SECOND ORDER NON VARIATIONAL BASIC PARABOLIC SYSTEMS

MARIO MARINO - ANTONINO MAUGERI

Dedicated to Professor Francesco Guglielmino with our deepest esteem and gratitude, on his 70th birthday

Let Q be the cylinder $\Omega \times(-T, 0)$ and $W^{p}\left(Q, \mathbb{R}^{k}\right)(p \geq 1, k$ integer ≥ 1) the Banach space

$$
W^{p}\left(Q, \mathbb{R}^{k}\right)=\left\{v: v \in L^{p}\left(-T, 0, H^{2, p}\left(\Omega, \mathbb{R}^{k}\right)\right), \frac{\partial v}{\partial t} \in L^{p}\left(Q, \mathbb{R}^{k}\right)\right\}
$$

if $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)(N$ integer $\geq 1)$ is a solution in Q of the basic system

$$
a(H(u))-\frac{\partial u}{\partial t}=0,
$$

where $a(\xi)$ is a vector of \mathbb{R}^{N}, continuous onto $\mathbb{R}^{n^{2} N}$, satisfying the conditions $a(0)=0$ and (A), we show that $D u \in W_{\mathrm{loc}}^{q}\left(Q, \mathbb{R}^{n N}\right)$ with $q>2$ and we derive the so called fundamental estimates for the matrix $H(u)$ and the vector $\frac{\partial u}{\partial t}$. In a standard way, from the fundamental estimates, we deduce

Entrato in Redazione il 14 luglio 1997.
Lavoro eseguito con il contributo finanziario del M.U.R.S.T. e nell'ambito del G.N.A.F.A. del C.N.R.
that $D u$ and u are Hölder-continuous in Q, if $n=2$ and if $n \leq 4$, respectively. Moreover we study the Hölder-continuity in Q of the vectors $D u$ and u, when u is a solution of the system:

$$
a(H(u))-\frac{\partial u}{\partial t}=f(X), \quad f \in \mathscr{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)
$$

and also we give a first result of Hölder-continuity in Q for the solutions of the system:

$$
a(H(u))-\frac{\partial u}{\partial t}=b(X, u, D u)
$$

with b vector of \mathbb{R}^{N} with "linear growth".

1. Introduction.

Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geq 2$, of class C^{2}, with generic point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If T is a real positive number, we denote by Q the cylinder $\Omega \times(-T, 0)$ and by X the point (x, t) of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}$. If $u(X)$ is a vector $Q \rightarrow \mathbb{R}^{N}, N$ integer ≥ 1, we set:

$$
\begin{aligned}
D_{i} u & =\frac{\partial u}{\partial x_{i}}, \quad D u=\left(D_{1} u, D_{2} u, \ldots, D_{n} u\right), \\
H(u) & =\left\{D_{i} D_{j} u\right\}=\left\{D_{i j} u\right\}, \quad i, j=1,2, \ldots, n ;
\end{aligned}
$$

$D u$ and $H(u)$ are elements of $\mathbb{R}^{n N}$ and $\mathbb{R}^{n^{2} N}$, respectively.
Setting

$$
\left.\left.\begin{array}{rl}
W^{p}\left(Q, \mathbb{R}^{k}\right)= & \left\{v: v \in L^{p}\left(-T, 0, H^{2, p}\left(\Omega, \mathbb{R}^{k}\right)\right), \frac{\partial v}{\partial t}\right.
\end{array} \in L^{p}\left(Q, \mathbb{R}^{k}\right)\right\},\right\} \text { W } \begin{aligned}
W_{0}^{p}\left(Q, \mathbb{R}^{k}\right)=\left\{v \in W^{p}\left(Q, \mathbb{R}^{k}\right): v \in L^{p}\left(-T, 0, H_{0}^{1, p}\left(\Omega, \mathbb{R}^{k}\right)\right)\right. \\
v(x,-T)=0\}
\end{aligned}
$$

where $p \in\left[1,+\infty\left[, k\right.\right.$ is an integer ≥ 1 and $H^{2, p}\left(\Omega, \mathbb{R}^{k}\right), H_{0}^{1, p}\left(\Omega, \mathbb{R}^{k}\right)$ are the usual Sobolev spaces $\left(^{1}\right)$, let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the basic
$\left({ }^{1}\right) W^{p}\left(Q, \mathbb{R}^{k}\right)$ and $W_{0}^{p}\left(Q, \mathbb{R}^{k}\right)$ are Banach spaces provided by the norm

$$
\|u\|_{p, Q}=\left[\int_{Q}\left(\|u\|^{p}+\|D u\|^{p}+\|H(u)\|^{p}+\left\|\frac{\partial u}{\partial t}\right\|^{p}\right) d X\right]^{\frac{1}{p}} .
$$

system:

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=0, \tag{1.1}
\end{equation*}
$$

where $a(\xi)$ is a vector of \mathbb{R}^{N}, continuous onto $\mathbb{R}^{n^{2} N}$, satisfying the conditions:

$$
\begin{equation*}
a(0)=0 \text {; } \tag{1.2}
\end{equation*}
$$

(A) there exist three positive constants α, γ and δ with $\gamma+\delta<1$, such that:

$$
\left\|\sum_{i=1}^{n} \tau_{i i}-\alpha[a(\tau+\eta)-a(\eta)]\right\|^{2} \leq \gamma\|\tau\|^{2}+\delta\left\|\sum_{i=1}^{n} \tau_{i i}\right\|^{2}, \quad \forall \tau, \eta \in \mathbb{R}^{n^{2} N} .
$$

From the condition (A), setting $\eta=0$, we get, $\forall \tau \in \mathbb{R}^{n^{2} N}$

$$
\begin{equation*}
\|a(\tau)\| \leq \frac{c(n)}{\alpha}\|\tau\| . \tag{1.3}
\end{equation*}
$$

In Section 2 we shall prove, by a technique similar to the that one used by S. Campanato [2] in the elliptic case (see also [3]), the following result of differentiability:
Theorem 1.1. If the vector $a(\xi)$ satisfies the conditions (1.2) and (A), then

$$
\begin{equation*}
D u \in W_{\mathrm{loc}}^{2}\left(Q, \mathbb{R}^{n N}\right) \tag{1.4}
\end{equation*}
$$

and, $\forall Q(2 \sigma)=Q\left(X^{0}, 2 \sigma\right)=B\left(x^{0}, 2 \sigma\right) \times\left(t^{0}-(2 \sigma)^{2}, t^{0}\right) \subset Q$, the following Caccioppoli's type estimate holds:

$$
\begin{gather*}
\int_{Q(\sigma)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X \leq \tag{1.5}\\
\leq c \sigma^{-2}\left\{\sigma^{-2} \int_{Q(2 \sigma)} \| D\left(u-P_{Q(2 \sigma)}\left\|^{2} d X+\int_{Q(2 \sigma)}\right\| H\left(u-P_{Q(2 \sigma)}\right) \|^{2} d X\right\},\right.
\end{gather*}
$$

where the constant c does not depend on σ and $P_{Q(2 \sigma)}$ is the vector-polynomial in x, of degree ≤ 2, such that

$$
\begin{equation*}
\int_{Q(2 \sigma)} D^{\alpha}\left(u-P_{Q(2 \sigma)}\right) d X=0, \quad \forall \alpha:|\alpha| \leq 2\left(^{2}\right) . \tag{1.6}
\end{equation*}
$$

$\left({ }^{2}\right) D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}, \alpha_{i}$ integer ≥ 0.

