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Let Q be the cylinder � × (−T , 0) and W p(Q,R
k) ( p ≥ 1, k integer

≥ 1) the Banach space

W p(Q,R
k) = {v : v ∈ L p(−T , 0, H 2,p(�,R

k)),
∂v

∂t
∈ L p(Q,R

k)};

if u ∈W 2(Q,R
N ) (N integer ≥ 1) is a solution in Q of the basic system

a(H (u))−
∂u

∂t
= 0,

where a(ξ) is a vector of RN , continuous onto Rn2N , satisfying the conditions
a(0) = 0 and (A), we show that Du ∈ W

q
loc(Q,RnN ) with q > 2 and

we derive the so called fundamental estimates for the matrix H (u) and the
vector ∂u

∂ t . In a standard way, from the fundamental estimates, we deduce
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that Du and u are Hölder-continuous in Q , if n = 2 and if n ≤ 4,
respectively. Moreover we study the Hölder-continuity in Q of the vectors
Du and u , when u is a solution of the system:

a(H (u))−
∂u

∂t
= f (X), f ∈L 2,µ(Q,R

N ),

and also we give a �rst result of Hölder-continuity in Q for the solutions of
the system:

a(H (u))−
∂u

∂t
= b(X, u, Du),

with b vector of RN with �linear growth�.

1. Introduction.

Let � be a bounded open set of R
n , n ≥ 2, of class C2 , with generic

point x = (x1, x2, . . . , xn). If T is a real positive number, we denote by Q the
cylinder � × (−T , 0) and by X the point (x , t) of R

n
x × Rt . If u(X ) is a vector

Q → R
N , N integer ≥ 1, we set:

Diu =
∂u

∂xi
, Du = (D1u, D2u, . . . , Dnu),

H (u) = {Di Dj u} = {Dij u}, i, j = 1, 2, . . . , n;

Du and H (u) are elements of R
nN and R

n2N , respectively.
Setting

W p(Q, R
k) =

�
v : v ∈ L p(−T , 0, H 2,p(�, R

k)),
∂v

∂ t
∈ L p(Q, R

k)
�
,

W
p
0 (Q, R

k) =
�
v ∈W p(Q, R

k) : v ∈ L p(−T , 0, H
1,p
0 (�, R

k)),

v(x , −T ) = 0
�
,

where p ∈ [1, +∞[, k is an integer ≥ 1 and H 2,p(�, R
k), H

1,p
0 (�, R

k) are the
usual Sobolev spaces (1), let u ∈ W 2(Q, R

N ) be a solution in Q of the basic

(1) W p(Q,R
k) and W

p
0 (Q,R

k) are Banach spaces provided by the norm

�u�p,Q =

��

Q
(�u�p + �Du�p + �H (u)�p + �

∂u

∂t
�p) dX

� 1
p

.
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system:

(1.1) a
�
H (u)

�
−

∂u

∂ t
= 0,

where a(ξ ) is a vector of R
N , continuous onto R

n2N , satisfying the conditions:

(1.2) a(0) = 0;

(A) there exist three positive constants α, γ and δ with γ + δ < 1, such that:

�
�
�

n�

i=1

τii − α
�
a(τ + η)− a(η)

���
�
2

≤ γ �τ�2 + δ

�
�
�

n�

i=1

τii

�
�
�
2

, ∀τ, η ∈ R
n2N .

From the condition (A), setting η = 0, we get, ∀τ ∈ R
n2N

(1.3) �a(τ )� ≤
c(n)

α
�τ�.

In Section 2 we shall prove, by a technique similar to the that one used
by S. Campanato [2] in the elliptic case (see also [3]), the following result of
differentiability:

Theorem 1.1. If the vector a(ξ ) satis�es the conditions (1.2) and (A), then

(1.4) Du ∈W 2
loc(Q, R

nN )

and, ∀Q(2σ ) = Q(X 0, 2σ ) = B(x 0, 2σ )× (t0 − (2σ )2, t0) ⊂ Q, the following
Caccioppoli�s type estimate holds:

�

Q(σ )

�
�H (Du)�2 + �

∂(Du)

∂ t
�2

�
dX ≤(1.5)

≤ cσ−2
�
σ−2

�

Q(2σ )

�D(u − PQ(2σ ))�
2dX +

�

Q(2σ )

�H (u − PQ(2σ ))�
2dX

�
,

where the constant c does not depend on σ and PQ(2σ ) is the vector-polynomial
in x , of degree ≤ 2, such that

(1.6)

�

Q(2σ )

Dα(u − PQ(2σ ))dX = 0, ∀α : |α| ≤ 2 (2).

