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Dedicated to Professor Francesco Guglielmino on his 70th birthday

For q > 1, � a bounded open set in R
n , the grand Sobolev space

W
1,q)
o (�) consists of all functions u ∈

�

0<ε≤q−1
W
1,q−ε

0 (�) such that

(1.1) �u�
W

1,q)
0

= sup
0<ε≤q−1

�
ε

|�|

�

�

|∇u|q−ε dx

� 1
q−ε

< ∞.

This space, slightly larger than W
1,q
0 (�), was introduced in [16] in connection

with regularity properties of the Jacobians.
For q = n in [9] imbedding theorems of Sobolev type were proved for

functions u ∈W
1,n)
0 (�).

Here we report on recent use of grand Sobolev spaces to solve variational
problems [14], [18].
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1. The grand Sobolev space W 1,q).

Let � be a bounded domain in R
n , n ≥ 2. For q > 1 let us introduce a

space slightly larger than Lq(�).
The grand Lq -space, denoted by Lq) = Lq)(�) consists of functions h ∈�

0<ε≤q−1

Lq−ε(�) such that

(1.1) �h�q) = sup
0<ε≤q−1

�

ε

�

�

|h|q−ε dx

� 1
q−ε

< ∞

where
�
�
denotes the integral mean over �.

Note that � · �q) is a norm and Lq)(�) is a Banach space.
This space was introduced in [16] in connection with regularity properties of the
Jacobians, see also [11].
The Marcinkiewicz space Lq,∞(�) = weak-Lq (�) and the Zygmund space
Lq log−α L(�), α ≥ 0, are de�ned according to the norms

(1.2) �h�Lq,∞ = sup
E⊂�

|E |
1
q

�

E

|h| dx

(1.3) �h�Lq log−α L = inf

�

λ > 0 :

�

�

�
�
�
�
h

λ

�
�
�
�

q

log−α

�

e +

�
�
�
�
h

λ

�
�
�
�

�

dx < 1

�

.

The inclusions with grand Lq -space

Lq ⊂ Lq,∞ ⊂ Lq)

Lq ⊂ Lq log−1 L ⊂ Lq) ⊂
�

α>1

Lq log−α L

hold (see [11]).
L∞ is not dense in Lq,∞ nor in Lq) . In [2] the following formulas for the
distance to L∞ in these space were proved:

(1.4) distLq,∞ (h, L∞) = lim sup
|E |→0

|E |
1
q

�

E

|h| dx

(1.5) distLq) (h, L
∞) = lim sup

ε→0

�

ε

�

�

|h|q−ε dx

� 1
q−ε

.
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We shall indicate by L
q)
0 the closure of L∞ .

The grand Sobolev space W 1,q)(�) consists of all functions

u ∈
�

0<ε≤q−1

W 1,q−ε(�)

such that ∇u ∈ Lq)(�), equipped with the norm

�u�
W 1,q) = �∇u�

Lq)
+ �u�

Lq)
.

We shall also consider the space W
1,q)
0 (�) which consists of all functions u

belonging to
�

0<ε≤q−1

W
1,q−ε

0 (�) such that the norm

�u�W 1,q)

0
= �∇u�Lq)

is �nite.
In the case q = n an imbedding theorem of Sobolev-Trudinger type was
established in [9] (see also [5],[6])

Theorem 1.1. There exist c1 = c1(n), c2 = c2(n) such that for u ∈W 1,n)
0 (�)

�

�

exp




|u|

c1|�|
1
n · �u�

W
1,n)
0



 dx ≤ c2 ,

This means that W 1,n)
0 is imbedded in the Orlicz space EXPα (α = 1)

which is de�ned according to the norm

� f �EXPα
= inf

�

λ > 0 :

�

�

exp

�
�
�
�
f

λ

�
�
�
�

α

dx ≤ 2

�

.

It is well known that L∞ is not dense into EXPα . In [9] the following formulas
for the distance

distEXPα
( f, L∞) = inf

�

λ > 0 :

�

�

exp

�
�
�
�
f

λ

�
�
�
�

α

dx < ∞

�

= e · lim sup
q→∞

1

q

��

�

| f |αq dx

� 1
q
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were established. Moreover it is easy to check that, denoting with expα the
closure of L∞ in EXPα ,

(expα)
∗ = L log

1
α L

(L log
1
α L)∗ = EXPα .

Let us compare Theorem 1.1 with well known imbedding for the Sobolev space
W 1,n
o

(1.6) W 1,n
0 ⊂ V MO

where V MO is the class of functions u ∈ L1(�) with vanishing mean oscilla-
tion, i.e.