From this result, in virtue of the well known Gehring-Giaquinta-G.Modica Lemma, the L_{loc}^{q}-regularity of the vectors $H(D u)$ and $\frac{\partial(D u)}{\partial t}$ will be derived.
Moreover we shall prove the following existence and uniqueness result:
Theorem 1.2. If Ω is of class C^{2} and convex and if the vector $a(\xi)$ satisfies the conditions (1.2) and (A), then, $\forall \varphi \in L^{2}\left(Q, \mathbb{R}^{N}\right)$ and $\forall u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$, the Cauchy-Dirichlet problem:

$$
\left\{\begin{array}{l}
w \in W_{0}^{2}\left(Q, \mathbb{R}^{N}\right) \tag{1.7}\\
a(H(w)+H(u))-\frac{\partial w}{\partial t}=\varphi(X) \text { in } Q
\end{array}\right.
$$

has a unique solution. Moreover the following estimate holds:

$$
\begin{equation*}
\int_{Q}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq c(\alpha, \gamma, \delta) \int_{Q}\|\varphi-a(H(u))\|^{2} d X \tag{1.8}
\end{equation*}
$$

In Section 3 we will give the interior fundamental estimates for $H(D u)$, $\frac{\partial(D u)}{\partial t}, H(u)$ and $\frac{\partial u}{\partial t}$ which will enable us to achieve the Hölder-continuity in Q of $D u$ and u, if $n=2$ and if $n \leq 4$, respectively. Thus we obtain, following a different method, the same results obtained by S. Campanato in the Section 5 of [3]. Moreover we will show that the solutions $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ of the system

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=f(X), \quad f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right) \tag{1.9}
\end{equation*}
$$

are Hölder-continuous in Q if $n \leq 4$ and in Section 5 we will study the Höldercontinuity in Q of the solutions $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ of the system

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=b(X, u, D u) \tag{1.10}
\end{equation*}
$$

with $b(X, u, p)$ vector of \mathbb{R}^{N} with "linear growth".

2. Proof of Theorems $\mathbf{1 . 1}$ and $\mathbf{1 . 2}$ and L_{loc}^{q}-regularity.

Let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the basic system

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=0 \tag{2.1}
\end{equation*}
$$

where $a(\xi)$ is a vector of \mathbb{R}^{N}, continuous onto $\mathbb{R}^{n^{2} N}$, satisfying the conditions (1.2) and (A).

Fixed the cylinder $Q(2 \sigma)=Q\left(X^{0}, 2 \sigma\right) \subset Q$, let $\vartheta(x)$ and $g(t)$ be two real functions of class $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $C^{\infty}(\mathbb{R})$ respectively, satisfying the following properties:

$$
\begin{gather*}
0 \leq \vartheta \leq 1, \vartheta=1 \text { in } B\left(x^{0}, \sigma\right), \vartheta=0 \text { in } \mathbb{R}^{n} \backslash B\left(x^{0}, \frac{3}{2} \sigma\right), \tag{2.2}\\
\left|D^{\alpha} \vartheta\right| \leq c \sigma^{-|\alpha|} \text { for all multi-indices } \alpha, \tag{2.3}
\end{gather*}
$$

$$
\begin{gather*}
0 \leq g \leq 1, g=1 \text { for } t \geq t^{0}-\sigma^{2}, g=0 \text { for } t \leq t^{0}-\left(\frac{3}{2} \sigma\right)^{2}, \tag{2.4}\\
\left|g^{\prime}(t)\right| \leq c \sigma^{-2} .
\end{gather*}
$$

Setting $\rho_{s, h} u(X)=u\left(x+h e^{s}, t\right)-u(X)\left(^{3}\right), s=1,2, \ldots, n,|h|<\frac{\sigma}{2}$, and denoting by $P_{Q(2 \sigma)}$ the vector-polynomial in x, of degree ≤ 2, satisfying (1.6), from (2.1) we get in $Q\left(\frac{3}{2} \sigma\right)$

$$
\rho_{s, h} a(H(u))-\rho_{s, h} \frac{\partial u}{\partial t}=0
$$

that is

$$
a\left(H\left(\rho_{s, h} u\right)+H(u)\right)-a(H(u))-\rho_{s, h} \frac{\partial u}{\partial t}=0
$$

from which, being $\frac{\partial}{\partial t}\left(\rho_{s, h} P_{Q(2 \sigma)}\right)=0$ and $H\left(\rho_{s, h} P_{Q(2 \sigma)}\right)=0$, we derive:

$$
\begin{gather*}
\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)-\alpha \frac{\partial}{\partial t}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)= \tag{2.5}\\
=\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)-\alpha\left[a\left(H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+H(u)\right)-a(H(u))\right]
\end{gather*}
$$

where α is the positive constant that appears in the condition (A).
From (2.5), because of the condition (A), we reach:

$$
\begin{equation*}
\left\|\vartheta g \Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)-\alpha \vartheta g \frac{\partial}{\partial t}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|= \tag{2.6}
\end{equation*}
$$

$$
=\vartheta g\left\|\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)-\alpha\left[a\left(H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+H(u)\right)-a(H(u))\right]\right\| \leq
$$

$$
\leq \vartheta g\left\{\gamma\left\|H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}+\delta\left\|\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}\right\}^{\frac{1}{2}}
$$

$\left.{ }^{3}\right)\left\{e^{s}\right\}_{s=1,2, \ldots, n}$ is the canonic base of \mathbb{R}^{n}.