(2) Dα = Dα1
1 Dα2

2 . . . Dαn
n , α = (α1, α2, . . . , αn ), |α| = α1+α2+ . . .+αn , αi integer

≥ 0.
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From this result, in virtue of the well known Gehring-Giaquinta-G.Modica
Lemma, the L

q
loc-regularity of the vectors H (Du) and

∂ (Du)
∂ t

will be derived.
Moreover we shall prove the following existence and uniqueness result:

Theorem 1.2. If � is of class C2 and convex and if the vector a(ξ ) satis�es
the conditions (1.2) and (A), then, ∀ϕ ∈ L2(Q, R

N ) and ∀u ∈W 2(Q, R
N ), the

Cauchy-Dirichlet problem:

(1.7)






w ∈W 2
0 (Q, R

N )

a
�
H (w)+ H (u)

�
−

∂w

∂ t
= ϕ(X ) in Q

has a unique solution. Moreover the following estimate holds:

(1.8)

�

Q

�
�H (w)�2 +

�
�
�
∂w

∂ t

�
�
�
2�

dX ≤ c(α, γ, δ)

�

Q

�
�ϕ − a

�
H (u)

��
�2 dX .

In Section 3 we will give the interior fundamental estimates for H (Du),
∂ (Du)

∂ t
, H (u) and ∂u

∂ t
which will enable us to achieve the Hölder-continuity in Q

of Du and u, if n = 2 and if n ≤ 4, respectively. Thus we obtain, following a
different method, the same results obtained by S. Campanato in the Section 5 of
[3]. Moreover we will show that the solutions u ∈W 2(Q, R

N ) of the system

(1.9) a
�
H (u)

�
−

∂u

∂ t
= f (X ), f ∈ L

2,µ(Q, R
N ),

are Hölder-continuous in Q if n ≤ 4 and in Section 5 we will study the Hölder-
continuity in Q of the solutions u ∈W 2(Q, R

N ) of the system

(1.10) a
�
H (u)

�
−

∂u

∂ t
= b(X, u, Du),

with b(X, u, p) vector of R
N with �linear growth�.

2. Proof of Theorems 1.1 and 1.2 and L
q
loc-regularity.

Let u ∈W 2(Q, R
N ) be a solution in Q of the basic system

(2.1) a
�
H (u)

�
−

∂u

∂ t
= 0,
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where a(ξ ) is a vector of R
N , continuous onto R

n2N , satisfying the conditions
(1.2) and (A).

Fixed the cylinder Q(2σ ) = Q(X 0, 2σ ) ⊂ Q , let ϑ(x ) and g(t) be two real
functions of class C∞

0 (R
n) and C∞(R) respectively, satisfying the following

properties:

(2.2) 0 ≤ ϑ ≤ 1, ϑ = 1 in B(x 0, σ ), ϑ = 0 in R
n \ B(x 0,

3

2
σ ),

(2.3) |Dαϑ | ≤ cσ−|α| for all multi-indices α,

(2.4) 0 ≤ g ≤ 1, g = 1 for t ≥ t0 − σ 2, g = 0 for t ≤ t0 −
�3

2
σ
�2

,

|g�(t)| ≤ cσ−2.

