LE MATEMATICHE
Vol. LI (1996) — Fasc. II, pp. 349-368

SECOND ORDER NON VARIATIONAL BASIC
PARABOLIC SYSTEMS

MARIO MARINO - ANTONINO MAUGERI

Dedicated to Professor Francesco Guglielmino
with our deepest esteem and gratitude, on his 70th birthday

Let Q be the cylinder Q x (—T,0) and W”(Q,R¥) (p > 1, k integer
> 1) the Banach space

0
WP(Q.RY) = (v:ve LP(=T.0. H* (2. BY), 5- e LM(Q. R
if ue WZ(Q, RN) (N integer > 1) is a solution in Q of the basic system

ou
a(H(u)) — i 0,

where a(§) is a vector of R¥, continuous onto R”N , satisfying the conditions
a(0) = 0 and (A), we show that Du € W]%C(Q,R"N) with ¢ > 2 and
we derive the so called fundamental estimates for the matrix H(u#) and the
vector g—? In a standard way, from the fundamental estimates, we deduce
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that Du and u are Holder-continuous in Q, if n = 2 and if n < 4,
respectively. Moreover we study the Holder-continuity in Q of the vectors
Du and u, when u is a solution of the system:

0
a(H (u)) — a—”t’ = f(X), feZL*MQ.RY),

and also we give a first result of Holder-continuity in Q for the solutions of
the system:

a(H(u)) — ?9_? =b(X,u, Du),

with b vector of RV with “linear growth”.

1. Introduction.

Let Q be a bounded open set of R", n > 2, of class C?, with generic
point x = (xy, X2, ..., x,). If T is a real positive number, we denote by Q the
cylinder 2 x (=7, 0) and by X the point (x, ) of R} x R,. If u(X) is a vector
Q0 — RV, N integer > 1, we set:

ou
Diu = —, Du= (Du, Du, ..., D,u),
8)61'
H@wu) ={D;Dju} = {Dj;ju}, i,j=12,...,n;

Du and H () are elements of R”Y and R"V , respectively.
Setting

WP(Q, RN = {v cveLP(=T,0, H*P(Q2, R, 2—’: e L?(Q, R")},
WP(Q, RY) = {v e WP(Q,RY 1 ve LP(—T, 0, H'"(Q, RY),
v(x, —T) = 0},

where p € [1, 400, k is an integer > 1 and H>P(Q2, R¥), Hol’p(Q, R¥) are the
usual Sobolev spaces (1), let u € W2(Q, RY) be a solution in Q of the basic

(") wP(Q,R¥)and Wé’(Q, IR¥) are Banach spaces provided by the norm
1

ou ?
lullp,0 = [/Q(Ilu||p+IIDuII”+IIH(u)II"+II§II”)dX} .
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system:

5
(1.1) a(H(w) - 5= =0,

where a(£) is a vector of RV, continuous onto R™N, satisfying the conditions:
(1.2) a(0) =

(A) there exist three positive constants «, y and § with y + 8§ < 1, such that:

“an— fatz +m) —a]|” < il +8HZr”\

. VY, nER"ZN.

From the condition (A), setting n = 0, we get, V1 € R™N

(1.3) lla(D)ll < QII Il

In Section 2 we shall prove, by a technique similar to the that one used
by S. Campanato [2] in the elliptic case (see also [3]), the following result of
differentiability:

Theorem 1.1. If the vector a(£) satisfies the conditions (1.2) and (A), then
(1.4) Due W2.(Q,R™)

and, ¥ Q(20) = Q(X°, 20) = B(x°, 20) x (t° — (20)?,t°) C Q, the following
Caccioppoli’s type estimate holds:

a5 [ (o0 + 1552 R) dx <
0(o)

< 60_2{0_2/ | D(u — Pops)lI*dX +/ | H(u — PQ(za))szX},
0(20) 0(20)

where the constant ¢ does not depend on o and Py, is the vector-polynomial
in x, of degree < 2, such that

(1.6) / D*(u — PQ(ZJ))dX =0, Va:|la| <2 (2)
0(Q20)

