ATTUALE FORMULAZIONE DELLA TEORIA DEGLI OPERATORI VICINI E ATTUALE DEFINIZIONE DI OPERATORE ELLITTICO

SERGIO CAMPANATO

A Francesco Guglielmino nel Suo 70^{mo} compleanno

Let A(u) = a(x, H(x)) be a second order non linear differential operator satisfying the ellipticity condition (A_q) (see definition (23)). For each $f \in L^q(\Omega)$, q > 1, the following Dirichlet problem is studied

$$\begin{cases} u \in H^{2,q} \cap H_0^1(\Omega) \\ A(u) = f & \text{in } \Omega, \end{cases}$$

making use of the theory of "nearness" between operators introduced in the first part of the paper.

1. Siano

B un insieme

 \mathcal{B}_1 uno spazio metrico completo con metrica δ

 $A \in B$ applicazioni $\mathcal{B} \to \mathcal{B}_1$ con B bigettiva.

In queste ipotesi è noto che anche \mathcal{B} è metrico completo con la metrica indotta

(1)
$$d_B(u, v) = \delta(B(u), B(v)), \quad \forall u, v \in \mathcal{B}.$$

Diamo la definizione di A

è p.p. (piccola perturbazione) della bigezione B.

Entrato in Redazione il 18 aprile 1997.

Definizione 1. Si dice che A è una p.p. di B di costante k se $\exists k \in (0, 1)$ tale che, $\forall u, v \in \mathcal{B}$, è

(2)
$$\delta(A(u), A(v)) \le k\delta(B(u), B(v)).$$

Si ha questo teorema, che è una facile, ma utile generalizzazione di un classico teorema di Banach-Caccioppoli:

Teorema 1. Se $A \stackrel{.}{e} una$ p.p. $di \stackrel{.}{B} allora \exists_1 u \in \mathcal{B}$ (punto fisso) tale che

$$(3) A(u) = B(u).$$

Infatti dall'ipotesi segue che $B^{-1}A$ è una contrazione di $\{\mathcal{B}, d_B\}$ in sè di costante k. Allora, per un classico teorema di Banach-Caccioppoli, $\exists_1 u \in \mathcal{B}$ tale che

$$B^{-1}A(u) = u$$

ossia

$$A(u) = B(u)$$
.

2. Rinforziamo le ipotesi di struttura sullo spazio \mathcal{B}_1 in modo da poter dare la definizione di *operatori* $\mathcal{B} \to \mathcal{B}_1$ *vicini*.

La definizione di *vicino* è nata originariamente supponendo \mathcal{B}_1 *Hilbert*, ma poi si è estesa al caso di \mathcal{B}_1 *Banach* e attualmente al caso di \mathcal{B}_1 *spazio lineare*, *metrico completo con metrica* δ *invariante* (*per traslazioni*).

Definizione 2. Diciamo che la metrica δ su \mathcal{B}_1 è invariante se è

(4)
$$\delta(u+a, v+a) = \delta(u, v) \quad \forall u, v, a \in \mathcal{B}_1.$$

Si vede facilmente che ciò equivale a dire che $\forall u, v \in \mathcal{B}_1$ è

(5)
$$\delta(u, v) = \delta(u - v, 0).$$

Questo succede ad esempio se \mathcal{B}_1 è s. normato e $\delta(u, v) = \|u - v\|_{\mathcal{B}_1}$ ma non è vero il viveversa.

Quindi la struttura di spazio lineare, metrico completo con metrica δ invariante è qualcosa di intermedio tra la

E' comunque sufficiente per dare la definizione di applicazioni vicine.

Definizione 3. Si dice che A è vicina a B se $\exists \alpha > 0$ ed $\exists k \in (0, 1)$ tali che $\forall u, v \in \mathcal{B}$ è

(7)
$$\delta(B(u) - \alpha A(u), B(v) - \alpha A(v)) \le k\delta(B(u), B(v)).$$

Ossia se $\exists \alpha > 0$ tale che $(B - \alpha A)$ è p.p. di B di costante k.

Questo non è, in generale, equivalente a dire che B è vicina ad A, inoltre si osservi che la vicinanza di A a B dipende dalla scelta degli spazi \mathcal{B} e \mathcal{B}_1 .

La filosofia che sta alla base della definizione di applicazioni vicine è la seguente: Se A e B sono applicazioni $\mathcal{B} \to \mathcal{B}_1$, con B bigettiva, e se l'operatore B ha certe proprietà di esistenza, unicità, regolarità, ecc., lo stesso succede per l'operatore A se questo è vicino a B.