(1.7) lim
r→0

�

Br (x)

|u − uBr | dy = 0

uniformly with respect to x , Br = Br (x ) the ball with radius r , centered at x ,
uBr =

�
Br
u.

Formula (1.7) follows from Poincaré inequality and Jensen inequality:

�

Br

|u − uBr | dy ≤ c · r

�

Br

|∇u| dy ≤(1.8)

≤ c · r

��

Br

|∇u|n dy

� 1
n

= c�

�

Br

|∇u|n dy .

If u ∈W 1,1
0 and we assume only |∇u| ∈ Ln,∞ , then u belongs to BMO but not

necessarily to V MO .
Taking into account (1.4), (1.8) in [2] it is proved that if u ∈ W 1,1

0 and

|Du| ∈ Ln)0 then u ∈ exp, i.e.

�

�

exp

�
|u|

λ

�

dx < ∞ for any λ > 0.

Finally let us mention that in [7], [15] there are examples of functions u ∈W 1,1
0

and such that |∇u| ∈ Ln)0 and u /∈ BMO .
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2. Jacobian of W 1,n)(�, R
n) mappings.

Let � be an open subset of R
n and let f = ( f (1), . . . , f (n)) : � → R

n

be a mapping whose distributional differential D f : � → R
n+n is a locally

integrable function on � with values in the space R
n×n of all n × n matrices.

The Jacobian determinant

J = J (x , f ) = det Df (x )

is point-wise de�ned a.e. in �.
When studying the integrability properties of the jacobian, the natural

assumption for the integrability of D f is |D f | ∈ Ln(�), as it obviously implies
that J ∈ L1(�) from the Hadamard�s inequality

|J (x , f )| ≤ |D f (x )|n.

In case J is non negative ( f an orientation preserving map), in [16] we have
relaxed the natural assumptions on D f to ensure local integrability of the
jacobian, proving that

|D f | ∈ Ln)(�) ⇒ J ∈ L1loc(�).

The main steps for the proof are the following Proposition 2.1 without
any assumption on the sign of J and its local versions in which J is assumed
non negative. For h ∈ L1loc(R

n), let us indicate by Mh the Hardy-Littlewood
maximal function

Mh(x ) = sup
Q�x

�

Q

|h|dy

the supremum being taken over all subcubes of � containing the given point
x ∈ �.

Proposition 2.1. Let −∞ < ε ≤ 1 and f ∈W 1,n−ε(Rn, R
n). Then

(2.1)

�

Rn

(M |D f |)−ε J (x , f ) dx ≤ c(n)|ε|

�

Rn

|D f (x )|n−ε dx .

A new proof of such estimate was recently given by L. Greco [12], relying
on the following result of Acerbi-Fusco

Lemma 2.1. For u ∈ W 1,1
loc (R

n), and any t > 0 there exists gt ∈ Lip(Rn)
such that gt (x ) = u(x ) for a.e. x ∈ R

n satisfying M |∇u|(x ) ≤ t and
�∇gt�L∞ ≤ c(n)t .
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Let us sketch the proof from [12].

Proof of (2.1). Fix 0 < ε < 1, f = ( f (1), . . . , f (n)) ∈ W 1,n−ε(Rn, R
n) and

apply Lemma 2.1 with u = f (1), which gives g = gt ∈W
1,n−ε(Rn) ∩ Lip(Rn).

By Stokes theorem det D(g, f (2), . . . , f (n)) has zero integral over R
n

�

Rn

det D(g, f (2), . . . , f (n)) dx = 0

and so we can split for t > 0, as

(2.2)

�

M≤t

J dx = −

�

M>t

det DG dx

where J = J ( f, x ), G = (g, f (2), . . . , f (n)) and M = M(x ) stands for the
maximal function of |D f |, that is here M = M |D f |.

Using the estimate on g given by Lemma 1, we easily deduce from (2.2)

(2.3)

�

M≤t

J dx ≤ c(n)t

�

M>t

|D f |n−1 dx

for any t > 0.
Let us multiply both sides of (2.3) by t−ε−1 and integrate over (0, ∞) with
respect to t ; by Fubini we get

(2.4)

�

Rn

M−ε J dx ≤ c(n)
ε

1− ε

�

Rn

M1−ε|D f |n−1 dx .