Setting ρs,hu(X ) = u(x + hes , t) − u(X ) (3), s = 1, 2, . . . , n, |h| < σ
2
, and

denoting by PQ(2σ ) the vector-polynomial in x , of degree ≤ 2, satisfying (1.6),
from (2.1) we get in Q( 3

2
σ )

ρs,ha
�
H (u)

�
− ρs,h

∂u

∂ t
= 0

that is

a
�
H (ρs,hu)+ H (u)

�
− a

�
H (u)

�
− ρs,h

∂u

∂ t
= 0,

from which, being ∂
∂ t
(ρs,h PQ(2σ )) = 0 and H (ρs,h PQ(2σ )) = 0, we derive:

(2.5) �(ρs,h(u − PQ(2σ )))− α
∂

∂ t
(ρs,h (u − PQ(2σ ))) =

= �(ρs,h(u − PQ(2σ )))− α
�
a(H (ρs,h(u − PQ(2σ ))) + H (u))− a(H (u))

�
,

where α is the positive constant that appears in the condition (A).
From (2.5), because of the condition (A), we reach:

�
�
�ϑg�(ρs,h(u − PQ(2σ )))− αϑg

∂

∂ t
(ρs,h (u − PQ(2σ )))

�
�
� =(2.6)

= ϑg
�
��(ρs,h(u− PQ(2σ )))−α

�
a(H (ρs,h(u− PQ(2σ )))+H (u))−a

�
H (u)

���
� ≤

≤ ϑg
�
γ �H (ρs,h(u−PQ(2σ )))�

2+δ��(ρs,h(u−PQ(2σ )))�
2
� 1
2

.

(3) {es }s=1,2,...,n is the canonic base of R
n .
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Now setting
U(X ) = ϑ(x )g(t)ρs,h(u − PQ(2σ )),

we have:

(2.7) U ∈W 2
0

�
Q

�
X 0,

3

2
σ
�
, R

N
�
,

(2.8) �U = ϑg�(ρs,h(u − PQ(2σ )))+ A(u − PQ(2σ )),

(2.9) H (U) = ϑgH (ρs,h(u − PQ(2σ ))) + B(u − PQ(2σ )),

(2.10)
∂U

∂ t
= ϑg

∂

∂ t
(ρs,h (u − PQ(2σ )))+ ϑg�ρs,h(u − PQ(2σ )),

where

A(u − PQ(2σ )) = g�ϑρs,h(u − PQ(2σ ))+(2.11)

+ 2g

n�

i=1

DiϑDi (ρs,h (u − PQ(2σ ))),

B(u − PQ(2σ )) =
�
gDi jϑρs,h(u − PQ(2σ ))+(2.12)

+ gDiϑDj (ρs,h (u − PQ(2σ )))+ gDjϑDi (ρs,h(u − PQ(2σ )))
�

i, j=1,2,...,n
.

Then, from (2.8), (2.10) and (2.6) we obtain
�
�
��U − α

∂U

∂ t

�
�
� ≤

�
�
�ϑg�(ρs,h(u − PQ(2σ )))− αϑg

∂

∂ t
(ρs,h(u − PQ(2σ )))

�
�
� +

+�A(u− PQ(2σ ))�+�αϑg�ρs,h(u− PQ(2σ ))� ≤ ϑg
�
γ �H (ρs,h(u− PQ(2σ )))�

2+

+ δ��(ρs,h(u − PQ(2σ )))�
2
� 1
2 + �A(u − PQ(2σ ))� + �αϑg�ρs,h(u − PQ(2σ ))�,

from which, by (2.8) and (2.9), it follows, ∀ε > 0 and for almost every
X ∈ Q( 3

2
σ ):

�
�
��U − α

∂U

∂ t

�
�
�
2

≤ (1+ ε)ϑ2g2
�
γ �H (ρs,h(u − PQ(2σ )))�

2 +(2.13)

+ δ��(ρs,h(u − PQ(2σ )))�
2
�

+ c(ε)
�
�A(u − PQ(2σ ))�

2 +

+ �αϑg�ρs,h(u − PQ(2σ ))�
2
�

≤ (1+ ε)2
�
γ �H (U)�2 + δ��U�2

�
+

+c(ε, α, γ, δ){�A(u−PQ(2σ ))�
2+�B(u−PQ(2σ ) )�

2+ϑ2g�2�ρs,h(u−PQ(2σ ))�
2}.



