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FRACTAL AND EUCLIDEAN INTERACTION
IN SOME TRANSMISSION PROBLEMS

MARIA AGOSTINA VIVALDI

In this talk some model examples of second order elliptic transmission
problems with highly conductive layers will be described. Regularity and
numerical results for solutions of transmission problems across fractal
layers imbedded in Euclidean domains will be presented in the aim of
better understanding the analytical problems which arise when fractal and
Euclidean structures mutually interact.

1. Introduction

Within a research program with many friends and colleagues we have studied
”unusual” elliptic and parabolic problems on domains with non-smooth bound-
ary and fractal layers. For an exhaustive discussion of ”unusual” problems on
the classical setting of smooth domains I refer to the survey of D. E. Apushkin-
skaya and A. I. Nazarov (see [1]) where unusual boundary value problems are
seen in the more general context of the so-called Venttsel problems which go
back to the late 50’s (see [34]).
More recently a new perspective arose in the theory of boundary value problems
namely ”large boundaries and small volumes” as pointed out by U. Mosco in a
conference at the Accademia dei Lincei (2002) (see [26]). This interest emerges
naturally in models of transmission problems of absorption or irrigation type
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where surface effects are enhanced. In this context fractal boundaries and frac-
tal layers provide new, interesting settings adequate to this goal. Fractal analysis
could provide appropriate frameworks to physical and biological problems with
dominant surface effects as irrigation models, bronchial systems, root infiltra-
tion, tree foliage and other kinds of similar phenomena.
Here I will deal with second order transmission problems across fractal layers
embedded in Euclidean domains. Second order transmission problems across
smooth layers have been considered in the early seventies in connection with
various applications.
Let me mention only the early work of J. R. Cannon and G. H. Meyer (see [4])
on the flow of oil from a ”reservoir” into a producing oil well and the contribu-
tion of H. Pham Huy and E. Sanchez-Palencia (see[31]) in which second order
transmission problems provide models to describe the heat transfer through an
infinitely conductive (smooth) layer.

From a mathematical point of view H. Attouch in his book (see [2]) chose a
second order transmission problem across a plane layer as interesting example
of singular homogenization.
Let me consider a model problem, (see Figure 1): Ω is the ”square” [0,1]×
[−1/2,1/2] and the thin layer Σε is the neighborhood of the segment Σ of thick-
ness ε i.e.

Σ = {(x,0) : 0 < x < 1} (1.1)

Σε = {(x,y) ∈ Σ : |y|< ε

2
} (1.2)

Figure 1:
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the layer is supposed to have high conductivity: the conductivity coefficient
is the inverse of the thickness:

aε(x,y) =
{ 1

ε
on Σε

1 on Ω\Σε .
(1.3)

The corrisponding energy functional is Fε : H1
0 (Ω)→ R+

Fε(u) =
∫

Ω

aε(x,y)|∇u|2dxdy. (1.4)

As ε goes to zero the sequence of functionals Fε converges (in the weak topol-
ogy of H1(Ω)) to the ”singular” functional F : D0(F)→ R+

F =
∫

Ω

|∇u|2dxdy+
∫

Σ

|ux|2dx. (1.5)

Remark 1.1. Let me stress the fact that the domain of the limit functional F is
smaller than the common domain of the functionals Fε in fact the domain of Fε

is H1
0 (Ω) while D0(F) is the subspace of the functions of H1

0 (Ω) having trace
on Σ belonging to H1

0 (Σ).

Coming back to the point of view of the boundary value problems we note
for any choice of datum f in L2(Ω) the corresponding minimizer u of the total
energy functional satisfies some conditions: the limit layer Σ divides the domain
Ω in two adjacent subdomains Ω1 and Ω2 and we have (see Figure 2)

Figure 2:
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(T.P.)



i) −∆u j = f on Ω j

ii)


u = 0 on ∂Ω

u1 = u2 on Σ

u|Σ = 0 on ∂Σ

iii) ∂u1

∂ν1 + ∂u2

∂ν2 = ”∆Σu” on Σ.

