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For ¢ > 1, Q2 a bounded open set in R”, the grand Sobolev space

Wol’q)(Q) consists of all functions u € [ Wg‘q_g(Q) such that
O<e<g—1

1

& q-¢
1.1 o= S — Vuli=¢d 00.
(L) il = sup [|Q|/Q| ul x} <

O<e<g—1

This space, slightly larger than W(i "4(R), was introduced in [16] in connection

with regularity properties of the Jacobians.

For ¢ = n in [9] imbedding theorems of Sobolev type were proved for

functions u € WOI’")(Q).

Here we report on recent use of grand Sobolev spaces to solve variational

problems [14], [18].

Entrato in Redazione il 7 maggio 1997.
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1. The grand Sobolev space W19,

Let © be a bounded domain in R"”, n > 2. For ¢ > 1 let us introduce a
space slightly larger than L9(€2).
The grand L9-space, denoted by LY = L%(Q) consists of functions h €
(| L77%(K2) such that

O<e<qg—1

(1.1) lhlly = sup [sjﬁ|h|q-€dx]“<oo
Q

O<e<g—1

where fQ denotes the integral mean over 2.

Note that || - |4 is a norm and L? () is a Banach space.

This space was introduced in [16] in connection with regularity properties of the
Jacobians, see also [11].

The Marcinkiewicz space L9 *°(2) = weak-L9(2) and the Zygmund space
L?log™* L(R2), a > 0, are defined according to the norms

(1.2) AllLs = sup IEI37L |h|dx
ECQ E

hl|? h
. log™ <e—|— 'XD dx < 1}.

LY C LY c L?

A3) Nl parggey = inf{k >0 ;7[
Q

The inclusions with grand L?-space

LY CLllog ' Lc L ()L log™* L
a>1
hold (see [11]).
L™ is not dense in L%* nor in L?. In [2] the following formulas for the
distance to L™ in these space were proved:

(1.4) distae(h, L) = lim sup |E|$7ﬁ \h| dx
E

|[E|—=0

(1.5) dist,o(h, L) = lim sup |:87£ 7|9 dx] o
Q

e—0
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We shall indicate by Lg) the closure of L*°.
The grand Sobolev space W'9(Q2) consists of all functions

ue ﬂ Whi—e(Q)

O<e<g-1
such that Vu € L9(Q), equipped with the norm
lull o = 1Vull o + llull 0 -

We shall also consider the space WO1 ’q)(Q) which consists of all functions u

belongingto (1) Wol’q_s(Q) such that the norm
O<e<qg—1

lellyy o = 1IVull Lo

is finite.
In the case ¢ = n an imbedding theorem of Sobolev-Trudinger type was
established in [9] (see also [5],[6])

Theorem 1.1. There exist c; = c1(n), c; = ca(n) such that for u € Wol’")(Q)

|u
7[ exp ] dx <,
Q crl S - flufl gy

This means that WO1 " is imbedded in the Orlicz space EXP, (¢ = 1)
which is defined according to the norm

o

I f lex, Zinf{)»>0:7£exp dx 52},
Q

It is well known that L*° is not dense into EXP,,. In [9] the following formulas
for the distance

o

distgxp, (f, L) = inf{k >0: fexp ip
Q

1 i
=e - limsup — <% |f|°‘qu)
g—oo g Q

dx<oo}
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were established. Moreover it is easy to check that, denoting with exp, the
closure of L* in EXP,,

(exp,)* = Llogtl? L
1
(Lloge L)* = EXP, .

Let us compare Theorem 1.1 with well known imbedding for the Sobolev space
Wol,n

(1.6) W," C VMO

where VM O is the class of functions u € L' () with vanishing mean oscilla-
tion, i.e.

1.7 lim lu—up|dy=20
r—0 B,(x)

uniformly with respect to x, B, = B, (x) the ball with radius r, centered at x,

Up, = fBr u.
Formula (1.7) follows from Poincaré inequality and Jensen inequality:
(1.8) f |M_MB,|dy§C'rf [Vu|dy <

B, B,

1
<c-r |:7L |Vu|"dy] :c’/ [Vul"dy .
B, B,

Ifue WOI’1 and we assume only |Vu| € L™, then u belongs to BM O but not
necessarily to VM O.

Taking into account (1.4), (1.8) in [2] it is proved that if u € WOl 1 and
|Du| € L then u € exp, i.e.

7‘: exp <M) dx < oo for any A > 0.
Q A

Finally let us mention that in [7], [15] there are examples of functions u € WO1 o1
and such that |Vu| € Lg) andu ¢ BMO.
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2. Jacobian of W1 (2, R") mappings.

Let Q be an open subset of R” and let f = (fV, ..., f™): Q — R”
be a mapping whose distributional differential Df : Q@ — R"™" is a locally
integrable function on 2 with values in the space R"*" of all n x n matrices.
The Jacobian determinant

J=J(x, f)y=detDf(x)

is point-wise defined a.e. in 2.