(®) D* = DY'DY* ... Dy, a = (a1, 2, ..., ap), la| = aj+ar+...+ay, o; integer
> 0.
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From this result, in virtue of the well known Gehring-Giaquinta-G.Modica
Lemma, the Lfoc-regularity of the vectors H(Du) and % will be derived.
Moreover we shall prove the following existence and uniqueness result:

Theorem 1.2. If Q is of class C* and convex and if the vector a(£) satisfies
the conditions (1.2) and (A), then, Vo € L>(Q, RN) and Vu e W*(Q, RV), the
Cauchy-Dirichlet problem:

we W0, RY)

(1.7) ow .
a(H(w)—l— H(u)) Yy =@pX) in Q

has a unique solution. Moreover the following estimate holds:

(1.8) /Q<||H(w)||2—|—“aa—l:)“z)dX§c(a,y,8)fQH(p—a(H(u))”de.

In Section 3 we will give the interior fundamental estimates for H(Du),

%2, H(u) and % which will enable us to achieve the Holder-continuity in Q

of Du and u, if n = 2 and if n < 4, respectively. Thus we obtain, following a
different method, the same results obtained by S. Campanato in the Section 5 of
[3]. Moreover we will show that the solutions u € W?(Q, RV) of the system

d
(1.9) a(Hw) — 8—”; = f(X). feL*™Q.RY),

are Holder-continuous in Q if n < 4 and in Section 5 we will study the Holder-
continuity in Q of the solutions u € W?(Q, R") of the system

(1.10) a(Hw)) — 2—? = b(X, u, Du),

with b(X, u, p) vector of RY with “linear growth”.

2. Proof of Theorems 1.1 and 1.2 and Lfoc-regularity.

Let u € W2(Q, RY) be a solution in Q of the basic system

9
@.1) a(H () — a_L: —0,
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where a(£) is a vector of RY, continuous onto RN , satisfying the conditions
(1.2) and (A).

Fixed the cylinder Q(20) = Q(X°, 20) C Q, let ¥(x) and g(¢) be two real
functions of class C°(R") and C*(R) respectively, satisfying the following
properties:

3
(2.2) 0<v <1, 9=1in Bx" o), 9 =0 in R"\ B(x", 5o—),
(2.3) |D*®| < co~® for all multi-indices «,

3 \2
(2.4) 0§g§1,g:1fortzto—az,g:0f0r1510_<50)’

lg'()] < co™2.

Setting ps ,u(X) = u(x + he’, t) —u(X) (), s = 1,2,...,n, |h| < %, and
denoting by Pgp2s) the vector-polynomial in x, of degree < 2, satisfying (1.6),
from (2.1) we getin Q(%a)

)
ps.na(H (W) — ps,ha—“ ~0
t
that is ;
u
a(H (ps ) + H(w) — a(H (W) = popz =0,

from which, being %(ps,h Po@sy) = 0 and H(p, 5 Pps)) = 0, we derive:
a
(2.5) A(ps,n(u — Poe)) — Ola(/)s,h(u — Popo))) =

= A(psn( — Ppo)) — Ol[a(H(,Os,h(M — Po@o)) + H(u)) — G(H(M))}

where « is the positive constant that appears in the condition (A).
From (2.5), because of the condition (A), we reach:

0
@6 |PgAlpulu — Pope) — aPg (ool = Poco) | =

= 08| A(ps.n (U — Porey)) — a[a(H (ps n(u — Poooy)) + Hw)) —a(Hw))]|| <

< 28| VI H (pon(t = Poo I +811 Aot = Poo I}

A) {e®}s=1.2....n is the canonic base of R".
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Now setting
U(X) =P (x)g@)ps,n( — Pp2s)),

we have:
3
@2.7) U e WOZ(Q(XO, Ea),RN),
(2.8) AU =DgA(ps,n(u — Poo)) + Alu — Po(2s)),
(2.9) H(U) = vgH (ps,n(u — Pppo)) + Blu — Ppaq)),
aU 3 ,