Now setting

$$
\mathcal{U}(X)=\vartheta(x) g(t) \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)
$$

we have:

$$
\begin{gather*}
u \in W_{0}^{2}\left(Q\left(X^{0}, \frac{3}{2} \sigma\right), \mathbb{R}^{N}\right) \tag{2.7}\\
\Delta u=\vartheta g \Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+A\left(u-P_{Q(2 \sigma)}\right), \tag{2.8}\\
H(U)=\vartheta g H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+B\left(u-P_{Q(2 \sigma)}\right), \tag{2.9}\\
\frac{\partial U}{\partial t}=\vartheta g \frac{\partial}{\partial t}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+\vartheta g^{\prime} \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right), \tag{2.10}
\end{gather*}
$$

where

$$
\begin{align*}
A\left(u-P_{Q(2 \sigma)}\right)= & g \Delta \vartheta \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)+ \tag{2.11}\\
& +2 g \sum_{i=1}^{n} D_{i} \vartheta D_{i}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right),
\end{align*}
$$

$$
\begin{gather*}
B\left(u-P_{Q(2 \sigma)}\right)=\left\{g D_{i j} \vartheta \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)+\right. \tag{2.12}\\
\left.+g D_{i} \vartheta D_{j}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)+g D_{j} \vartheta D_{i}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\}_{i, j=1,2, \ldots, n} .
\end{gather*}
$$

Then, from (2.8), (2.10) and (2.6) we obtain

$$
\begin{aligned}
& \left\|\Delta U-\alpha \frac{\partial U}{\partial t}\right\| \leq\left\|\vartheta g \Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)-\alpha \vartheta g \frac{\partial}{\partial t}\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|+ \\
& +\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|+\left\|\alpha \vartheta g^{\prime} \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\| \leq \vartheta g\left\{\gamma\left\|H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}+\right. \\
& \left.+\delta\left\|\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}\right\}^{\frac{1}{2}}+\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|+\left\|\alpha \vartheta g^{\prime} \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|,
\end{aligned}
$$

from which, by (2.8) and (2.9), it follows, $\forall \varepsilon>0$ and for almost every $X \in Q\left(\frac{3}{2} \sigma\right)$:

$$
\begin{gather*}
\text { (2.13) }\left\|\Delta U-\alpha \frac{\partial U}{\partial t}\right\|^{2} \leq(1+\varepsilon) \vartheta^{2} g^{2}\left\{\gamma\left\|H\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}+\right. \tag{2.13}\\
\left.+\delta\left\|\Delta\left(\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right)\right\|^{2}\right\}+c(\varepsilon)\left\{\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\right. \\
\left.+\left\|\alpha \vartheta g^{\prime} \rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}\right\} \leq(1+\varepsilon)^{2}\left\{\gamma\|H(U)\|^{2}+\delta\|\Delta U\|^{2}\right\}+ \\
+c(\varepsilon, \alpha, \gamma, \delta)\left\{\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\left\|B\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\vartheta^{2} g^{\prime 2}\left\|\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}\right\}
\end{gather*}
$$

Integrating (2.13) on $Q\left(\frac{3}{2} \sigma\right)$, using (2.7) and taking into consideration Lemma 2.4 of [3], we obtain:

$$
\begin{aligned}
& {\left[1-(1+\varepsilon)^{2} \delta\right] \int_{Q\left(\frac{3}{2} \sigma\right)}\left\|\Delta U-\alpha \frac{\partial U}{\partial t}\right\|^{2} d X \leq} \\
& \leq(1+\varepsilon)^{2} \gamma \int_{Q\left(\frac{3}{2} \sigma\right)}\|H(U)\|^{2} d X+ \\
& +c(\varepsilon, \alpha, \gamma, \delta) \int_{Q\left(\frac{3}{2} \sigma\right)}\left(\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\| B\left(u-P_{Q(2 \sigma)} \|^{2}+\right.\right. \\
& \left.\quad+\vartheta^{2} g^{\prime 2}\left\|\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}\right) d X
\end{aligned}
$$

from which, by Lemma 2.3 of [3] and for each $\varepsilon \in] 0, \frac{1}{\sqrt{\delta}}-1[$, we deduce:

$$
\begin{aligned}
& {\left[1-(1+\varepsilon)^{2} \delta\right] \int_{Q\left(\frac{3}{2} \sigma\right)}\left(\|H(U)\|^{2}+\alpha^{2}\left\|\frac{\partial U}{\partial t}\right\|^{2}\right) d X \leq} \\
& \leq(1+\varepsilon)^{2} \gamma \int_{Q\left(\frac{3}{2} \sigma\right)}\left(\|H(U)\|^{2}+\alpha^{2}\left\|\frac{\partial U}{\partial t}\right\|^{2}\right) d X+ \\
& +c(\varepsilon, \alpha, \gamma, \delta) \int_{Q\left(\frac{3}{2} \sigma\right)}\left(\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\left\|B\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\right. \\
& \left.\quad+\vartheta^{2} g^{\prime 2}\left\|\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}\right) d X
\end{aligned}
$$

and hence, for ε chosen in the interval] $0, \frac{1}{\sqrt{\gamma+\delta}}-1\left[\right.$, we get $\left({ }^{4}\right)$:

$$
\begin{equation*}
\int_{Q\left(\frac{3}{2} \sigma\right)}\left(\|H(U)\|^{2}+\alpha^{2}\left\|\frac{\partial U}{\partial t}\right\|^{2}\right) d X \leq \tag{2.14}
\end{equation*}
$$

$\leq c \int_{Q\left(\frac{3}{2} \sigma\right)}\left(\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\left\|B\left(u-P_{Q(2 \sigma)}\right)\right\|^{2}+\sigma^{-4} \| \rho_{s, h}\left(u-P_{Q(2 \sigma)} \|^{2}\right) d X\right.$.
From (2.14), taking into account (2.9) and (2.10), it follows:

$$
\int_{Q(\sigma)}\left(\left\|H\left(\rho_{s, h} u\right)\right\|^{2}+\alpha^{2}\left\|\frac{\partial}{\partial t}\left(\rho_{s, h} u\right)\right\|^{2}\right) d X \leq
$$