When studying the integrability properties of the jacobian, the natural
assumption for the integrability of Df is |Df| € L"(2), as it obviously implies
that J € L'(2) from the Hadamard’s inequality

|J(x, O < IDfOI™

In case J is non negative (f an orientation preserving map), in [16] we have
relaxed the natural assumptions on Df to ensure local integrability of the
jacobian, proving that

IDfle L"(Q) = Je Ll (Q).

loc

The main steps for the proof are the following Proposition 2.1 without
any assumption on the sign of J and its local versions in which J is assumed
non negative. For h € L} (R"), let us indicate by Mh the Hardy-Littlewood
maximal function

Mh(x) = sup7L |h|dy
Q3x JQ
the supremum being taken over all subcubes of Q2 containing the given point
x e .

Proposition 2.1. Let —co < & < 1 and f € W' ¢(R", R"). Then

2.D Rn(MIDfI)_SJ(x, fdx < c(n)le| s IDf(x)|"¢ dx .

A new proof of such estimate was recently given by L. Greco [12], relying
on the following result of Acerbi-Fusco

Lemma 2.1. For u € Wll)‘cl(R"), and any t > O there exists g, € Lip(R")
such that g,(x) = u(x) for ae. x € R" satisfying M|Vu|(x) < t and
Vgl < c(nt.
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Let us sketch the proof from [12].
Proof of 2.1). Fix0 < e < 1, f = (fD,..., f®) e Wh¢R" R") and
apply Lemma 2.1 with u = V), which gives g = g, € W""¢(R") N Lip(R").
By Stokes theorem det D(g, @, ..., f™) has zero integral over R”

/ detD(g, @, ..., f)dx =0

and so we can split for r > 0, as

2.2) / Jdx = —/ det DG dx
M<t M>t

where J = J(f,x), G = (g, f?,..., f®)and M = M(x) stands for the
maximal function of |Df|, that is here M = M|Df]|.
Using the estimate on g given by Lemma 1, we easily deduce from (2.2)

(2.3) / Jdx < c(n)t/ IDf|I"" dx
M<t M>t

forany ¢ > 0.
Let us multiply both sides of (2.3) by r~*~! and integrate over (0, c0) with
respect to ¢; by Fubini we get

(2.4) M~ dx < c(n) —
Rr 1— £

f M |Df|" Vdx .

The right hand side can be estimated by mean of Holder inequality and the
maximal theorem:

(Mh)" #dx <ci(n) | h"%dx & small
Re R

as follows

1—¢ n—1

2.5) M1—8|Df|"—1dx5< M"—de)” </ |Df|"-8dx)”
Rn n

R~

<o) [ IDfI* dx.
Rn

We immediately deduce (2.1) from (2.4) and (2.5).
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Remark 1. By Young and Hadamard inequalities we deduce
IDfI™*J < (1= e)MIDfD)™*J +e(MIDF)'~*|Df"".
So by (2.3) and (2.4) we derive the sharper inequality

(2.6) / IDf|7%J dx < c(n)e/ IDf|"%dx
R R

whose essence is the presence of factor ¢ in the right hand side.
Using (2.6) we deduce as in [16] the following

Theorem 2.1. Let f : Q@ C R" — R”" be an orientation preserving map such
that |Df| € L"(Q), then J € L} () and

f Jdx < clIV fll oo,
B

for B C 2B C 2 concentric balls.

In [11] the following inequality for mappings f € C;°(R", R")

2.7 (J(x, fNlog|Df(x)ldx < c(n) | IDf(x)|"dx
R R
was proved.
We wish to give here a simple proof of (2.7) by mean of previous method.
Proposition 2.2. For f e Ci°(R", R") we have
(2.8) / (J(x, f)logMDf(x)dx fc(n)/ [Df(x)|" dx .
R R

Proof. Like in the proof of Proposition 2.1, let us start with the identity

/ detD(g, f@,..., f)dx =0

and splitit for z > O:

_/ J dx :/ det DG dx §c(n)t/ IDf|I"" dx
M<t M>t M>t
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where M = M|Df|, G = (g, f®, ..., f™). So we have

1
(2.9) ——/ Jdx < c(n) IDfI" ' dx .
I Jm<: M>t

Since

IDfllse 1 IDfllse | p
|J|dx/ — = |Df|"—1dxf %d:

R» M R~ M

sz IDFI™" dx - | Df flas < 00

we can integrate (2.9) on (0, || Df || ) and apply Fubini, obtaining

IDf N IDflle gy
(2.10) —/ —dt/ de:—f def — =
0 t M<t M<[IDf | M t

:/ J(logM—logllDflloo)dx:f JlogMdx .
n Rﬂ

On the other hand

IDf oo MAIDflloo
(2.11)/ dt/ |Df|"—1dx:f |Df|"—1dxf dt =
0 M>t R» 0

= | IDfI"'Mdx <c'(n) | |Df|"dx
R~ Rn

by Hélder inequality and the maximal theorem.
Inequalities (2.10) and (2.11) imply (2.8).
To obtain (2.7) we decompose the left hand side

|Df]
MI|Df|

/Jlongfldxz/ JlogM|Df|dx+/ J log dx
R R R

and observe that the last integral is obviously convergent.
Note that we are not using that J belongs to the Hardy space #! as it is
proved by [4], nor that log M |Df| belongs to BM O as it is proved by [3].
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3. Elliptic equations with right hand side in divergence form.
Let us consider the operator