Il primo problema è quello di dare una buona definizione di vicino in modo che si realizzi l'obiettivo detto sopra. La Definizione 3 che abbiamo dato sembra avere questa proprietà anche con \mathcal{B}_1 di struttura piuttosto generale.

Nelle ipotesi da noi formulate su A, B e \mathcal{B} , \mathcal{B}_1 , la prima conferma alla nostra aspettativa si è avuta nel campo della esistenza e unicità, si è infatti dimostrato il seguente teorema

Teorema 2. L'applicazione $A : \mathcal{B} \to \mathcal{B}_1$ è bigettiva (\(^1\)) se e solo se A è vicina a una $B : \mathcal{B} \to \mathcal{B}_1$ che è bigettiva.

Dimostrazione. Il solo se discende dal fatto che ogni $A: \mathcal{B} \to \mathcal{B}_1$ è vicina a se stessa. Infatti se nella Definizione 3 assumiamo $\alpha = 1$ e B = A si ottiene, $\forall u, v \in \mathcal{B}$, che

$$\delta(A(u) - A(u), A(v) - A(v)) = 0$$

mentre

$$\delta(A(u), A(v)) \geq 0.$$

Supponiamo allora B bigettiva e proviamo che anche A è bigettiva. Infatti, $\forall u \in \mathcal{B}$ è $A(u) \in \mathcal{B}_1$ e, $\forall f \in \mathcal{B}_1$, risolvere l'equazione

$$A(u) = f, \ u \in \mathcal{B}$$

equivale a risolvere l'equazione

(9)
$$B(u) = B(u) - \alpha A(u) + \alpha f = M(u), \ u \in \mathcal{B}.$$

⁽¹⁾ Lo stesso vale per la iniettività o la surgettività.

Ma B è bigettiva, per ipotesi, ed M(u) è una p.p. di B (²). Ne segue, per il Teorema 1, che $\exists_1 u \in \mathcal{B}$ tale che B(u) = M(u).

Questa u è la soluzione di (9) e quindi di (8).

3. In questo paragrafo ci occupiamo del caso in cui A(u) è un operatore differenziale del secondo ordine, per semplicità, di tipo quasi-base.

 Ω è un aperto limitato di \mathbb{R}^n , $n \geq 2$, di classe C^2 , di punto $x = (x_1, \ldots, x_n)$.

N è un intero ≥ 1 .

 $u = (u^1, \dots, u^N)$ è un vettore $\Omega \to \mathbb{R}^N$ e

$$D_i u = \frac{\partial u}{\partial x_i}, \quad i = 1, \dots, n,$$

$$Du = (D_1u, \ldots, D_nu),$$

$$H(u) = \{D_{ij}u\}, \quad i, j = 1, \dots, n.$$

Quindi Du è un vettore di \mathbb{R}^{nN} ed H(u) è un elemento di \mathbb{R}^{n^2N} , cioè una matrice $n \times n$ di vettori di \mathbb{R}^N .

Indichiamo con $\xi = \{\xi_{ij}\}$ un generico elemento di \mathbb{R}^{n^2N} . $a(x,\xi)$ è un vettore di \mathbb{R}^N , definito in $\Omega \times \mathbb{R}^{n^2N}$, misurabile in x, continuo in ξ e tale che a(x,0) = 0.

Operatore differenziale del secondo ordine, di tipo quasi-base, è l'operatore

(10)
$$A(u) = a(x, H(u)).$$

In particolare, se A(u) è lineare, allora

(11)
$$a(x, H(u)) = \sum_{ij=1}^{n} A_{ij}(x)D_{ij}u$$

dove $A_{ij}(x)$ sono matrici $N \times N$ di classe $L^{\infty}(\Omega)$.

$$\delta(M(u), M(v)) = \delta(B(u) - \alpha A(u), B(v) - \alpha A(v)) \le$$
$$\le k\delta(B(u), B(v))$$

perchè A è vicina a B.

⁽²⁾ Infatti, poichè δ è invariante, $\forall u, v \in \mathcal{B}$ è

Dato $f \in L^q(\Omega), \ f(x) \in \mathbb{R}^N$ e q > 1, consideriamo il problema di Dirichlet

(12)
$$\begin{cases} u \in H^{2,q} \cap H_0^{1,q}(\Omega) \\ A(u) = f \text{ in } \Omega. \end{cases}$$

Chiamiamo condizione di ellitticità sull'operatore (11) ogni condizione algebrica sui coefficienti A_{ij} che garantisca l'esistenza e unicità del problema di Dirichlet (12).

Riferendoci agli operatori lineari (11), poniamo

 $A(x) = \{A_{ii}(x)\}$ matrice $n \times n$ di vettori di \mathbb{R}^N cioè elemento di \mathbb{R}^{n^2N}

 I_N è la matrice identica $N \times N$

 $I = \{\delta_{ij}I_N\}$ è la matrice identica $nN \times nN$.