[^0]\[

$$
\begin{gathered}
\leq \int_{Q\left(\frac{3}{2} \sigma\right)} \vartheta^{2} g^{2}\left(\left\|H\left(\rho_{s, h} u\right)\right\|^{2}+\alpha^{2}\left\|\frac{\partial}{\partial t}\left(\rho_{s, h} u\right)\right\|^{2}\right) d X \leq \\
\leq c\left\{\int_{Q\left(\frac{3}{2} \sigma\right)}\left\|A\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+\int_{Q\left(\frac{3}{2} \sigma\right)}\left\|B\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+\right. \\
\left.+\sigma^{-4} \int_{Q\left(\frac{3}{2} \sigma\right)}\left\|\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X\right\}
\end{gathered}
$$
\]

from which, in virtue of (2.11), (2.12), (2.3) and (2.4), we get:

$$
\begin{equation*}
\int_{Q(\sigma)}\left(\left\|H\left(\rho_{s, h} u\right)\right\|^{2}+\alpha^{2}\left\|\frac{\partial}{\partial t}\left(\rho_{s, h} u\right)\right\|^{2}\right) d X \leq \tag{2.15}
\end{equation*}
$$

$$
\leq c \sigma^{-4} \int_{Q\left(\frac{3}{2} \sigma\right)}\left\|\rho_{s, h}\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+c \sigma^{-2} \int_{Q\left(\frac{3}{2} \sigma\right)}\left\|\rho_{s, h} D\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X
$$

We shall now evaluate the integrals that appear in the right hand side of (2.15) using Lemma 2.I of [7]. We obtain, for $|h|<\frac{\sigma}{2}$ and $s=1,2, \ldots, n$:

$$
\begin{gather*}
\int_{Q(\sigma)}\left(\left\|\rho_{s, h} H(u)\right\|^{2}+\alpha^{2}\left\|\rho_{s, h} \frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{2.16}\\
\leq c \sigma^{-2}|h|^{2}\left\{\sigma^{-2} \int_{Q(2 \sigma)}\left\|D\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+\int_{Q(2 \sigma)}\left\|H\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X\right\} .
\end{gather*}
$$

From (2.16), by Lemma 3.1 of [9], it follows that

$$
\begin{aligned}
& H(u) \in L^{2}\left(t^{0}-\sigma^{2}, t^{0}, H^{1}\left(B\left(x^{0}, \sigma\right), \mathbb{R}^{n^{2} N}\right)\right), \\
& \frac{\partial u}{\partial t} \in L^{2}\left(t^{0}-\sigma^{2}, t^{0}, H^{1}\left(B\left(x^{0}, \sigma\right), \mathbb{R}^{N}\right)\right)
\end{aligned}
$$

and also the following estimate holds:

$$
\begin{gathered}
\int_{Q(\sigma)}\left(\|D(H(u))\|^{2}+\left\|D\left(\frac{\partial u}{\partial t}\right)\right\|^{2}\right) d X \leq \\
\leq c \sigma^{-2}\left\{\sigma^{-2} \int_{Q(2 \sigma)}\left\|D\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+\int_{Q(2 \sigma)}\left\|H\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X\right\} .
\end{gathered}
$$

Then (1.4), (1.5) and Theorem 1.1 are proved.

Theorem 1.1 ensures that, if $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ is a solution in Q of the system (2.1), fixed the cylinder $Q(2 \sigma)=Q\left(X^{0}, 2 \sigma\right) \subset \subset Q$, it follows

$$
\begin{equation*}
D u \in W^{2}\left(Q(2 \sigma), \mathbb{R}^{n N}\right) \tag{2.17}
\end{equation*}
$$

On the other hand, if $P_{Q(2 \sigma)}$ is the vector-polynomial in x, of degree ≤ 2, such that

$$
\int_{Q(2 \sigma)} D^{\alpha}\left(u-P_{Q(2 \sigma)}\right) d X=0, \forall \alpha:|\alpha| \leq 2
$$

$D P_{Q(2 \sigma)}$ turns out to be the vector-polynomial in x, of degree ≤ 1, such that

$$
\int_{Q(2 \sigma)} D^{\alpha}\left(D u-D P_{Q(2 \sigma)}\right) d X=0, \forall \alpha:|\alpha| \leq 1
$$

From this remark and taking into account (2.17), it follows, by Lemma 2.2 of [8] (written for $2 \sigma, D u$ and $D P_{Q(2 \sigma)}$ instead of σ, u and $P_{Q\left(X^{0}, \sigma\right)}$, respectively):

$$
\begin{align*}
\sigma^{-2} \int_{Q(2 \sigma)} & \left\|D\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X+\int_{Q(2 \sigma)}\left\|H\left(u-P_{Q(2 \sigma)}\right)\right\|^{2} d X \leq \tag{2.18}\\
& \leq c\left[\int_{Q(2 \sigma)}\left(\|H(D u)\|^{\frac{2(n+2)}{n+4}}+\left\|\frac{\partial}{\partial t}(D u)\right\|^{\frac{2(n+2)}{n+4}}\right) d X\right]^{\frac{n+4}{n+2}}
\end{align*}
$$

where $\sigma \in(0,1)$ and the constant c does not depend on σ.
Then, under the assumptions of Theorem 1.1, from (1.5) and (2.18), we deduce, $\forall Q(2 \sigma) \subset \subset Q$ with $\sigma \in(0,1)$:

$$
\begin{aligned}
f_{Q(\sigma)} & \left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X \leq \\
& \leq c\left[f_{Q(2 \sigma)}\left(\|H(D u)\|^{\frac{2(n+2)}{n+4}}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{\frac{2(n+2)}{n+4}}\right) d X\right]^{\frac{n+4}{n+2}}
\end{aligned}
$$

where the constant c does not depend on σ.
From this, by a classical lemma of Gehring-Giaquinta-G. Modica (see, for example, [8], Lemma 3.3), we derive that $\exists \tilde{q}>2$ such that, $\forall q \in(2, \tilde{q})$,

$$
D u \in W_{l o c}^{q}\left(Q, \mathbb{R}^{n N}\right)
$$

and, $\forall Q(2 \sigma) \subset \subset Q$, with $\sigma \in(0,1)$

$$
\begin{align*}
& {\left[f_{Q(\sigma)}\left(\|H(D u)\|^{q}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{q}\right) d X\right]^{\frac{1}{q}} \leq} \tag{2.19}\\
& \quad \leq c\left[f_{Q(2 \sigma)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X\right]^{\frac{1}{2}} .
\end{align*}
$$

Now let us give the proof of Theorem 1.2. The proof is similar to that one used in [3], Theorem 1.1 (see also [6], Theorem 2.1). We present the proof for the reader's convenience. Having fixed $\varphi \in L^{2}\left(Q, \mathbb{R}^{N}\right)$ and $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ we must prove that the corresponding problem (1.7) admits a unique solution w and that the estimate (1.8) holds. The condition (1.3) ensures that the operator

$$
A(w)=a(H(w)+H(u))-\frac{\partial w}{\partial t}
$$

associates to each $w \in W_{0}^{2}\left(Q, \mathbb{R}^{N}\right)$ an element of $L^{2}\left(Q, \mathbb{R}^{N}\right)$:

$$
A(w): W_{0}^{2}\left(Q, \mathbb{R}^{N}\right) \rightarrow L^{2}\left(Q, \mathbb{R}^{N}\right)
$$