where u j = u|
Ω j , j = 1,2, ∂

∂ν j denotes the exterior normal derivative to the
boundary of Ω j and ∆Σ the Laplace operator on Σ (with homogeneous boundary
condition on ∂Σ). The layer is higher conductive than the surrounding medium
and heat is absorbed by the layer and starts diffusing within it much more effi-
ciently than in the surrounding volume. The normal derivatives from each side
of the layer have a jump across the layer which acts as source term for the
Laplace operator generating the in-layer diffusion. The resulting boundary con-
dition iii) is thus of second order which is in some sense unusual for second
order elliptic problems: moreover the condition has an implicit character since
the source term of the layer equation: the jump of the normal derivatives is not
among the data of the problems but depends on the solution itself.
The plan of this paper is the following: section 2 concerns singular homogeniza-
tion results, section 3 deals with pre-fractal and fractal transmission problems;
finally section 4 is devoted to some numerical results.

2. Singular homogenization results

Let Ω be the square [0,1]× [−1
2 , 1

2 ] and let D be the polygonal sub-domain with
vertices A = (0,0), B = (1,0), C = (1

2 , 1
2
√

3
) and D = (1

2 ,− 1
2
√

3
), let K0 denote

the interval with and points A and B and K the Koch curve (with end points A
and B) generated by the 4 contractive similitudes {ψ1,ψ2,ψ3,ψ4}

ψ1(z) =
z
3
, ψ2(z) =

z
3

ei π

3 +
1
3
,

ψ3(z) =
z
3

e−i π

3 +
1
2

+ i

√
3

2
ψ4(z) =

z+2
3

; (z ∈ C).

Denote V 0 = {A,B}. For each integer n > 0 we consider arbitrary n− tuples of
indices i|n = (i1, i2, . . . , in) ∈ {1,2,3,4}n and we define ψi|n = ψi1 ◦ψi2 ◦ · · · ◦ψin

and for any set G (⊆ R2): Gi|n = ψi|n (G ).
We consider the set of the vertices at the n−generation:

V n =
⋃
i|n

V 0
i|n

and V ∞ =
+∞⋃
n=0

V n (2.1)
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(it holds K =V ∞ the closure in R2) and the polygonal curve at the n−generation

Kn =
⋃
i|n

K0
i|n

. (2.2)

Having in mind the self similarity of the fractal we choose thin layer adapted to
the contractive similitudes generating the Koch curve.
More precisely let Rε the (open) rectangle of vertices P1,P2,P3,P4,

P1 := (
ε

c1
,
ε

2
), P2 := (1− ε

c1
,
ε

2
), P3 := (1− ε

c1
,−ε

2
), P4 := (

ε

c1
,−ε

2
)

T ε
1 the (open) triangle of vertices A,P1,P4 and T ε

2 the (open) triangle of vertices
P2,B,P3 the ”conductive” layer Σ is the union Σε = R

ε ∪T
ε

1 ∪T
ε

2. Now we

Figure 3: Geometry of the layer

make the maps ψi work and (at the n-th step of the iteration procedure) we
construct the thin polygonal layers Σn

ε around the polygonal curve Kn: we put
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Σ
n
ε =

⋃
i|n

Σε i|n
(2.3)

Two different copies of set Σε can not overlap each other they can share
either a vertex or a whole side. This can be done by choosing the opening of
the angles in Σε according to the rotation angle of the similitudes ψi, that is we
choose c1 = tan π

12 and ε ≤ ε0 < c1
2 .

For any (fixed) n we consider a family of functionals Fn
ε in L2(Ω)

Fn
ε (u) =

{ ∫
Ω

an
ε |∇u|2dξ dη i f u ∈ H1

0 (Ω,wn
ε)

+∞ i f u ∈ L2(Ω)\H1
0 (Ω,wn

ε)
(2.4)

where the unbounded conductivity coefficient is

an
ε(ξ ,η) =

{
wn

ε(ξ ,η) i f (ξ ,η) ∈ Σn
ε

1 i f (ξ ,η) 6∈ Σn
ε .