Il sistema (11) si scrive più semplicemente: (A(x)|H(u)). Supponiamo di sapere, dalla teoria lineare, che il problema di Dirichlet

(13)
$$\begin{cases} u \in H^{2,q} \cap H_0^{1,q}(\Omega) \\ \Delta u = f \text{ in } \Omega \end{cases}$$

ha, $\forall f \in L^q(\Omega)$ una e una sola soluzione u e questa verifica la maggiorazione

(14)
$$||H(u)||_{L^{q}(\Omega)} \le C(q) ||\Delta u||_{L^{q}(\Omega)}$$

dove la costante C(q) è ≥ 1 e dipende dal valore di q e dalla geometria di Ω . Ad esempio se q=2 e Ω è convesso, si ha la maggiorazione di Talenti

(15)
$$\int_{\Omega} \|H(u)\|^2 dx \le \int_{\Omega} \|\Delta u\|^2 dx, \quad \forall u \in H^2 \cap H^1_0(\Omega)$$

ossia, se Ω è convesso, è C(2) = 1.

Ritorniamo al problema di Dirichlet (12). Dimostriamo l'esistenza e unicità della soluzione formulando sull'operatore (11) un'ipotesi di ellitticità che garantisca che l'operatore $\sum_{ij=1}^{n} A_{ij}(x)D_{ij}u$ è vicino all'operatore $C(q)\Delta u$, e quindi al-

l'operatore Δ , intesi entrambi come operatori $H^{2,q}\cap H^{1,q}_0(\Omega)\to L^q(\Omega)$. Fatto ciò, per il Teorema 2, la tesi sarà dimostrata.

A tal fine imponiamo al vettore $a(x, \xi) = \sum_{ij} A_{ij}(x) D_{ij} u$ di verificare la seguente condizione (A_q) (o condizione di ellitticità o condizione di Cordes) (A_q) Esistono tre costanti $\alpha > 0$, $\gamma > 0$ e $\delta \geq 0$, con $\gamma + \delta < 1$, tali che $\forall \xi \in \mathbb{R}^{n^2 N}$ e $x \in \Omega$ è

(16)
$$\|C(q)\sum_{i}\xi_{ii} - \alpha\sum_{ij}A_{ij}(x)\xi_{ij}\|_{N} \leq \gamma \|\xi\| + \delta \|C(q)\sum_{i}\xi_{ii}\|_{N}.$$

Ipotizzata questa condizione (A_q) , si ha $\forall u \in H^{2,q} \cap H_0^{1,q}(\Omega)$

(17)
$$A = \int_{\Omega} \|C(q)\Delta u - \alpha \sum_{ij} A_{ij}(x) D_{ij} u\|_{N}^{q} dx \le \int_{\Omega} \left(\gamma \|H(u)\| + \delta \|C(q)\Delta u\|_{N}\right)^{q} dx.$$

A questo punto ricordiamo il seguente lemma

Lemma. Se q > 1, $A \ge 0$, $B \ge 0$ allora $\forall \varepsilon > 0$ si ha la maggiorazione

$$(18) \qquad (A+B)^q \le (1+\varepsilon)^{q-1}A^q + \left(1 + \frac{1}{\varepsilon}\right)^{q-1}B^q = F(\varepsilon) \,(^3).$$

Quindi, per la (18), dalla (17) segue che $\forall u \in H^{2,q} \cap H_0^{1,q}(\Omega)$ e $\forall \varepsilon > 0$

$$\mathcal{A} \le \int_{\Omega} \left[(1+\varepsilon)^{q-1} \gamma^q \|H(u)\|^q + \left(1 + \frac{1}{\varepsilon}\right)^{q-1} \delta^q \|C(q)\Delta u\|_N^q \right] dx$$

e per la (14) si ha che $\forall \varepsilon > 0$

$$\mathcal{A} \leq \left\{ (1+\varepsilon)^{q-1} \gamma^q + \left(1 + \frac{1}{\varepsilon}\right)^{q-1} \delta^q \right\} \int_{\Omega} \|C(q) \Delta u\|_N^q \, dx.$$

Scelto $\varepsilon = \delta/\gamma$ si ottiene, $\forall u \in H^{2,q} \cap H_0^{1,q}(\Omega)$,

(19)
$$A \leq (\gamma + \delta)^q \int_{\Omega} \|C(q)\Delta u\|_N^q dx$$

⁽³⁾ Infatti la funzione $F(\varepsilon)$ ha il minimo nel punto $\varepsilon = B/A$ e $F(B/A) = (A+B)^q$, in quanto $F'(\varepsilon) = 0$ per $\varepsilon = B/A$, $F'(\varepsilon) < 0$ per $0 < \varepsilon < B/A$ e $F'(\varepsilon) > 0$ per $\varepsilon > B/A$.

e quindi, poichè $\gamma + \delta < 1$, l'operatore $\sum_{ij=1}^{n} A_{ij}(x)D_{ij}u$ è vicino all'operatore $C(q)\Delta u$, e quindi al Δu .