SECOND ORDER NON VARIATIONAL BASIC. . . 355

Integrating (2.13) on Q( 3
2
σ ), using (2.7) and taking into consideration

Lemma 2.4 of [3], we obtain:

�
1− (1+ ε)2δ

��

Q( 32 σ )

�
�
��U − α

∂U

∂ t

�
�
�
2

dX ≤

≤ (1+ ε)2γ

�

Q( 3
2
σ )

�H (U)�2 dX +

+ c(ε, α, γ, δ)

�

Q( 32 σ )

�
�A(u − PQ(2σ ))�

2 + �B(u − PQ(2σ ))�
2 +

+ϑ2g�2�ρs,h(u − PQ(2σ )
�
�2) dX,

from which, by Lemma 2.3 of [3] and for each ε ∈
�
0, 1√

δ
− 1

�
, we deduce:

�
1− (1+ ε)2δ

��

Q( 32 σ )

�
�H (U)�2 + α2

�
�
�
∂U

∂ t

�
�
�
2�
dX ≤

≤ (1+ ε)2γ

�

Q( 32 σ )

�
�H (U)�2 + α2

�
�
�
∂U

∂ t

�
�
�
2�

dX +

+ c(ε, α, γ, δ)

�

Q( 32 σ )

�
�A(u − PQ(2σ ))�

2 + �B(u − PQ(2σ ))�
2 +

+ ϑ2g�2�ρs,h(u − PQ(2σ )
�
�2) dX

and hence, for ε chosen in the interval
�
0, 1√

γ+δ
− 1

�
, we get (4):

�

Q( 3
2
σ )

�
�H (U)�2 + α2

�
�
�
∂U

∂ t

�
�
�
2�

dX ≤(2.14)

≤ c

�

Q( 32σ )

�
�A(u−PQ(2σ ))�

2+�B(u−PQ(2σ ))�
2+σ−4�ρs,h(u−PQ(2σ ))�

2
�
dX .

From (2.14), taking into account (2.9) and (2.10), it follows:

�

Q(σ )

�
�H (ρs,hu)�

2 + α2
�
�
�

∂

∂ t
(ρs,hu)

�
�
�
2�

dX ≤

(4) Let us remember that 0 ≤ ϑ ≤ 1 and that |g�| ≤ cσ−2.
In the next estimate, c denotes a constant which depends on α, γ, δ, ε and on the constant
that appears in the last of the estimates (2.4).
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≤

�

Q( 32 σ )

ϑ2g2
�
�H (ρs,hu)�

2 + α2
�
�
�

∂

∂ t
(ρs,hu)

�
�
�
2�

dX ≤

≤ c
� �

Q( 32σ )

�A(u − PQ(2σ ))�
2 dX +

�

Q( 32 σ )

�B(u − PQ(2σ ))�
2 dX +

+ σ−4

�

Q( 3
2
σ )

�ρs,h(u − PQ(2σ ))�
2 dX

�
,

from which, in virtue of (2.11), (2.12), (2.3) and (2.4), we get:

�

Q(σ )

�
�H (ρs,hu)�

2 + α2
�
�
�

∂

∂ t
(ρs,hu)

�
�
�
2�
dX ≤(2.15)

≤ cσ−4

�

Q( 32 σ )

�ρs,h(u− PQ(2σ ))�
2 dX +cσ−2

�

Q( 32 σ )

�ρs,hD(u− PQ(2σ ))�
2 dX .

We shall now evaluate the integrals that appear in the right hand side of (2.15)
using Lemma 2.I of [7]. We obtain, for |h| < σ

2
and s = 1, 2, . . . , n:

�

Q(σ )

�
�ρs,hH (u)�

2 + α2
�
�
�ρs,h

∂u

∂ t

�
�
�
2�

dX ≤(2.16)

≤ cσ−2|h|2
�
σ−2

�

Q(2σ )

�D(u − PQ(2σ ))�
2 dX +

�

Q(2σ )

�H (u − PQ(2σ ))�
2 dX

�
.

From (2.16), by Lemma 3.1 of [9], it follows that

H (u)∈ L2(t0 − σ 2, t0, H 1(B(x 0, σ ), R
n2N )),

∂u

∂ t
∈ L2(t0 − σ 2, t0, H 1(B(x 0, σ ), R

N ))

and also the following estimate holds:

�

Q(σ )

�
�D

�
H (u)

�
�2 +

�
�
�D(

∂u

∂ t
)
�
�
�
2�
dX ≤

≤ cσ−2
�
σ−2

�

Q(2σ )

�D(u − PQ(2σ ))�
2dX +

�

Q(2σ )

�H (u − PQ(2σ ))�
2dX

�
.