(2.10) rTie vg a(l)s,h(u — Pp0)) + 08 ps.n( — Ppao)),
where
(2.11) At — Poo)) = gAVpsn(u — Poo)) +

n

+2g Z D9 Di(ps.n(u — Pga))),

i=1

2.12) B — Pogo)) = {Di9pslu — Poco)) +

+8Di9Dj(ps,(u — Po@2sy)) + gD Di (o5, (1 — PQ(ZU)))}i P

Then, from (2.8), (2.10) and (2.6) we obtain
U 0
“ AU — rve “ < “ Vg Aps.n(t — Poo))) — aﬁg&(ps,h(u — PQ(ZU)))” +
+ 1A = Poaa)ll +llad g pgn(u — Poae)ll < 98 {y I1H (ps.n(u— Poaa)))I*+

i /

+ 81| Alps n(tt — Poa))II*}? + 1A — Poao)ll + lla? g’ ps.n(u — Poa)ll,
from which, by (2.8) and (2.9), it follows, Ve > 0 and for almost every
Xe 0(Go):

oU |2 2.2 2
@13) |aU—a=|" = (1 + )9y I H(punln = Poco)I* +

+ 8| A5, n(u — Poo) I} + c(){ | Atu — Poeo)|l* +
+ la® g’ oy n(u — Poo) I’} < (1 + ) {y IHWI> + sI1AUN} +
+c(e, a, v, HUIAW— Poo) |+ Bu— Poae)) 1> +92 8"l ps.n(u— Poroy) I}
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Integrating (2.13) on Q(%a), using (2.7) and taking into consideration
Lemma 2.4 of [3], we obtain:

[1 -1+ es] /Q(%U)

< +e>2y/ |H(UW)|*dX +
0(30)

JU |2
A‘u-aW” dx <

+e(e.a.y.8) | (1AW = Poea)I* + 11 B(u — Poea)I* +
0(50)

+92¢ 1 ps n(u — Poo) I dX,

from which, by Lemma 2.3 of [3] and for each ¢ € ] 0, % — 1[, we deduce:

[1 —( +e)23] /Q(%U) <||H(‘M)||2+oz2”%—‘lti”2) dX <

dU |12
< (1+e)2yf (I + 0| == ) dx +
0Go) ot
telea.y. ) [ (1A — Poao)lI* + 1B — Popo)ll> +
0(50)

+ 928"l psn(u — Poooy) 1) dX

) . 1 4.
and hence, for £ chosen in the interval ] 0, —m 1[, we get (7):

(2.14) /Q(%G) (||H(u)||2—|-azwz_7tl”2) dX <

<c / . (1A — Poao)II>+ | B — Poo) > +0 ~*l ps.n(u— Poo)ll?) dX.
0(50)
From (2.14), taking into account (2.9) and (2.10), it follows:

9 2
f (1 ool + & = (oo ) X =
(o) ot

4) Let us remember that 0 < <1 andthat |g/| < co~2,
8

In the next estimate, ¢ denotes a constant which depends on «, y, §, € and on the constant
that appears in the last of the estimates (2.4).
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= [ (il + e || ) dx <

0(3o) ot
el [ 1w PoeyPax+ [ 1B Pognl?ax +
0(30) 0(30)
+o™ f 61t = PouaIP dX |,
0(30)
from which, in virtue of (2.11), (2.12), (2.3) and (2.4), we get:
2.15) | (1ol + @ 5w )ax <
0O(o)
<co™* / Il ps.1( — Pooy)|I* dX +co ™2 f Il ps.n D1 — Poao))|I* dX.
0(30) 0(30)

We shall now evaluate the integrals that appear in the right hand side of (2.15)
using Lemma 2.1 of [7]. We obtain, for [2| < Zands =1,2,...,n

/Osh_” )

< co?hPlo2 / DG — Poo)I>dX + f |H(w — Poao)IP dX .
0(20) 0(20)

(2.16) / (s H (o)1 +?
0(o)

From (2.16), by Lemma 3.1 of [9], it follows that

H@wu) e LXt° — 62,1, H\(B(x", o), R"VY),

d
8_1: e L*° —o?,1°, H'(B(x", 0), RY))

and also the following estimate holds:

fQ(U)(nD(H(u) 1+ o[ ) ax

< 60_2{0_2/ | D(u — Poaoyll*dX +/ | H (u — PQ(ZU))HZdX}-
0(20) 0(20)

Then (1.4), (1.5) and Theorem 1.1 are proved. [l
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Theorem 1.1 ensures that, if u € W2(Q,R") is a solution in Q of the
system (2.1), fixed the cylinder Q(20) = Q(X°, 20) CC Q, it follows

(2.17) Du € WX(QQ0), R™).