(2.5)

The weight wn
ε is defined in the following way: let P belong to ∂ (Σε)i|n

denote by P⊥ its ”orthogonal” projection on K0
i|n

and by |P−P⊥| the (Euclidean)

distance between P and P⊥ (in R2): then if Q = (ξ ,η) belongs to the segment
of end points P and P⊥ we put

wn
ε(ξ ,η) =

{
2+c2

1
4|P−P⊥|σn i f (ξ ,η) ∈ (T ε

j )i|n j = 1,2
1

2|P−P⊥|σn i f (ξ ,η) ∈ (Rε)i|n

(2.6)

and
wn

ε(ξ ,η) = 1 i f (ξ ,η) 6∈ Σ
n
ε (2.7)

where σn is a positive constant that here as n is fixed does not play any role a
good choice will be essential in the asymptotic theory sketched in section 3. Let
me stress the fact that, more delicate geometry, the conductive coefficient an

ε is
not constant in the thin layers (for fixed n and ε) it is unbounded and belongs to
the Muckenhoupt class A2.
The domain of the functional is a weighted Sobolev space:

H1(Ω,wn
ε) = {u ∈ L2(Ω) :

∫
Ω

|∇u|2wn
εdξ dη < +∞} (2.8)

and H1
0 (Ω,wn

ε) the completion of C∞
0 (Ω) in the norm

‖u‖H1(Ω,wn
ε ) := {

∫
Ω

|u|2dξ dη +
∫

Ω

|∇u|2wn
εdξ dη}

1
2 .

Let me recall now the definition of convergence of functionals introduced in
[23], denoted in the following M-convergence.
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Definition 2.1. A family of functional Fε M−converges to a functional F in
L2(Ω) if

(a) For every vε converging weakly to u in L2(Ω)

limFε(vε)≥ F(u), as ε → 0.

(b) For every u ∈ L2(Ω) there exists u∗ε converging strongly in L2(Ω) such
that

limFε(u∗ε)≤ F(u), as ε → 0.

Remark 2.1. The family of functionals in (2.4) is asymptotically compact in
L2(Ω) according to Definition 2.3.1 in [24]. Hence the M−convergence is equiv-
alent to the Γ−convergence (see Lemma 2.3.2 in [24]), thus we can take in (a)
vε strongly converging to u in L2(Ω).

The (pre-fractal) singular homogenization result is:

Theorem 2.2. In the previous assumptions and n2007/01/01otations for any
choice of (fixed) n the functionals Fn

ε (as ε → 0) M−converge to the functional
Fn where

Fn(u) =
{ ∫

Ω
|∇u|2dξ dη +σn

∫
Kn |∇τu|2ds i f u ∈ D0(Fn)

+∞ i f u ∈ L2(Ω)\D0(Fn)
(2.9)

where
D0(Fn) = {u ∈ H1

0 (Ω) : u|Kn ∈ H1
0 (Kn)}. (2.10)

Here ∇τ denotes the tangential derivative along the sides of the polygonal
curve Kn and H1

0 (Kn) denotes the Sobolev space on the polygonal curve Kn ac-
cording to J. Nečas [30] (see also Remark 3.3). The proof of Theorem 2.1 is long
and technical. I refer to [28] where more general Koch curves are considered.

Remark 2.3. Let me recall that the M-convergence can be characterized in
terms of convergence of the resolvent operators, semigroups and spectral fami-
lies associated with the forms allowing developments and applications (see The-
orem 2.4.1, Corollaries 2.6.1 and 2.7.1 of [24]). However in this paper, I will not
deal with these consequences of Theorem 2.1.

In the previous theorem the step n is supposed fixed a natural question is
then what happens if n goes to infinity and ε goes to zero simultaneously; the
following Theorem 2.2 answers to this question.
Actually when n increases the pre-fractal curves Kn develop increasing lengths
up to reach the infinite length of the limit fractal: the ”Euclidean pre-fractal
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energies” (2.4) must be re-normalized and this amounts to take into account
the ”structural constants” of the limit fractal: the number of the similitudes, the
contraction factor, the Hausdorff dimension and the scaling factor of the energy.
Let me recall some basic results concerning our case.
The Koch K is a d−set with respect to the Hausdorff measure H d : d = lg4

lg3 , on
K is defined the energy form EK [u] limit of an increasing sequence of quadratic
forms constructed by finite difference schemes{

EK [u] = limn→+∞ E(n)
K [u]