Then (1.4), (1.5) and Theorem 1.1 are proved. �
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Theorem 1.1 ensures that, if u ∈ W 2(Q, R
N ) is a solution in Q of the

system (2.1), �xed the cylinder Q(2σ ) = Q(X 0, 2σ ) ⊂⊂ Q , it follows

(2.17) Du ∈W 2(Q(2σ ), R
nN ).

On the other hand, if PQ(2σ ) is the vector-polynomial in x , of degree ≤ 2,
such that �

Q(2σ )

Dα(u − PQ(2σ ))dX = 0, ∀α : |α| ≤ 2,

DPQ(2σ ) turns out to be the vector-polynomial in x , of degree ≤ 1, such that
�

Q(2σ )

Dα(Du − DPQ(2σ ))dX = 0, ∀α : |α| ≤ 1.

From this remark and taking into account (2.17), it follows, by Lemma 2.2 of [8]
(written for 2σ , Du and DPQ(2σ ) instead of σ , u and PQ(X 0,σ ) , respectively):

σ−2

�

Q(2σ )

�D(u − PQ(2σ ))�
2 dX +

�

Q(2σ )

�H (u − PQ(2σ ))�
2 dX ≤(2.18)

≤ c

��

Q(2σ )

�
�H (Du)�

2(n+2)
n+4 +

�
�
�

∂

∂ t
(Du)

�
�
�

2(n+2)
n+4

�
dX

� n+4
n+2

,

where σ ∈ (0, 1) and the constant c does not depend on σ .
Then, under the assumptions of Theorem 1.1, from (1.5) and (2.18), we deduce,
∀Q(2σ ) ⊂⊂ Q with σ ∈ (0, 1):

�

Q(σ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX ≤

≤ c

��

Q(2σ )

�
�H (Du)�

2(n+2)
n+4 +

�
�
�
∂(Du)

∂ t

�
�
�

2(n+2)
n+4

�
dX

� n+4
n+2

,

where the constant c does not depend on σ .
From this, by a classical lemma of Gehring-Giaquinta-G. Modica (see, for
example, [8], Lemma 3.3), we derive that ∃ q̃ > 2 such that, ∀q ∈ (2, q̃),

Du ∈W
q
loc(Q, R

nN )

and, ∀Q(2σ ) ⊂⊂ Q , with σ ∈ (0, 1)

��

Q(σ )

�
�H (Du)�q +

�
�
�
∂(Du)

∂ t

�
�
�
q�

dX

� 1
q

≤(2.19)

≤ c

��

Q(2σ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�
dX

� 1
2

.
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Now let us give the proof of Theorem 1.2. The proof is similar to that one
used in [3], Theorem 1.1 (see also [6], Theorem 2.1). We present the proof for
the reader�s convenience. Having �xed ϕ ∈ L2(Q, R

N ) and u ∈W 2(Q, R
N ) we

must prove that the corresponding problem (1.7) admits a unique solutionw and
that the estimate (1.8) holds. The condition (1.3) ensures that the operator

A(w) = a
�
H (w) + H (u)

�
−

∂w

∂ t

associates to each w ∈W 2
0 (Q, R

N ) an element of L2(Q, R
N ):

A(w) : W 2
0 (Q, R

N ) → L2(Q, R
N ).

On the other hand it is well known that the linear operator

B(w) = �w − α
∂w

∂ t
(5)

is an isomorphism W 2
0 (Q, R

N )→ L2(Q, R
N ).