On the other hand, if Py, is the vector-polynomial in x, of degree < 2,
such that

D“(u — PQ(ZU))dX = 0, Va : |Ol| < 2,
0(20)
D P24 turns out to be the vector-polynomial in x, of degree < 1, such that

/ D“(Du — DPQ(zU))dX =0, Va : |Ol| <1.
0(Q20)

From this remark and taking into account (2.17), it follows, by Lemma 2.2 of [8]
(written for 20, Du and D P4 instead of o, u and Py xo ), respectively):

(2.18) o* / | D(u — Poas)lI*dX + f |H (@ — Pooo)l* dX <
0(20) 0(20)

i) 8 2(n+2) atd
< [ (1o + | o
0(20) ot

e )dX] n+2 ’
where o € (0, 1) and the constant ¢ does not depend on o.
Then, under the assumptions of Theorem 1.1, from (1.5) and (2.18), we deduce,
YQQRo) CcC Q witho € (0, 1):

fgm (1@ + | 222 ax

= |:7LQ(20) <|

where the constant ¢ does not depend on o.
From this, by a classical lemma of Gehring-Giaquinta-G. Modica (see, for
example, [8], Lemma 3.3), we derive that 3 > 2 such that, Vg € (2, g),

DueW! (0, R™)
and, VQ2o0) CcC Q,witho €(0, 1)

(2.19) [ﬁ(g)(nfl(m)nuﬂaww [")a ] <
-, (oot + 222

8 D 2(:+2) %
+” (Du) *4)dx] ’
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Now let us give the proof of Theorem 1.2. The proof is similar to that one
used in [3], Theorem 1.1 (see also [6], Theorem 2.1). We present the proof for
the reader’s convenience. Having fixed ¢ € L>(Q, R") and u € W?(Q, R") we
must prove that the corresponding problem (1.7) admits a unique solution w and
that the estimate (1.8) holds. The condition (1.3) ensures that the operator

Jw
A(w) = a(H(w) + H(@w)) — =

associates to each w € Wi(Q, RY) an element of L*(Q, RY):
Aw) : Wi(Q, RY) — L*(Q,RY).

On the other hand it is well known that the linear operator

B(w) = Aw — 8_w(5)
w) = Aw Olat

is an isomorphism W (Q, RY) — L?(Q, R").

Let us show that A(w) is “near” to the operator B(w) (°). For each w;, w, €
W(Q, RY), we have, by condition (A) and in view of the Lemmas 2.3 and 2.4
of [3]:

1B(w) — B(wn) — alAGw;) — A2 g v, =

:/ HA(w1 —wz)—a[a(H(wl —w2)+H(w2)+H(u))—
o

—a(Hwy) + Hw)]|* dX < V/Q IH(w — wo)|I> dX +

+8/ 1A —wy)|2dX < (y+8>/ N

= (7 + OB = B2, v,

from which it follows

1B(w1) = B(wz) — a[A(w) — A(w2)]ll 12 vy = KIBw1) = B(wa)ll 2 gr)»

(®) « is the positive constant that appears in the condition (A).
(®) 1In the sense of Definition 1 of [4].
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with K = /y + 8; hence the operator A(w) is near to the operator B(w).
Then Theorem 2 of [4] ensures that the Cauchy-Dirichlet problem (1.7) has a
unique solution w € WZ(Q, R") and that this solution fulfills the estimate:

o
(2.20) 1B 129 M) = -3 lle = AN 120 Y-

From (2.20), by Lemma 2.3 of [3], (1.8) it follows. O

3. Interior fundamental estimates.

Let u € W?(Q,R") be a solution in Q of the basic system (1.1). The

following fundamental estimates for H (Du), a(g”), H(u) and a” hold:

Theorem 3.1. If the vector a(§) satisfies the conditions (1.2) and (A), then,
YQ(o)CC Q,witho <2,¥Y1e(0,1)andVq €2, q) ("), we have:

(3.1 /Q(w) (1w + | =

a(D
<cr("+2)“‘3>f (1@l + | X227 ax,
0(o)

where the constant ¢ does not depend on o and t.

d(Du) ” )

Proof. Fixed Q(o) CC Q,witho < 2,7 €(0, 2) in virtue of the L? -result

showed in Section 2, we have:

loc

DueWi(Q(o), R"™), Vg (2, §);

then, by Holder’s inequality, we get

d(Du)
fQ . (1H Dw? + () ” )ax
[, (oo + | 229 >dx] oy

2
<o L (o + [ 220" ax ]|
(%)

7) § is the constant (> 2) which appears in (2.19).
q
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from which, in virtue of (2.19), the estimate (3.1) follows with t € (0, %). The
estimate is trivially true for ; <7 < 1. O

Theorem 3.2. If the vector a(€) satisfies the conditions (1.2) and (A), then,
YQ(o)C Q,withe <2,Y1€(0,1)andVq e (2, min(G, n+2)) (7), we have:

(3.2) fQ o (1 + 3] ) ax <

ou |2
- Cr2+(n+2)(1—§)/ (1o + |21y ax
0() ot

where the constant ¢ does not depend on o and t.

Proof. Fixed Q(o) C Q, with 0 < 2, and ¢ € (2, min(g, n + 2)), for
0<71t <1 < % by means of Lemma 2.II of [5] (written for Du instead
of u), we get (®):

/ IH )| dX <2 f | (H@) oy | dX +
0(to) O(ro)

n+2
+z/ H(w) — (HW) g |7 dX < ¢( 5 f IH@))?dX +
oo | (H () g | (5) .

+o(to)? (”H(D I? +” (DM)”)

Q(t'0)

from which, using (3.1), it follows:

T\ n+2
f IH@I2dX < (=) / I HG@lI*dX +
0(t0) v o(t'o)

/ n —= 8 DM
reote 20D [ (oup? + [ 252 ) ax.
(%)

8) If E c R"*! is a measurable set with positive measure and f € L'(E, Rk), we set:
p

fe =7%de - mezllsE/;de'




SECOND ORDER NON VARIATIONAL BASIC. .. 361

From this, taking into account Lemma 1.1, p.7 of [1], being 2+ (n +2)(1 — %) <
n+ 2, we get:

2+(n+2)(1—-) 5
| imwiPax <e () | iHwiax+
0(10) v 0(t'0)

2 Du
4 colg2tnt0-2 )/ (||H(D W2+ ” a( )” )
0(%)

and hence, taking the limit for t/ — %, we derive, VO < 7 < %:

(3.3) f IH@IPdX < e 20D f VH@I?dX +
O(to) 0(o)

+02/Q(%)(||H(D ol + | 222 ) ax}.

On the other hand we have the estimates of Caccioppoli (1.5) and of Poincaré
(see Lemma 2.1I1 of [5]); then applying these estimates we get:

ol

(3:4) oZ/Q(%)(nH(D i + [ == ) ax <

scfo [ pw-rpoe)lax+ [ |- poe)ax] <
0(o) 0(o)

clo [ Jpu-@uee Pax+ [ jH@ax +
0(0) 0(o)

+/ Hw) — (Hw) ., |° dx Sc/
16~ (@), P ax]

du |2
(@i + | 5| ) ax +
0(0) ot

+C/Q(a> [H@ — (Hw) g, | dX < c/Q (1 + [ 3 [) ax.