E(n)
K [u] = 4n

∑i|n
(u(ψi|n (A))−u(ψi|n (B)))2 (2.11)

the form EK [u] turns out to be a regular Dirichlet form on L2(K,H d) with
(dense) domain D0(EK) (see [7] and also [6] for definitions and details).
As previously let Σε be the ”ε-neighborhood” of K0 union of the rectangle Rε

and the two triangles T ε
j : j = 1,2, and let Σn

ε be as in (2.3) but now ε must
depend on n: ε = ε(n).
The ”weighted” functional in L2(Ω) is

En(u) =
{ ∫

Ω
an(ξ ,η)|∇u|2dξ dη i f u ∈ H1

0 (Ω,wn)
+∞ i f u ∈ L2(Ω)\H1

0 (Ω,w2007/01/01n)
(2.12)

where the unbounded conductivity coefficient is

an(ξ ,η) =

{
ρn wn(ξ ,η) i f (ξ ,η) ∈ Σn

ε(n)
1 i f (ξ ,η) 6∈ Σn

ε(n).
(2.13)

The weight wn is defined in the following way: let P belong to ∂ (Σε(n))i|n ,
denote by P⊥ its ”orthogonal” projection on K0

i|n
and by |P−P⊥| the (euclidean)

distance between P and P⊥ (in R2), if (ξ ,η) = Q belongs to the segment of end
points P and P⊥ then we set:

wn(ξ ,η) =

{
2+c2

1
4|P−P⊥|σ0 i f (ξ ,η) ∈ (T ε(n)

j )i|n j = 1,2
1

2|P−P⊥|σ0 i f (ξ ,η) ∈ (Rε(n))i|n

(2.14)

and
wn(ξ ,η) = 1 i f (ξ ,η) 6∈ Σ

n
ε(n) (2.15)

where σ0 is a fixed positive constant.
The relative Sobolev spaces are

H1(Ω,wn) = {u ∈ L2(Ω) :
∫

Ω

|∇u|2wndξ dη < +∞} (2.16)
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and H1
0 (Ω,wn) the completion of C∞

0 (Ω) in the norm

‖u‖H1(Ω,wn) := {
∫

Ω

|u|2dξ dη +
∫

Ω

|∇u|2wndξ dη}
1
2 .

We are now in position to enounce:

Theorem 2.4. In the previous assumptions and notations let ρn = (3d−1)n and
let ε(n) → 0 as n → +∞. Then the sequence of the functionals En defined in
(2.12), M−converges to the functional E:

E(u) =
{ ∫

Ω
|∇u|2dξ dη +σ0EK [u] i f u ∈ D0(E)

+∞ i f u ∈ L2(Ω)\D0(E)
(2.17)

where
D0(E) = {v ∈ H1

0 (Ω) : v|K ∈ D0(EK)}. (2.18)

I refer to [29] for proofs and details.
The geometry is ”delicate” in Theorem 2.1 and the conductivity coefficient an

is unbounded and belongs to the Muckenhaupt class A2 moreover here a new
term appears the re-normalizing factor ρn that takes into account the Hausdorff
dimension d of the Koch curve, the number and the contraction factor of the
similitudes and the scaling factor of the energies (see (2.11)).

3. Transmission problems

The study of the fractal transmission problem formally written in Section 1 is
delicate: the rigorous definition of the operators and functional spaces in condi-
tion i)–iii) is one of the main technical difficulty of this type of problem: how-
ever the condition in (T.P.) can be seen as the Euler conditions satisfied by the
minimizer of a suitable energy functional. Hence a natural approach is to prove
existence and uniqueness of the weak solution by variational principles and then
to establish regularity results in order to state rigorously the strong formulation
(T.P.). Moreover an asymptotic ”constructive” theory for the pre-fractal approx-
imation is an important step toward the numerical analysis of the problem and in
this spirit the functionals Fn in (2.9) and the functional E in (2.17) can be related
by choosing in an appropriate way, the constants σn in (2.6). More precisely the
following results hold:

Proposition 3.1. The spaces D0(Fn) and D0(E) given in Section 2 are Hilbert
spaces under the intrinsic norms:

‖u‖D0(Fn) = (Fn(u))
1
2

‖u‖D0(E) = (E(u))
1
2

}
(3.1)
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Moreover, the bilinear forms αn(·, ·) and α(·, ·) associated with the functionals
Fn and E, with domains D0(Fn) and D0(E) are regular, strongly local Dirichlet
forms in L2(Ω).

