. Talenti, Linear Elliptic P. D. E.s: Level Sets, Rearrangements and a priori Estimates of Solutions, Boll. UMI, (6) 4-B (1985), pp. 917-949.
[28] G. Talenti, Rearrangements and PDE, Inequalities: fifty years on from Hardy, Littlewood, Pòlya, W. N. Everitt Editor, Lecture Notes in Pure Appl. Math., 129, Dekker, 1991, pp. 211-230.
[29] G. Talenti, Sul decadimento di soluzioni di equazioni paraboliche, Rend. Sem. Mat. Univ. Pol. Torino, 52-1 (1994), pp. 79-86.
[30] G. Talenti, The standard isoperimetric theorem, Handbook of Convex Geometry, P.M. Gruber \& J.M. Wills Editors, vol. A, pp. 75-123, North-Holland, 1993.
[31] G. Trombetti - J.L. Vazquez, A symmetrization result for elliptic equations with lower-order terms, Ann. Fac. Sci. Toulose, (5) 7 (1985), pp. 137-150.
[32] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1922.
[33] H.F. Weinberger, Symmetrization in uniformly elliptic problems, Studies in Math. Analysis and related topics, Stanford Univ. Press, 1962, pp. 424-428.
[34] W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989.

Dimitri Mugnai,
Dipartimento di Matematica "Leonida Tonelli",
Via Buonarroti 2,
56127 Pisa (ITALY),
e-mail: mugnai@mail.dm.unipi.it
Giorgio Talenti,
Dipartimento di Matematica "Ulisse Dini",
Viale Morgagni 67/A,
50134 Firenze (ITALY)
e-mail: talenti@udini.math.unifi.it