(o)

where Py, is the vector-polynomial in x, of degree < 2, such that
/ Da(M—PQ(U))dXIO, Vo : |Ol| 52
Q(0)

Hence from (3.3) and (3.4) we get, VO < T < %

(3.5) / IH@)|?dX < cr2HetD0-D /
O(to)

du |2
(@I + | =] ) ax
0(0) at
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Now let us observe that, being 2 = a(H (u)) in Q, using estimate (1.3), we
obtain:

|20 = Ja(ra)|* = elranr®

and hence

(3.6) fQ . (1 + |3 ) ax < c fQ IR

From (3.5) and (3.6) the assertion follows for 0 < 7 < % Finally, the estimate
(3.2) is trivially true for % <t<l. U

The estimate (3.2) ensures that, Vg € (2, min(g, n + 2)):

2,24(n+2)(1—

(3.7) Hw)eL,, : (Q R™N)
and
(3.8) ou 2,24 +2)(1-3 (Q RN)

E € Lo
therefore, in virtue of Lemma 2.1 by [5]:

2,44+(n+2)(1—
loc

(3.9) DucL V(0. R™), Vg € (2, min(g, n +2)).

Now ifn < 2¢g—2 (and in particular if n = 2), there exists g € (2, min(qg, n—|—2))
such that 4 + (n + 2)(1 — %) > n + 2 and hence, by (3.9)

(3.10) Du is Holder-continuousin Q.

We also obtain from Lemma 2.1 of [5] and conditions (3.8) and (3.9)

2,6+(n+2)(1—
loc

uedL (0. RY), Vg € (2, min(g, n + 2)),
and hence, if n < 3¢ — 2 (and in particular if n < 4), we derive

(3.11) u is Holder-continuous in Q.

The results (3.10) and (3.11) are similar to those obtained by S. Campanato in
Section 5 of [3].
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4. £%* -regularity for systems of type (1.9).

Let f : Q — RY be a vector of class L>(Q,RY) and u € W?(Q,RV) a
solution in Q of the parabolic system

d
@.1) a(H () — a_b; = F(X),

with a(&) vector of RY, continuous onto R™N, satisfying the conditions (1.2)
and (A).
Let us show the following

Lemma 4.1. For each cylinder Q(oc) C Q, with o < 2, Yt € (0,1) and
Vg€ (2, min(g, n + 2)) (), one has:

[, (v |2 ) <

< Cr2+(n+2)(1—§>/

du |2
(1w + | EYax+e [ rkax,
0() ot

0(o)

where the constant ¢ does not depend on o and t.

Proof. Fixed Q(o) C Q, with 0 < 2, let w be the solution of the Cauchy-
Dirichlet problem:

w € WH(Q(0), RY)

4.2 %).
“2 a(H(w) + H(u)) — 88—’;’ = 2—”: in Q(0) ©

Setting in Q(0') v = w + u, we have: ve W(Q(c), RY) and
av )
(4.3) a(H(v)) — 5, =0 in Q).

We have for v the fundamental estimate (3.2):

(4.4) /Q B (1P + |5 ) ax <

< (20D /

v |2
(1@ +|22|) ax,
0() ot

(9) Theorem 1.2 ensures the existence of an unique solution of the problem (4.2).
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V1 e(0,1)and Vg € (2, min(g, n +2)).
On the other hand from (1.8), it follows

4.5) fQ . (1@ + | 52| ax <

< c(a, v, 8)/
0(o)

and also, in virtue of (4.1):

% —a(Hw)) szx

(4.6) /Q  (iH@Ie + |Z2) ax < cte .0 P,

From (4.4) and taking into account that ¥ = v — w, it follows, V1 € (0, 1):

/Q(w) (1EwI? + ()38—”;”2) dx <

< cp2HeEDI-9) f

dv |2
(1@ +| 2| ax +
0() ot

8 2
+2f (1H @)l + ”—“’” )dx <
0(0) at

< (0D f
0(0)

dw ||2
Hol + | 57| ) dx
”/Q(g)(” @i’ +[3=])

from which, by (4.6), we deduce:

/Q(m) (1H I+ ()2—?”2) dx <

< (0D /
0(0)

(vrron + g [) e+

(GO dX+c/Q(U) £ dX.