(see [6] and also [16] and [20]). As consequence we have:

Corollary 3.2. Given f ∈ L2(Ω), there exist a unique un ∈D0(Fn) and a unique
u ∈ D0(E) such that

αn(un,v) =
∫

Ω

f vdxdy, for every v ∈ D0(Fn). (3.2)

α(u,v) =
∫

Ω

f vdxdy, for every v ∈ D0(E). (3.3)

We recall that the solutions un of (3.2) and (3.3) attain the minimum in the
corresponding functionals.

Remark 3.3. Also in the classical case of [31], the regularity of the normal
derivative for problems of this type is not obvious at all. Actually the solution v
of the following Dirichlet problem, in an open regular set G of R2,{

−∆v = f in G
v = h on G

with f ∈ L2(G ) and h∈H1(∂G ), is in H3/2(G ); the additional information, that
the normal derivative ∂v

∂ν
belongs to L2(G ), can not be deduced directly from

the fact that v ∈ H3/2(G ) by using the classical trace theorem.

In [24] the following regularity results have been proved, remember that Kn

divides Ω in two adjacent sub-domains Ω
j
n, j = 1,2.

Theorem 3.4. Let un be the variational solution (in Corollary 3.1) then we have
that

un ∈ C(Ω) (3.4)

u1
n ∈ H

8
5−ε(Ω1

n), u2
n ∈ H

7
4−ε(Ω2

n) (3.5)

∂u j
n

∂ν j
∈ L2(Kn), j = 1,2 (3.6)

in particular conditions ii), are satisfied pointwise, i) and iii) almost everywhere
and

∆Kn = σnD2
` . (3.7)
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Here u j
n is the restriction of un to Ω

j
n, ∂u j

n
∂ν j

the outward ”normal derivatives”,

D2
` the ”piecewise” second order tangential derivative along the sides of Kn.

Remark 3.5. Let me note that the discrepancy between the Sobolev regularity
exponents for u1

n and u2
n is due to the geometry of the polygonal domains Ω1

n
and Ω2

n which have different (largest) angles
( 5

3

)
π and

( 4
3

)
π respectively. As

it is know from the regularity theory, the regularity of the solutions improves if
the opening of the inner angles becomes smaller. This effect holds on, despite
the implicit character of the equations, and the dependence of the regularity
exponent on the angle remains unperturbed. In [20] we have proved for the
”classical” case (n = 0) that both the restrictions u j

0 belong to the Sobolev space
H2(Ω j

0) j = 1,2.

For the present application, in my opinion, the more convenient definition
of Sobolev spaces on polygonal boundaries is that given by Brezzi and Gilardi
in [3] (definition 2.27). If 0≤ s≤ 3

2 the Sobolev space Hs(Kn) defined in [3] co-
incides, with equivalent norms, with the Sobolev space defined in Nečas [30] by
local Lipschitz charts. (see Theorem 2.23 in [3]). In particular the Sobolev space
H1

0 (Kn) coincides with the space {v ∈C0(Kn) : v|M ∈ H1(M) ∀M ∈ Kn},more
generally, for s≥ 1, we have Hs(Kn) = {u∈H1(Kn), u|M ∈Hs(M) ∀M ∈Kn};
where M denotes a segment at the n-generation. Roughly speaking in the defi-
nition of the Sobolev space, natural in this context, compatibility conditions on
the vertices are required for the function and not for the derivatives.

Finally the Lions-Magenes space H
1
2

0,0(K
n) is defined as: {u ∈ L2(Kn) : ∃v ∈

H1
0 (Ω) : v|Kn = u} equipped with the quotient norm

‖u‖
H

1
2

0,0(Kn)
= inf

v∈H1
0 (Ω),v|Kn =0

‖v‖H1(Ω).