The right hand side can be estimated by mean of Hölder inequality and the
maximal theorem:

�

Rn

(Mh)n−ε dx ≤ c1(n)

�

Rn

hn−ε dx ε small

as follows

�

Rn

M1−ε|D f |n−1 dx ≤

��

Rn

Mn−ε dx

� 1−ε
n−ε

��

Rn

|D f |n−ε dx

� n−1
n−ε

(2.5)

≤ c2(n)

�

Rn

|D f |n−ε dx .

We immediately deduce (2.1) from (2.4) and (2.5).
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Remark 1. By Young and Hadamard inequalities we deduce

|D f |−ε J ≤ (1− ε)(M |D f |)−ε J + ε(M |D f |)1−ε|D f |n−1.

So by (2.3) and (2.4) we derive the sharper inequality

(2.6)

�

Rn

|D f |−ε J dx ≤ c(n)ε

�

Rn

|Df |n−ε dx

whose essence is the presence of factor ε in the right hand side.

Using (2.6) we deduce as in [16] the following

Theorem 2.1. Let f : � ⊂ R
n → R

n be an orientation preserving map such
that |D f | ∈ Ln)(�), then J ∈ L1loc(�) and

�

B

J dx ≤ c(n)�∇ f �
Ln) (2B)

for B ⊂ 2B ⊂ � concentric balls.

In [11] the following inequality for mappings f ∈C∞
0 (R

n, R
n)

(2.7)

�

Rn

(J (x , f )) log |D f (x )| dx ≤ c(n)

�

Rn

|D f (x )|n dx

was proved.
We wish to give here a simple proof of (2.7) by mean of previous method.

Proposition 2.2. For f ∈C∞
0 (R

n, R
n) we have

(2.8)

�

Rn

(J (x , f )) logMDf (x ) dx ≤ c(n)

�

Rn

|D f (x )|n dx .

Proof. Like in the proof of Proposition 2.1, let us start with the identity

�

Rn

det D(g, f (2), . . . , f (n)) dx = 0

and split it for t > 0:

−

�

M≤t

J dx =

�

M>t

det DG dx ≤ c(n)t

�

M>t

|D f |n−1 dx
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where M = M |D f |, G = (g, f (2), . . . , f (n)). So we have

(2.9) −
1

t

�

M≤t

J dx ≤ c(n)

�

M>t

|D f |n−1 dx .

Since

�

Rn

|J | dx

� �Df �∞

M

dt

t
≤

�

Rn

|D f |n−1 dx

� �Df �∞

M

|D f |

M
dt

≤

�

Rn

|D f |n−1 dx · �Df �∞ < ∞

we can integrate (2.9) on (0, �Df �∞) and apply Fubini, obtaining

−

� �D f �∞

0

1

t
dt

�

M≤t

J dx = −

�

M≤�Df �∞

J dx

� �Df �∞

M

dt

t
=(2.10)

=

�

Rn

J (logM − log �Df �∞) dx =

�

Rn

J logM dx .

On the other hand

� �D f �∞

0

dt

�

M>t

|D f |n−1 dx =

�

Rn

|Df |n−1 dx

� M∧�D f �∞

0

dt =(2.11)

=

�

Rn

|D f |n−1M dx ≤ c�(n)

�

Rn

|D f |n dx

by Hölder inequality and the maximal theorem.
Inequalities (2.10) and (2.11) imply (2.8).
To obtain (2.7) we decompose the left hand side

�

Rn

J log |Df | dx =

�

Rn

J logM |D f | dx +

�

Rn

J log
|D f |

M |Df |
dx

and observe that the last integral is obviously convergent.
Note that we are not using that J belongs to the Hardy space H

1 as it is
proved by [4], nor that logM |D f | belongs to BMO as it is proved by [3].
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3. Elliptic equations with right hand side in divergence form.

Let us consider the operator

(3.1) Lu = divA(x , ∇u)

in a regular domain � ⊂ R
n , where the mappingA = A(x , ξ ) : � × R

n → R
n

veri�es the �almost linear� conditions:

(3.2) |A(x , ξ )− A(x , η)| ≤ m|ξ − η|

(3.3) m−1|ξ − η|2 ≤ �A(x , ξ )− A(x , η), ξ − η�

(3.4) A(x , 0) = 0 .

The natural setting for the Dirichlet problem

(3.5)

�
Lu = div F in �

u|∂�=0

corresponds to the assumption F ∈ L2(�, R
n). In this case classical results on

monotone operators (see [19] e.g.) imply that there exists exactly one solution

u ∈W 1,2
0 (�)

to problem (3.5), i.e.