Lemma 4.1 enables us to prove the following
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Theorem 4.1. If f € L2*(Q,RY), 0 < u < A = min {24 (n +2)(1 — q%), n+
2}, ifue W2Q,RV) is a solution of the system

ad
a(H@w) - 37 = fX) inQ

and if the vector a(§) satisfies the conditions (1.2) and (A), then

4.7 Due £'7(0, R™)
and
(4.8) ue L0, RY).

Proof. Fixed Q(o) C Q, with 0 < 2, for each t € (0, 1) and for each
g € (2, min(G, n + 2)), in virtue of Lemma 4.1, we get:

a9 (i + 5] ) ax <

< Ct2+(n+2>(1—§> /

o) <||H(u)||2—|- ”2—?”3 dX -|-cf 1L£I? dX

0(o)

and also, by assumption f € L>*(Q, RV):

wio [ (e + 5] ax <

24+(n+2)(1—2)
=T ! / L24(Q.RY)

» (1H @I+ “38—”;“2) X + co L2

Now, choosing g € (2, min(g, n +2)) in such a way that 2+ (n +2)(1 — %) > u,
by (4.10) (written for this value of ¢) and Lemma 1.1, p. 7 of [1], we obtain:

am [ (i |5 )ax <

seorf [ (@I + | 5] ) X+ 0 1 s |
B 0(0) dr LHEED

The estimate (4.11) ensures that

4.12) H@u)e L>(Q0,R"Y)

loc
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and

u
(4.13) 5 € L0, RY),

and hence (4.7), by Lemma 2.1I of [5].
Finally the condition (4.8) is a consequence of (4.7), (4.13) and Lemma 2.1 of
[5]. O

If n < 2G — 2 (and in particular if n = 2) and if f € £>#(Q,R") with
W € (n, A), in virtue of (4.7), we get:

Due L2 (0, R™), with p+2>n+2,

loc

and hence
Du is Holder-continuousin Q.

Similarly, if n < 3¢ — 2 (and in particular if n < 4) and if f € £L>*(Q,R")
with u € (n — 2, A), in virtue of (4.8) we obtain:

ue L2, RY), with p+4>n+2,

loc

and hence
u is Holder-continuousin Q.

5. £%*-regularity for systems of type (1.10).

Let u € W?(Q, R") be a solution of the system
au .
(5.1) a(Hw)) — 35, =bX.u,Du) in Q,

where a(£) is a vector of RY, continuous onto R”N and satisfying the condi-
tions (1.2) and (A) and b(X, u, p) is a vector of R", measurable in X, continu-
ous in (u, p) and satisfying the condition

(5.2) there exists a constant ¢ such that, Yu e RN, Vp e R™N and for almost
every X € Q:

16CC w, Il < e(1+ llull + 1pl)-
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Lemmas 2.1 of [8] and 2.II of [5] and Theorem 3.1 of [8] ensure that

2,4+(n+2)(1-2 2,24+(n+2)(1-2

nedl “(0.RY), Duc £, 20, R™), Vg2, §)(),

loc

and, hence, u and Dju,i = 1,2,...,n, belong to L>*(Q*,R"), Vu €
0,2+ (n +2)(1 — %)) and YQ* CC Q. From this, taking into account
condition (5.2), it follows that the vector f(X) = b(X, u, Du) € L>*(Q*, RV),
Ve (0,24 m+2)1 — %)) and VQ* CcC Q.

Then Theorem 4.1 implies

(53)  DueLPHQ,R™), ue L2Q,RY), Vue (0,15,

loc loc

where A* = min{Z F A0 =D 24+ @+~ D), 0+ 2} -

min {2 21— 2)n+ 2}, ¢* = min(g, §).
Now if n < 2¢g* — 2, it results n < A*. Then denoting by 1’ a number of the
interval (n, A*), from the first statement of (5.3) it follows

Du e L2 (0, R™),

loc

and hence, being i’ + 2 > n + 2, Du is Holder-continuous in Q. In particular
Du is Holder-continuousin Q if n = 2.

If n < 3¢* — 2, then n — 2 < A* and hence, fixed u” € (n — 2, A*), from the
second statement of (5.3), it follows

ue L2M O, RY),

loc

from which, being u” + 4 > n + 2, the Holder-continuity of # in Q follows. In
particular the vector

u is Holder-continuousin Q if n < 4.

(10) q is the constant (> 2) which appears in the Theorem 3.1 of [8]. In [8] Lemma 2.1
and Theorem 3.1 are proved in the hypothesis n > 2. These results are true also for
n=2.
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