Also in the fractal case, the variational solution u satisfies a second order trans-
mission condition which is obtained via integration by parts and Green formulas
in each sub-domains Ω j. The normal derivatives have to be intended in a suitable
sense, that is, a dual sense, namely they belong to the dual of the subspace B2,2

β ,0

of the Besov space B2,2
β

where β is equal to d
2 (we recall that d is the Hausdorff

dimension of K). Roughly speaking B2,2
β ,0 is the fractal analogous of the Lions-

Magenes space H
1
2

0,0(Γ) that is defined when Γ is a Lipschitz surface. Then the
variational solution u satisfies the transmission condition in a dual sense: that is
the sense of the dual of the domain D0(EK). More precisely the following result
has been proved in [16]:

Theorem 3.6. Let u be the variational solution of Corollary 3.1 then we have
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that

u j ∈ H2
loc(Q

i) (3.8)
∂u j

∂ν j
∈

(
B2,2

β ,0(K)
)′

, β =
d
2
, j = 1,2 (3.9)

and the transmission condition iii) holds in (D0(EK))′ that is〈
∆Ku|K ,z

〉
(D0(EK))′,D0(EK) =

〈[
∂u
∂ν

]
K

,z
〉

(D0(EK))′,D0(EK)
(3.10)

where
(

B2,2
β ,0(K)

)′
is the dual of B2,2

β ,0(K), (D0(EK))′ is the dual of D0(EK), ∆K is

the variational operator from D0(EK) → (D0(EK))′ and < ·, · >(D0(EK))′,D0(EK)

is the duality pairing between (D0(EK))′ and D0(EK).

Here u j is the restriction to Ω j, ∂u j

∂ν j
, j = 1,2 the outward ”normal derivative”

and
[

∂u
∂ν

]
= ∂u1

∂ν1
+ ∂u2

∂ν2
the jump of the normal derivative.

We now study the convergence property of problem (3.2) as n → +∞. Here a
correct choice of σn is essential.

Theorem 3.7. Let u be the variational solution of the fractal transmission prob-
lem in the domain Ω, with layer K the (fractal) Koch curve. For every inte-
ger n ≥ 1, let un be the variational solution of the transmission problem in Ω

with pre-fractal layer Kn. If we scale the energy functionals (2.9), by taking
σn = σ0(3d−1)n then as n → ∞ we find:

un → u strongly in H1
0 (Ω) (3.11)∫

Kn

∂u j
n

∂ν j φ d` →
〈

∂u j

∂ν j ,φ

〉
(B2,2

β ,0(K))′,B2,2
β ,0(K)

∀φ ∈ H1
0 (Ω) (3.12)

β = d/2, j = 1,2∫
Kn

∆Knunφd` → 〈∆Ku,φ〉(D0(EK)′,D0(EK) ∀φ ∈ D0(E). (3.13)

where ∆Kn is defined in (3.7) and ∆K is the variational Laplacean as in The-
orem 3.2.
A stronger result is indeed proved in [21]: the M-convergence of the pre-fractal
energies Fn defined in (2.9) to the fractal energy E defined in (2.17).

Remark 3.8. From the probabilistic point of view, Brownian motions penetrat-
ing fractal sets – a probabilistic counterpart of the analytic variational approach
adopted here – have been constructed by Lindstrøm [22] and Kumagai [14],
however without reference to transmission problems and related transmission
conditions.
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4. Numerical results

Let me conclude this paper with some numerical results obtained by E. Vacca
in her PHD Thesis (see [33]).

Consider the pre-fractal transmission problems:the pre-fractal Koch curve
Kn that divides Ω in two adjacent sub-domains Ω1

n and Ω2
n (see Figure 4). The

Figure 4:

variational solution un enjoys some regularity properties (see [33] and also The-
orem 3.1). In particular we have:

Theorem 4.1. Let un be the variational solution (as in Corollary 3.1). Then

rµ j
j Dαu j

n ∈ L2(Ω j
n), |α|= 2, j = 1,2, µ1 >

2
5
, µ2 >

1
4

(4.1)

un ∈ H2(Kn). (4.2)

Where r j = r j(P) denotes the distance of the point P from the set of the vertices
of the ”reentrant” corners of Ω j.

Remark 4.2. There is a strict relation between the weights in Theorem 4.1 and
the smoothness ”exponent” in the fractional Sobolev spaces (see Theorem 3.1);
let me stress the fact that the value of weights µ j plays an important role in the
error estimate as we will see in Theorem 4.2 (following).