Ricordiamo che, se l'operatore A(u) è l'operatore lineare (11), la condizione (A_a) equivale alla cosiddetta condizione di Cordes

(20)
$$\frac{(A|I)}{\|A\|} \ge \sqrt{\|I\|^2 - \left(\frac{\gamma}{C(q)} + \delta \|I\|\right)^2}.$$

Infatti dalla condizione (A_q) segue che

$$(A(x) \mid I) \ge 0$$

e la condizione (A_q) è equivalente alla condizione

$$||C(q)I - \alpha A(x)|| \le \gamma + \delta C(q)||I||.$$

E quindi, quadrando ambo i membri, si ha la condizione

(21)
$$P(\alpha) = \alpha^2 ||A||^2 - 2\alpha C(q)(A|I) + C^2(q)||I||^2 - (\gamma + \delta C(q)||I||)^2 < 0.$$

Ma la (21) è possibile per un $\alpha > 0$, se e solo se

(22)
$$\min_{\alpha>0} P(\alpha) = P(\alpha_0) \le 0 \quad \text{con} \quad \alpha_0 > 0.$$

Con un facile calcolo si trova che

$$\alpha_0 = \frac{C(q)(A|I)}{\|A\|^2}$$

e

$$P(\alpha_0) = C^2 ||I||^2 - (\gamma + \delta C ||I||)^2 - \frac{C^2 (A|I)^2}{||A||^2}.$$

Per cui la condizione $P(\alpha_0) \le 0$ è proprio la condizione di Cordes (20).

La condizione di ellitticità (A_q) si può enunciare anche se l'operatore a(x, H(u)) è non lineare. In tal caso la condizione (A_q) si enuncia nel seguente modo

 (A_q) Esistono tre costanti $\alpha > 0$, $\gamma > 0$ e $\delta \ge 0$, con $\gamma + \delta < 1$, tali che, per $x \in \Omega$ e $\forall \xi, \tau \in \mathbb{R}^{n^2N}$

(23)
$$\|C(q)\sum_{i}\xi_{ii} - \alpha[a(x,\xi+\tau) - a(x,\tau)]\|_{N} \le \gamma \|\xi\| + \delta \|C(q)\sum_{i}\xi_{ii}\|_{N}.$$

Sempre nell'ipotesi che il vettore $a(x, \xi)$ sia misurabile in $x \in \Omega$ e continuo in $\xi \in R^{n^2N}$.

Anche nel caso non lineare si prova che, se Ω è di classe C^2 , l'operatore a(x, H(u)) è vicino all'operatore Δu , intesi come operatori $H^{2,q} \cap H_0^{1,q}(\Omega) \to L^q(\Omega)$ e quindi $\forall f \in L^q(\Omega)$ il problema di Dirichlet

(24)
$$\begin{cases} u \in H^{2,q} \cap H_0^{1,q}(\Omega) \\ a(x, H(u)) = f \text{ in } \Omega \end{cases} {}^{4})$$

ha una e una sola soluzione u.

La soluzione u del problema di Dirichlet (24), sia nel caso lineare che in quello non lineare, verifica la seguente maggiorazione

(25)
$$||H(u)||_{L^{q}(\Omega)} \leq \frac{\alpha}{1 - (\gamma + \delta)} ||f||_{L^{q}(\Omega)}.$$

Infatti, per il fatto che a(x, H(u)) è vicino a $C(q)\Delta u$, si ha che (⁵)

$$||C(q)\Delta u||_{L^{q}(\Omega)} \le ||C(q)\Delta u - \alpha a(x, H(u))||_{L^{q}(\Omega)} + \alpha ||f||_{L^{q}(\Omega)} \le$$
$$\le (\gamma + \delta)||C(q)\Delta u||_{L^{q}(\Omega)} + \alpha ||f||_{L^{q}(\Omega)}.$$

Da cui

$$||C(q)\Delta u||_{L^q(\Omega)} \le \frac{\alpha}{1 - (\gamma + \delta)} ||f||_{L^q(\Omega)}.$$

Di qui segue la (25), ricordando l'ipotesi (14).

Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56100 Pisa (ITALY)

⁽⁴⁾ Con a(x, H(u)) non lineare.

^{(&}lt;sup>5</sup>) Cfr. la (19).