On the other hand it is well known that the linear operator

$$
B(w)=\Delta w-\alpha \frac{\partial w}{\partial t}\left(^{5}\right)
$$

is an isomorphism $W_{0}^{2}\left(Q, \mathbb{R}^{N}\right) \rightarrow L^{2}\left(Q, \mathbb{R}^{N}\right)$.
Let us show that $A(w)$ is "near" to the operator $B(w)\left({ }^{6}\right)$. For each $w_{1}, w_{2} \in$ $W_{0}^{2}\left(Q, \mathbb{R}^{N}\right)$, we have, by condition (A) and in view of the Lemmas 2.3 and 2.4 of [3]:

$$
\begin{gathered}
\left\|B\left(w_{1}\right)-B\left(w_{2}\right)-\alpha\left[A\left(w_{1}\right)-A\left(w_{2}\right)\right]\right\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)}^{2}= \\
=\int_{Q} \| \Delta\left(w_{1}-w_{2}\right)-\alpha\left[a\left(H\left(w_{1}-w_{2}\right)+H\left(w_{2}\right)+H(u)\right)-\right. \\
\left.-a\left(H\left(w_{2}\right)+H(u)\right)\right]\left\|^{2} d X \leq \gamma \int_{Q}\right\| H\left(w_{1}-w_{2}\right) \|^{2} d X+ \\
+\delta \int_{Q}\left\|\Delta\left(w_{1}-w_{2}\right)\right\|^{2} d X \leq \gamma \int_{Q}\left[\left\|H\left(w_{1}-w_{2}\right)\right\|^{2}+\alpha^{2}\left\|\frac{\partial\left(w_{1}-w_{2}\right)}{\partial t}\right\|^{2}\right] d X+ \\
+\delta \int_{Q}\left\|\Delta\left(w_{1}-w_{2}\right)\right\|^{2} d X \leq(\gamma+\delta) \int_{Q}\left\|\Delta\left(w_{1}-w_{2}\right)-\alpha \frac{\partial\left(w_{1}-w_{2}\right)}{\partial t}\right\|^{2} d X= \\
=(\gamma+\delta)\left\|B\left(w_{1}\right)-B\left(w_{2}\right)\right\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)}^{2}
\end{gathered}
$$

from which it follows
$\left\|B\left(w_{1}\right)-B\left(w_{2}\right)-\alpha\left[A\left(w_{1}\right)-A\left(w_{2}\right)\right]\right\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)} \leq K\left\|B\left(w_{1}\right)-B\left(w_{2}\right)\right\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)}$,

[^1]with $K=\sqrt{\gamma+\delta}$; hence the operator $A(w)$ is near to the operator $B(w)$.
Then Theorem 2 of [4] ensures that the Cauchy-Dirichlet problem (1.7) has a unique solution $w \in W_{0}^{2}\left(Q, \mathbb{R}^{N}\right)$ and that this solution fulfills the estimate:
\[

$$
\begin{equation*}
\|B(w)\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)} \leq \frac{\alpha}{1-\sqrt{\gamma+\delta}}\|\varphi-A(0)\|_{L^{2}\left(Q, \mathbb{R}^{N}\right)} \tag{2.20}
\end{equation*}
$$

\]

From (2.20), by Lemma 2.3 of [3], (1.8) it follows.

3. Interior fundamental estimates.

Let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution in Q of the basic system (1.1). The following fundamental estimates for $H(D u), \frac{\partial(D u)}{\partial t}, H(u)$ and $\frac{\partial u}{\partial t}$ hold:
Theorem 3.1. If the vector $a(\xi)$ satisfies the conditions (1.2) and (A), then, $\forall Q(\sigma) \subset \subset Q$, with $\sigma<2, \forall \tau \in(0,1)$ and $\forall q \in(2, \tilde{q})\left({ }^{7}\right)$, we have:

$$
\begin{align*}
\int_{Q(\tau \sigma)} & \left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X \leq \tag{3.1}\\
& \leq c \tau^{(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

where the constant c does not depend on σ and τ.
Proof. Fixed $Q(\sigma) \subset \subset Q$, with $\sigma<2, \tau \in\left(0, \frac{1}{2}\right)$, in virtue of the $L_{l o c}^{q}$-result showed in Section 2, we have:

$$
D u \in W^{q}\left(Q(\sigma), \mathbb{R}^{n N}\right), \forall q \in(2, \tilde{q})
$$

then, by Hölder's inequality, we get

$$
\begin{aligned}
& \int_{Q(\tau \sigma)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X \leq \\
& \leq c\left[\int_{Q(\tau \sigma)}\left(\|H(D u)\|^{q}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{q}\right) d X\right]^{\frac{2}{q}}(\tau \sigma)^{(n+2)\left(1-\frac{2}{q}\right)} \leq \\
& \leq c \tau^{(n+2)\left(1-\frac{2}{q}\right)} \sigma^{n+2}\left[f_{Q\left(\frac{\sigma}{2}\right)}\left(\|H(D u)\|^{q}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{q}\right) d X\right]^{\frac{2}{q}}
\end{aligned}
$$

$\left.{ }^{7}\right) \tilde{q}$ is the constant (>2) which appears in (2.19).
from which, in virtue of (2.19), the estimate (3.1) follows with $\tau \in\left(0, \frac{1}{2}\right)$. The estimate is trivially true for $\frac{1}{2} \leq \tau<1$.
Theorem 3.2. If the vector $a(\xi)$ satisfies the conditions (1.2) and (A), then, $\forall Q(\sigma) \subset Q$, with $\sigma<2, \forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))\left({ }^{7}\right)$, we have:

$$
\begin{align*}
\int_{Q(\tau \sigma)} & \left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{3.2}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

where the constant c does not depend on σ and τ.
Proof. Fixed $Q(\sigma) \subset Q$, with $\sigma<2$, and $q \in(2, \min (\tilde{q}, n+2))$, for $0<\tau<\tau^{\prime}<\frac{1}{2}$, by means of Lemma 2.II of [5] (written for $D u$ instead of u), we get $\left({ }^{8}\right)$:

$$
\begin{aligned}
& \quad \int_{Q(\tau \sigma)}\|H(u)\|^{2} d X \leq 2 \int_{Q(\tau \sigma)}\left\|(H(u))_{Q\left(\tau^{\prime} \sigma\right)}\right\|^{2} d X+ \\
& +2 \int_{Q(\tau \sigma)}\left\|H(u)-(H(u))_{Q\left(\tau^{\prime} \sigma\right)}\right\|^{2} d X \leq c\left(\frac{\tau}{\tau^{\prime}}\right)^{n+2} \int_{Q\left(\tau^{\prime} \sigma\right)}\|H(u)\|^{2} d X+ \\
& \quad+c\left(\tau^{\prime} \sigma\right)^{2} \int_{Q\left(\tau^{\prime} \sigma\right)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X
\end{aligned}
$$

from which, using (3.1), it follows:

$$
\begin{aligned}
& \int_{Q(\tau \sigma)}\|H(u)\|^{2} d X \leq c\left(\frac{\tau}{\tau^{\prime}}\right)^{n+2} \int_{Q\left(\tau^{\prime} \sigma\right)}\|H(u)\|^{2} d X+ \\
& \quad+c \sigma^{2} \tau^{\prime 2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q\left(\frac{\sigma}{2}\right)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X
\end{aligned}
$$

$$
f_{E}=f_{E} f d X=\frac{1}{\operatorname{meas} E} \int_{E} f d X
$$

From this, taking into account Lemma 1.I, p. 7 of [1], being $2+(n+2)\left(1-\frac{2}{q}\right)<$ $n+2$, we get:

$$
\begin{aligned}
& \int_{Q(\tau \sigma)}\|H(u)\|^{2} d X \leq c\left(\frac{\tau}{\tau^{\prime}}\right)^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q\left(\tau^{\prime} \sigma\right)}\|H(u)\|^{2} d X+ \\
& \quad+c \sigma^{2} \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q\left(\frac{\sigma}{2}\right)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X
\end{aligned}
$$

and hence, taking the limit for $\tau^{\prime} \rightarrow \frac{1}{2}$, we derive, $\forall 0<\tau<\frac{1}{2}$:

$$
\begin{align*}
\int_{Q(\tau \sigma)}\|H(u)\|^{2} d X & \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)}\left\{\int_{Q(\sigma)}\|H(u)\|^{2} d X+\right. \tag{3.3}\\
& \left.+\sigma^{2} \int_{Q\left(\frac{\sigma}{2}\right)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X\right\}
\end{align*}
$$

On the other hand we have the estimates of Caccioppoli (1.5) and of Poincaré (see Lemma 2.II of [5]); then applying these estimates we get:

$$
\begin{align*}
& \text { 3.4) } \sigma^{2} \int_{Q\left(\frac{\sigma}{2}\right)}\left(\|H(D u)\|^{2}+\left\|\frac{\partial(D u)}{\partial t}\right\|^{2}\right) d X \leq \tag{3.4}\\
& \leq c\left\{\sigma^{-2} \int_{Q(\sigma)}\left\|D\left(u-P_{Q(\sigma)}\right)\right\|^{2} d X+\int_{Q(\sigma)}\left\|H\left(u-P_{Q(\sigma)}\right)\right\|^{2} d X\right\} \leq \\
& \leq c\left\{\sigma^{-2} \int_{Q(\sigma)}\left\|D u-(D u)_{Q(\sigma)}\right\|^{2} d X+\int_{Q(\sigma)}\|H(u)\|^{2} d X+\right. \\
& \left.+\int_{Q(\sigma)}\left\|H(u)-(H(u))_{Q(\sigma)}\right\|^{2} d X\right\} \leq c \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+ \\
& +c \int_{Q(\sigma)}\left\|H(u)-(H(u))_{Q(\sigma)}\right\|^{2} d X \leq c \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

where $P_{Q(\sigma)}$ is the vector-polynomial in x, of degree ≤ 2, such that

$$
\int_{Q(\sigma)} D^{\alpha}\left(u-P_{Q(\sigma)}\right) d X=0, \forall \alpha:|\alpha| \leq 2
$$

Hence from (3.3) and (3.4) we get, $\forall 0<\tau<\frac{1}{2}$

$$
\begin{equation*}
\int_{Q(\tau \sigma)}\|H(u)\|^{2} d X \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \tag{3.5}
\end{equation*}
$$

Now let us observe that, being $\frac{\partial u}{\partial t}=a(H(u))$ in Q, using estimate (1.3), we obtain:

$$
\left\|\frac{\partial u}{\partial t}\right\|^{2}=\|a(H(u))\|^{2} \leq c\|H(u)\|^{2}
$$

and hence

$$
\begin{equation*}
\int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq c \int_{Q(\tau \sigma)}\|H(u)\|^{2} d X . \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) the assertion follows for $0<\tau<\frac{1}{2}$. Finally, the estimate (3.2) is trivially true for $\frac{1}{2} \leq \tau<1$.

The estimate (3.2) ensures that, $\forall q \in(2, \min (\tilde{q}, n+2))$:

$$
\begin{equation*}
H(u) \in L_{\mathrm{loc}}^{2,2+(n+2)\left(1-\frac{2}{4}\right)}\left(Q, \mathbb{R}^{n^{2} N}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t} \in L_{\mathrm{loc}}^{2,2+(n+2)\left(1-\frac{2}{\varphi}\right)}\left(Q, \mathbb{R}^{N}\right) ; \tag{3.8}
\end{equation*}
$$

therefore, in virtue of Lemma 2.II by [5]:

$$
\begin{equation*}
D u \in \mathcal{L}_{\mathrm{loc}}^{2,4+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{n N}\right), \forall q \in(2, \min (\tilde{q}, n+2)) . \tag{3.9}
\end{equation*}
$$

Now if $n<2 \tilde{q}-2$ (and in particular if $n=2$), there exists $q \in(2, \min (\tilde{q}, n+2))$ such that $4+(n+2)\left(1-\frac{2}{q}\right)>n+2$ and hence, by (3.9)

Du is Hölder-continuous in Q.
We also obtain from Lemma 2.I of [5] and conditions (3.8) and (3.9)

$$
u \in \mathscr{L}_{\mathrm{loc}}^{2,6+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{N}\right), \forall q \in(2, \min (\tilde{q}, n+2)),
$$

and hence, if $n<3 \tilde{q}-2$ (and in particular if $n \leq 4$), we derive

$$
\begin{equation*}
u \text { is Hölder-continuous in } Q \text {. } \tag{3.11}
\end{equation*}
$$

The results (3.10) and (3.11) are similar to those obtained by S. Campanato in Section 5 of [3].