The pre-fractal problems are approximated by the ”h-version” of Galerkin
finite element method. Let me recall the main definitions:

Definition 4.1. A triangulation T j = T j(h) of Ω j is regular and conformal if
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• Ω
j =

⋃
T∈T j T forever:

• Ṫ 6= /0,∀ T ∈T j

• Ṫ1∩ Ṫ2 = /0, ∀ T1,T2 ∈T j : T1 6= T2

• T1∩T2 6= /0, T1 6= T2 ⇒ T1∩T2 = edge or vertex

• ∃ σ > 0 such that maxT∈T i

(
hT
ηT

)
≤ σ

where hT = diam(T ) and ηT = sup{diam(B) : B ball ⊂ T } .

Here h = sup
{

hT : T ∈T j, j = 1,2
}

denotes the size of the triangulation
T j.

The choice of an appropriate triangulation is a crucial point in order to ob-
tain more precise discrete solutions and better error estimates. From now on
n denotes the step of iteration in the pre-fractal curve Kn: hence as n goes to
infinity the ”size” of the triangulation h = h(n) goes to zero.

Definition 4.2. The family of triangulations T j
n,h, h ∈ R, n ∈ N, j = 1,2, is

”adapted” to our problem if

• the vertices of the pre-fractal curves Kn are nodes of the triangulations

• the meshes are conformal and regular according to Definition 4.1

• ∃ σ > 0 such that:{
hT ≤ σh

1
1−µ j ∀T ∈T j

n,h : T ∩Kn 6= /0
hT ≤ σh · infT rµ j

j ∀T ∈T j
n,h : T ∩Kn = /0

where µ1 = 2
5 + ε, µ2 = 1

4 + ε, 0 < ε ”small”.

Here h = h(n) = sup
{

diam(T ),T ∈T j
n,h, j = 1,2

}
is the size of the triangu-

lation and r j = r j(P) denotes the distance of the point P from the set of the
vertices of the ”reentrant” corners of Ω j.

Let V 1,h
n denote the ”discrete” space:

V 1,h
n =

{
v ∈C0 (

Ω̄
)
, v = 0 on ∂Ω, v|T polynomial of degree 1

}
that is a subspace of the domain D0(Fn), (see 2.10), hence there exist a unique
”discrete” solution in V 1,h

n that minimizes the total energy:

uh,n = argminV 1,h
n

{
1
2

Fn[u]−
∫

Q
f u dQ

}
(4.3)

(see also Corollary 3.1).
The following estimates hold:
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Theorem 4.3. Let un be the variational solution (see Corollary 3.1) and uh,n the
”discrete solution” in V 1,h

n (see (4.3)).
Then we have:

‖un−uh,n‖D0(Fn) ≤Ch

{
2

∑
j=1

∑
|α|=2

‖rµ j
j Dαu j

n‖L2(Ω
j
n)+‖un‖H2(K)+‖un‖H1

0 (Ω)

}
(4.4)

where C is independent from h and n, h = h(n) = sup{diam(T ), T ∈T j
n,h} and

r j = r j(P) denotes the distance of the point P from the set of the vertices of the
”reentrant” corners of Ω j.

Remark 4.4. In the previous assumptions and notations, using (ordinary) frac-
tional Sobolev spaces we would obtain a worse estimate: i.e.:

‖un−uh,n‖D0(Fn) ≤Ch
3
5−ε

{
‖u1

n‖H
8
5−ε (Ω1)

+‖u2
n‖H

7
4−ε (Ω2)

+‖un‖H2(Kn)

}
. (4.5)
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son, Paris. 1967.

[31] H. Pham Huy - E. Sanchez-Palencia, Phénomènes des transmission à
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1997.

[33] E. Vacca, Galeakin approximation for Highly Conductive Layers, PHD
Thesis Dipartimento MeMoMat (2006).

[34] A.D. Venttsel, On boundary conditions for multidimensional diffusion pro-
cesses, Teor. Veroyatnost. i Primenen. 4 (1959), 172-185; English transla-
tion: Theor. Probability Appl. 4 (1959), 164-177.

MARIA AGOSTINA VIVALDI
Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate,
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