3.1 Lu = div A(x, Vu)

in a regular domain Q2 C R", where the mapping A = A(x, &) : Q x R* — R”
verifies the “almost linear” conditions:

(3.2) | ACx, &) — ACx, n)] < m|€ — 1]
(3.3) mE — I < (Ax, §) — A, 1), & — 1)
(3.4) Ax,0)=0.

The natural setting for the Dirichlet problem

Lu=divF inQ
3.5 {

U|yQ=0

corresponds to the assumption F € L?(2, R"). In this case classical results on
monotone operators (see [19] e.g.) imply that there exists exactly one solution

ue W, ()

to problem (3.5), i.e.
(3.6) /(a‘\v(x,VM), Vo) :/(F, Vo)
Q Q

for any ¢ € C} (). Of course, by an approximation argument (3.6) extends to
all € W,'* as well.
Moreover if F, G € L*(2, R") are given and u, v € Wol’2 solve respectively

Lu =divF Lv=divG

then
Vu — Vol . <m||F—-GJ,..

Using Meyers type results below the natural exponent it is possible to prove
the following existence and uniqueness theorem for the Dirichlet problem (3.5)
when F belongs to the grand L? space L?(2, R").
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Theorem 3.1. There exists c = c(m, n) such that, if F, G € LP(Q2, R") each of
the equations

3.7 divA(x, Vu) = div F

(3.8) div A(x, Vv) =divG
has unique solution in the grand Sobolev space WO1 2 and

(3.9) Vi = Vol o < cl|F =Gl 5 .

Proof. From [9] we deduce that there exists &g = go(m, n) such that if
F,G e L?>~#, each of the equations (3.7), (3.8) has unique solution in W01,2_g
and

(3.10) / [Vu — Vv|>¢dx < c¢(m, n)f |F — G| dx
Q Q

Multiplying by 0 < ¢ < gp and taking supremum over ¢ we immediately get
inequality (3.9).

Remark. Many other inequalities can be deduced by (3.10), multiplying by
functions p = p(¢) and averaging with respect to ¢ (see [20]). For example if

F e L*(log™“ L)(loglog L)~

(a > 0,b > 0) thatis if
f £ Plog (e + | fDlloglog(2e + | ] dx < oo,
Q

then problem (3.5) has a unique solution u € W()l’l(Q) such that
|Du| € L*(log L) *(loglog L)~"

with a corresponding norm estimate.
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4. Elliptic equations with a measure on the right hand side.

Let us consider the equation
4.1) divF =pn
where p is a given Radon measure with finite mass on 2 C R”.

We have the following result [8], [14] which naturally involves grand L%’
spaces.

Lemma 4.1. There exists F € Lﬁ)(Q, R™) such that (4.1) holds and

(4.2) ”FMLTﬂ(Q)<‘inX/|dﬂ|

Proof. A solution to (4.1) can be expressed by the vectorial Riesz potential

1 X —
F(x) = f Y au(y)
nw, Jo |x —yl

where w, is the measure of the unit ball in R” [10].
If 1 <s < %5 we can use the integral Minkowski inequality to obtain

1 1
IF s < / — | du(y) < — / dul.
nwy Jo |X—y| s n}EQ |X—y|
Since
nw,
1 ’ n—1
Sllp _ |Q|n—ns+s
vea |l 1x = "= _n
n—1—s

we immediately get (4.2) by taking the supremum over s < ~.

Remark 1. If du = f(x)dx with f e L'(Q2) by an approximation argument
we find that actually F belongs to L;~ w1 (2), that is

hms/ |[F|"®dx =0.
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Let us see how the preceding lemma enables us to solve the question of
existence and uniqueness of the solution of the Dirichlet problem

Lu=p inQ
4.3) {”“m

U1pQ=0

when L is the operator (3.1) under assumptions (3.2),(3.3),(3.4), in the particu-
lar case n = 2.

Theorem 4.1. Let Q be a regular domain in R?, ju a Radon measure with finite
mass. Then there exists a unique solution u € WOI’Z) to the Dirichlet problem
(4.3) and

leell 1) = C(n)fQ ldul .

Proof. We know that there exists F € L? such that divF = u and (4.2)
holds for n = 2, from Lemma 4.1. By Theorem 3.1 we know that there exists
u € W2 such that

Lu=divF = pu

and
Vull - <t Fll,2-

The uniqueness follows from standard methods.

Remark 2. Much more general results can be proved in the case n > 2 (see

[14]).
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