4. $\mathcal{L}^{\mathbf{2}, \lambda}$-regularity for systems of type (1.9).

Let $f: Q \rightarrow \mathbb{R}^{N}$ be a vector of class $L^{2}\left(Q, \mathbb{R}^{N}\right)$ and $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ a solution in Q of the parabolic system

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=f(X) \tag{4.1}
\end{equation*}
$$

with $a(\xi)$ vector of \mathbb{R}^{N}, continuous onto $\mathbb{R}^{n^{2} N}$, satisfying the conditions (1.2) and (A).

Let us show the following
Lemma 4.1. For each cylinder $Q(\sigma) \subset Q$, with $\sigma<2, \forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))\left({ }^{7}\right)$, one has:

$$
\begin{aligned}
& \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \\
& \quad \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \int_{Q(\sigma)}\|f\|^{2} d X
\end{aligned}
$$

where the constant c does not depend on σ and τ.
Proof. Fixed $Q(\sigma) \subset Q$, with $\sigma<2$, let w be the solution of the CauchyDirichlet problem:

$$
\left\{\begin{array}{l}
w \in W_{0}^{2}\left(Q(\sigma), \mathbb{R}^{N}\right) \tag{4.2}\\
a(H(w)+H(u))-\frac{\partial w}{\partial t}=\frac{\partial u}{\partial t} \quad \text { in } Q(\sigma)
\end{array}\right.
$$

Setting in $Q(\sigma) v=w+u$, we have: $v \in W^{2}\left(Q(\sigma), \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
a(H(v))-\frac{\partial v}{\partial t}=0 \quad \text { in } Q(\sigma) \tag{4.3}
\end{equation*}
$$

We have for v the fundamental estimate (3.2):

$$
\begin{align*}
\int_{Q(\tau \sigma)} & \left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X \leq \tag{4.4}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X
\end{align*}
$$

$\left({ }^{9}\right)$ Theorem 1.2 ensures the existence of an unique solution of the problem (4.2).
$\forall \tau \in(0,1)$ and $\forall q \in(2, \min (\tilde{q}, n+2))$.
On the other hand from (1.8), it follows

$$
\begin{align*}
& \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq \tag{4.5}\\
& \quad \leq c(\alpha, \gamma, \delta) \int_{Q(\sigma)}\left\|\frac{\partial u}{\partial t}-a(H(u))\right\|^{2} d X
\end{align*}
$$

and also, in virtue of (4.1):

$$
\begin{equation*}
\int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq c(\alpha, \gamma, \delta) \int_{Q(\sigma)}\|f\|^{2} d X \tag{4.6}
\end{equation*}
$$

From (4.4) and taking into account that $u=v-w$, it follows, $\forall \tau \in(0,1)$:

$$
\begin{aligned}
& \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(v)\|^{2}+\left\|\frac{\partial v}{\partial t}\right\|^{2}\right) d X+ \\
& \quad+2 \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X \leq \\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+ \\
& \quad+c \int_{Q(\sigma)}\left(\|H(w)\|^{2}+\left\|\frac{\partial w}{\partial t}\right\|^{2}\right) d X
\end{aligned}
$$

from which, by (4.6), we deduce:

$$
\begin{gathered}
\int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \\
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \int_{Q(\sigma)}\|f\|^{2} d X .
\end{gathered}
$$

Lemma 4.1 enables us to prove the following

Theorem 4.1. If $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right), 0<\mu<\tilde{\lambda}=\min \left\{2+(n+2)\left(1-\frac{2}{\tilde{q}}\right), n+\right.$ $2\}$, if $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ is a solution of the system

$$
a(H(u))-\frac{\partial u}{\partial t}=f(X) \quad \text { in } Q
$$

and if the vector $a(\xi)$ satisfies the conditions (1.2) and (A), then

$$
\begin{equation*}
D u \in \mathscr{L}_{\mathrm{loc}}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
u \in \mathcal{L}_{\text {loc }}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right) \tag{4.8}
\end{equation*}
$$

Proof. Fixed $Q(\sigma) \subset Q$, with $\sigma<2$, for each $\tau \in(0,1)$ and for each $q \in(2, \min (\tilde{q}, n+2))$, in virtue of Lemma 4.1, we get:

$$
\begin{gather*}
\int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{4.9}\\
\leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \int_{Q(\sigma)}\|f\|^{2} d X
\end{gather*}
$$

and also, by assumption $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$:

$$
\begin{align*}
& 0) \quad \int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{4.10}\\
& \leq c \tau^{2+(n+2)\left(1-\frac{2}{q}\right)} \int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+c \sigma^{\mu}\|f\|_{\mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)}^{2}
\end{align*}
$$

Now, choosing $q \in(2, \min (\tilde{q}, n+2))$ in such a way that $2+(n+2)\left(1-\frac{2}{q}\right)>\mu$, by (4.10) (written for this value of q) and Lemma 1.I, p. 7 of [1], we obtain:

$$
\begin{gather*}
\int_{Q(\tau \sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X \leq \tag{4.11}\\
\leq c \tau^{\mu}\left\{\int_{Q(\sigma)}\left(\|H(u)\|^{2}+\left\|\frac{\partial u}{\partial t}\right\|^{2}\right) d X+\sigma^{\mu}\|f\|_{\mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)}^{2}\right\}
\end{gather*}
$$

The estimate (4.11) ensures that

$$
\begin{equation*}
H(u) \in L_{\mathrm{loc}}^{2, \mu}\left(Q, \mathbb{R}^{n^{2} N}\right) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial t} \in L_{\mathrm{loc}}^{2, \mu}\left(Q, \mathbb{R}^{N}\right) \tag{4.13}
\end{equation*}
$$

and hence (4.7), by Lemma 2.II of [5].
Finally the condition (4.8) is a consequence of (4.7), (4.13) and Lemma 2.I of [5].

If $\underset{\sim}{n}<2 \tilde{q}-2$ (and in particular if $n=2$) and if $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$ with $\mu \in(n, \tilde{\lambda})$, in virtue of (4.7), we get:

$$
D u \in \mathcal{L}_{\text {loc }}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right), \text { with } \mu+2>n+2
$$

and hence
$D u$ is Hölder-continuous in Q.
Similarly, if $n<\tilde{\sim} 3 \tilde{q}-2$ (and in particular if $n \leq 4)$ and if $f \in \mathcal{L}^{2, \mu}\left(Q, \mathbb{R}^{N}\right)$ with $\mu \in(n-2, \tilde{\lambda})$, in virtue of (4.8) we obtain:

$$
u \in \mathscr{L}_{\mathrm{loc}}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right), \text { with } \mu+4>n+2
$$

and hence

$$
u \text { is Hölder-continuous in } Q .
$$

5. $\mathcal{L}^{\mathbf{2}, \lambda}$-regularity for systems of type (1.10).