(3.6)

�

�

�A(x , ∇u), ∇ϕ� =

�

�

�F, ∇ϕ�

for any ϕ ∈ C10 (�). Of course, by an approximation argument (3.6) extends to

all ϕ ∈W 1,2
0 as well.

Moreover if F,G ∈ L2(�, R
n) are given and u, v ∈W 1,2

0 solve respectively

Lu = div F Lv = divG

then
�∇u − ∇v�

L2
≤ m �F − G�

L2
.

Using Meyers type results below the natural exponent it is possible to prove
the following existence and uniqueness theorem for the Dirichlet problem (3.5)
when F belongs to the grand L2 space L2)(�, R

n).
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Theorem 3.1. There exists c = c(m, n) such that, if F,G ∈ L2)(�, R
n) each of

the equations

(3.7) divA(x , ∇u) = div F

(3.8) divA(x , ∇v) = divG

has unique solution in the grand Sobolev space W 1,2)
0 and

(3.9) �∇u − ∇v�
L2)

≤ c�F − G�
L2)

.

Proof. From [9] we deduce that there exists ε0 = ε0(m, n) such that if
F,G ∈ L2−ε , each of the equations (3.7), (3.8) has unique solution in W 1,2−ε

0

and

(3.10)

�

�

|∇u − ∇v|2−ε dx ≤ c(m, n)

�

�

|F − G|2−ε dx

Multiplying by 0 < ε < ε0 and taking supremum over ε we immediately get
inequality (3.9).

Remark. Many other inequalities can be deduced by (3.10), multiplying by
functions ρ = ρ(ε) and averaging with respect to ε (see [20]). For example if

F ∈ L2(log−a L)(log log L)−b

(a > 0, b ≥ 0) that is if

�

�

| f |2 log−a(e + | f |)[log log(2e + | f |)]−b dx < ∞,

then problem (3.5) has a unique solution u ∈W 1,1
0 (�) such that

|Du| ∈ L2(log L)−a(log log L)−b

with a corresponding norm estimate.
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4. Elliptic equations with a measure on the right hand side.

Let us consider the equation

(4.1) div F = µ

where µ is a given Radon measure with �nite mass on � ⊂ R
n .

We have the following result [8], [14] which naturally involves grand Lq)

spaces.

Lemma 4.1. There exists F ∈ L
n

n−1
)(�, R

n) such that (4.1) holds and

(4.2) �F�
L

n
n−1

) (�) ≤ c(n)

�

�

| dµ|

Proof. A solution to (4.1) can be expressed by the vectorial Riesz potential

F(x ) =
1

nωn

�

�

x − y

|x − y|n
dµ(y)

where ωn is the measure of the unit ball in R
n [10].

If 1 ≤ s < n
n−1

we can use the integral Minkowski inequality to obtain

�F�s ≤
1

nωn

�

�

�
�
�
�

1

|x − y|n−1

�
�
�
�
s

dµ(y) ≤
1

nωn
sup
y∈�

�
�
�
�

1

|x − y|n−1

�
�
�
�
s

�

�

|dµ| .

Since

sup
y∈�

�
�
�
�

1

|x − y|n−1

�
�
�
�
s

s

=






nωn

n − 1
n

n − 1− s




 |�|n−ns+s

we immediately get (4.2) by taking the supremum over s < n
n−1

.

Remark 1. If dµ = f (x ) dx with f ∈ L1(�) by an approximation argument

we �nd that actually F belongs to L
n

n−1
)

0 (�), that is

lim
ε→0

ε

�

�

|F |n−ε dx = 0 .
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Let us see how the preceding lemma enables us to solve the question of
existence and uniqueness of the solution of the Dirichlet problem

(4.3)

�
Lu = µ in �

u|∂�=0

when L is the operator (3.1) under assumptions (3.2),(3.3),(3.4), in the particu-
lar case n = 2.

Theorem 4.1. Let � be a regular domain in R
2, µ a Radon measure with �nite

mass. Then there exists a unique solution u ∈ W 1,2)
0 to the Dirichlet problem

(4.3) and

�u�
W

1,2)
0

(�)
≤ c(n)

�

�

| dµ| .

Proof. We know that there exists F ∈ L2) such that div F = µ and (4.2)
holds for n = 2, from Lemma 4.1. By Theorem 3.1 we know that there exists
u ∈W 1,2)

o such that
Lu = div F = µ

and
�∇u�

L2)
≤ c1(n)�F�

L2)
.

The uniqueness follows from standard methods.

Remark 2. Much more general results can be proved in the case n ≥ 2 (see
[14]).
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