Let $u \in W^{2}\left(Q, \mathbb{R}^{N}\right)$ be a solution of the system

$$
\begin{equation*}
a(H(u))-\frac{\partial u}{\partial t}=b(X, u, D u) \quad \text { in } Q \tag{5.1}
\end{equation*}
$$

where $a(\xi)$ is a vector of \mathbb{R}^{N}, continuous onto $\mathbb{R}^{n^{2} N}$ and satisfying the conditions (1.2) and (A) and $b(X, u, p)$ is a vector of \mathbb{R}^{N}, measurable in X, continuous in (u, p) and satisfying the condition
(5.2) there exists a constant c such that, $\forall u \in \mathbb{R}^{N}, \forall p \in \mathbb{R}^{n N}$ and for almost every $X \in Q$:

$$
\|b(X, u, p)\| \leq c(1+\|u\|+\|p\|)
$$

Lemmas 2.1 of [8] and 2.II of [5] and Theorem 3.1 of [8] ensure that

$$
u \in \mathscr{L}_{\mathrm{loc}}^{2,4+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{N}\right), D u \in \mathscr{L}_{\mathrm{loc}}^{2,2+(n+2)\left(1-\frac{2}{q}\right)}\left(Q, \mathbb{R}^{n N}\right), \forall q \in(2, \bar{q})\left({ }^{10}\right)
$$

and, hence, u and $D_{i} u, i=1,2, \ldots, n$, belong to $\mathcal{L}^{2, \mu}\left(Q^{*}, \mathbb{R}^{N}\right), \forall \mu \in$ $\left(0,2+(n+2)\left(1-\frac{2}{\bar{q}}\right)\right)$ and $\forall Q^{*} \subset \subset Q$. From this, taking into account condition (5.2), it follows that the vector $f(X)=b(X, u, D u) \in \mathcal{L}^{2, \mu}\left(Q^{*}, \mathbb{R}^{N}\right)$, $\forall \mu \in\left(0,2+(n+2)\left(1-\frac{2}{\bar{q}}\right)\right)$ and $\forall Q^{*} \subset \subset Q$.
Then Theorem 4.1 implies

$$
\begin{equation*}
D u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu+2}\left(Q, \mathbb{R}^{n N}\right), u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu+4}\left(Q, \mathbb{R}^{N}\right), \forall \mu \in\left(0, \lambda^{*}\right) \tag{5.3}
\end{equation*}
$$

where $\lambda^{*}=\min \left\{2+(n+2)\left(1-\frac{2}{\bar{q}}\right), 2+(n+2)\left(1-\frac{2}{\tilde{q}}\right), n+2\right\}=$ $\min \left\{2+(n+2)\left(1-\frac{2}{q^{*}}\right), n+2\right\}, q^{*}=\min (\bar{q}, \tilde{q})$.
Now if $n<2 q^{*}-2$, it results $n<\lambda^{*}$. Then denoting by μ^{\prime} a number of the interval (n, λ^{*}), from the first statement of (5.3) it follows

$$
D u \in \mathcal{L}_{\text {loc }}^{2, \mu^{\prime}+2}\left(Q, \mathbb{R}^{n N}\right)
$$

and hence, being $\mu^{\prime}+2>n+2, D u$ is Hölder-continuous in Q. In particular
$D u$ is Hölder-continuous in Q if $n=2$.
If $n<3 q^{*}-2$, then $n-2<\lambda^{*}$ and hence, fixed $\mu^{\prime \prime} \in\left(n-2, \lambda^{*}\right)$, from the second statement of (5.3), it follows

$$
u \in \mathcal{L}_{\mathrm{loc}}^{2, \mu^{\prime \prime}+4}\left(Q, \mathbb{R}^{N}\right)
$$

from which, being $\mu^{\prime \prime}+4>n+2$, the Hölder-continuity of u in Q follows. In particular the vector

$$
u \text { is Hölder-continuous in } Q \text { if } n \leq 4 .
$$

[^2]
REFERENCES

[1] S. Campanato, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni Scuola Norm. Sup. Pisa, 1980.
[2] S. Campanato, Non variational basic elliptic systems of second order, Rend. Sem. Mat. Fis. Milano, 60 (1990), pp. 113-131.
[3] S. Campanato, Non variational basic parabolic systems of second order, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (9) 2 (1991), pp. 129-136.
[4] S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura Appl., (4) 167 (1994), pp. 243-256.
[5] P. Cannarsa, Second order non variational parabolic systems, Boll. U.M.I., (5) 18-C (1981), pp. 291-315.
[6] M.S. Fanciullo, $\mathcal{L}^{2, \lambda}$ regularity for second order non linear non variational elliptic systems, Le Matematiche, 50 (1995), pp. 163-172.
[7] L. Fattorusso, Sulla differenziabilità delle soluzioni di sistemi parabolici non lineari del secondo ordine ad andamento quadratico, Boll. U.M.I., (7) 1-B (1987), pp. 741-764.
[8] M. Marino - A. Maugeri, Second order non linear non variational parabolic systems, Rend. Mat., (7) 13 (1993), pp. 499-527.
[9] M. Marino - A. Maugeri, Differentiability of weak solutions of nonlinear parabolic systems with quadratic growth, Le Matematiche, 50 (1995), pp. 361377.

Dipartimento di Matematica, Università di Catania, Viale Andrea Doria 6, 95125 Catania (ITALY)

[^0]: $\left({ }^{4}\right)$ Let us remember that $0 \leq \vartheta \leq 1$ and that $\left|g^{\prime}\right| \leq c \sigma^{-2}$.
 In the next estimate, c denotes a constant which depends on $\alpha, \gamma, \delta, \varepsilon$ and on the constant that appears in the last of the estimates (2.4).

[^1]: $\left({ }^{5}\right) \alpha$ is the positive constant that appears in the condition (A).
 $\left({ }^{6}\right)$ In the sense of Definition 1 of [4].

[^2]: $\left({ }^{10}\right) \bar{q}$ is the constant (>2) which appears in the Theorem 3.1 of [8]. In [8] Lemma 2.1 and Theorem 3.1 are proved in the hypothesis $n>2$. These results are true also for $n=2$.