Let us show that A(w) is �near� to the operator B(w) (6). For each w1, w2 ∈
W 2
0 (Q, R

N ), we have, by condition (A) and in view of the Lemmas 2.3 and 2.4
of [3]:

�B(w1)− B(w2) − α[A(w1)− A(w2)]�
2
L2(Q,RN ) =

=

�

Q

�
��(w1 − w2)− α

�
a
�
H (w1 − w2)+ H (w2) + H (u)

�
−

− a
�
H (w2) + H (u)

���
�2 dX ≤ γ

�

Q

�H (w1 − w2)�
2 dX +

+δ

�

Q

��(w1−w2)�
2 dX ≤ γ

�

Q

�
�H (w1−w2)�

2+α2
�
�
�
∂(w1 − w2)

∂ t

�
�
�
2�
dX+

+δ

�

Q

��(w1−w2)�
2 dX ≤ (γ +δ)

�

Q

�
�
��(w1−w2)−α

∂(w1 − w2)

∂ t

�
�
�
2

dX =

= (γ + δ)�B(w1)− B(w2)�
2

L2(Q,RN )
,

from which it follows

�B(w1)− B(w2)−α[A(w1)− A(w2)]�L2(Q,RN )
≤ K�B(w1)− B(w2)�L2(Q,RN )

,

(5) α is the positive constant that appears in the condition (A).

(6) In the sense of De�nition 1 of [4].
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with K =
√

γ + δ; hence the operator A(w) is near to the operator B(w).
Then Theorem 2 of [4] ensures that the Cauchy-Dirichlet problem (1.7) has a
unique solution w ∈W 2

0 (Q, R
N ) and that this solution ful�lls the estimate:

(2.20) �B(w)�
L2(Q,RN )

≤
α

1−
√

γ + δ
�ϕ − A(0)�

L2 (Q,RN)
.

From (2.20), by Lemma 2.3 of [3], (1.8) it follows. �

3. Interior fundamental estimates.

Let u ∈ W 2(Q, R
N ) be a solution in Q of the basic system (1.1). The

following fundamental estimates for H (Du), ∂ (Du)
∂ t

, H (u) and ∂u
∂ t
hold:

Theorem 3.1. If the vector a(ξ ) satis�es the conditions (1.2) and (A), then,
∀Q(σ ) ⊂⊂ Q, with σ < 2, ∀τ ∈ (0, 1) and ∀q ∈ (2, q̃) (7), we have:

�

Q(τσ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX ≤(3.1)

≤ cτ (n+2)(1−
2
q )

�

Q(σ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX,

where the constant c does not depend on σ and τ .

Proof. Fixed Q(σ ) ⊂⊂ Q , with σ < 2, τ ∈ (0, 1
2
), in virtue of the L

q
loc -result

showed in Section 2, we have:

Du ∈Wq(Q(σ ), R
nN ), ∀q ∈ (2, q̃);

then, by Hölder�s inequality, we get

�

Q(τσ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX ≤

≤ c

��

Q(τσ )

�
�H (Du)�q +

�
�
�
∂(Du)

∂ t

�
�
�
q�

dX

� 2
q

(τσ )(n+2)(1−
2
q ) ≤

≤ cτ (n+2)(1−
2
q )σ n+2

��

Q( σ
2 )

�
�H (Du)�q +

�
�
�
∂(Du)

∂ t

�
�
�
q�

dX

� 2
q

(7) q̃ is the constant (> 2) which appears in (2.19).
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from which, in virtue of (2.19), the estimate (3.1) follows with τ ∈ (0, 1
2
). The

estimate is trivially true for 1
2

≤ τ < 1. �

Theorem 3.2. If the vector a(ξ ) satis�es the conditions (1.2) and (A), then,
∀Q(σ ) ⊂ Q, with σ < 2, ∀τ ∈ (0, 1) and ∀q ∈ (2,min(q̃, n+2)) (7), we have:

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤(3.2)

≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX,

where the constant c does not depend on σ and τ .

Proof. Fixed Q(σ ) ⊂ Q , with σ < 2, and q ∈ (2,min(q̃, n + 2)), for
0 < τ < τ � < 1

2
, by means of Lemma 2.II of [5] (written for Du instead

of u), we get (8):

�

Q(τσ )

�H (u)�2 dX ≤ 2

�

Q(τσ )

�
�
�
H (u)

�
Q(τ �σ )

�
�2 dX +

+ 2

�

Q(τσ )

�
�H (u)−

�
H (u)

�
Q(τ �σ )

�
�2 dX ≤ c

� τ

τ �

�n+2 �

Q(τ �σ )

�H (u)�2 dX +

+ c(τ �σ )2
�

Q(τ �σ )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�
dX,

from which, using (3.1), it follows:

�

Q(τσ )

�H (u)�2 dX ≤ c
� τ

τ �

�n+2 �

Q(τ �σ )

�H (u)�2 dX +

+ cσ 2τ �2+(n+2)(1− 2
q )

�

Q( σ
2 )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX .

(8) If E ⊂ R
n+1 is a measurable set with positive measure and f ∈ L1(E, R

k), we set:

fE =

�

E
f dX =

1

measE

�

E
f dX.
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From this, taking into account Lemma 1.I, p.7 of [1], being 2+ (n+2)(1− 2
q
) <

n + 2, we get:

�

Q(τσ )

�H (u)�2 dX ≤ c
� τ

τ �

�2+(n+2)(1− 2
q )

�

Q(τ �σ )

�H (u)�2 dX +

+ cσ 2τ 2+(n+2)(1−
2
q )

�

Q( σ
2 )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�
dX

and hence, taking the limit for τ � → 1
2
, we derive, ∀0 < τ < 1

2
:

�

Q(τσ )

�H (u)�2 dX ≤ cτ 2+(n+2)(1−
2
q )

� �

Q(σ )

�H (u)�2 dX +(3.3)

+ σ 2
�

Q( σ
2
)

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX
�
.

On the other hand we have the estimates of Caccioppoli (1.5) and of Poincaré
(see Lemma 2.II of [5]); then applying these estimates we get:

σ 2
�

Q( σ
2 )

�
�H (Du)�2 +

�
�
�
∂(Du)

∂ t

�
�
�
2�

dX ≤(3.4)

≤ c

�

σ−2

�

Q(σ )

�
�D(u − PQ(σ ))

�
�2 dX +

�

Q(σ )

�
�H (u − PQ(σ ))

�
�2 dX

�

≤

≤ c
�
σ−2

�

Q(σ )

�
�Du − (Du)Q(σ )

�
�2 dX +

�

Q(σ )

�H (u)�2 dX +

+

�

Q(σ )

�
�H (u)−

�
H (u)

�
Q(σ )

�
�2 dX

�
≤ c

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX +

+ c

�

Q(σ )

�
�H (u)−

�
H (u)

�
Q(σ )

�
�2 dX ≤ c

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX,

where PQ(σ ) is the vector-polynomial in x , of degree ≤ 2, such that
�

Q(σ )

Dα(u − PQ(σ )) dX = 0, ∀α : |α| ≤ 2.

Hence from (3.3) and (3.4) we get, ∀0 < τ < 1
2

(3.5)

�

Q(τσ )

�H (u)�2 dX ≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX .
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Now let us observe that, being ∂u
∂ t

= a
�
H (u)

�
in Q , using estimate (1.3), we

obtain: �
�
�
∂u

∂ t

�
�
�
2

=
�
�a

�
H (u)

��
�2 ≤ c�H (u)�2

and hence

(3.6)

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤ c

�

Q(τσ )

�H (u)�2 dX .

From (3.5) and (3.6) the assertion follows for 0 < τ < 1
2
. Finally, the estimate

(3.2) is trivially true for 1
2

≤ τ < 1. �

The estimate (3.2) ensures that, ∀q ∈
�
2,min(q̃, n + 2)

�
:

(3.7) H (u)∈ L
2,2+(n+2)(1− 2

q )

loc (Q, R
n2N )

and

(3.8)
∂u

∂ t
∈ L

2,2+(n+2)(1− 2
q
)

loc (Q, R
N );

therefore, in virtue of Lemma 2.II by [5]:

(3.9) Du ∈ L
2,4+(n+2)(1− 2

q )

loc (Q, R
nN ), ∀q ∈

�
2,min(q̃, n + 2)

�
.

Now if n < 2q̃−2 (and in particular if n = 2), there exists q ∈
�
2,min(q̃, n+2)

�

such that 4+ (n + 2)(1− 2
q
) > n + 2 and hence, by (3.9)

(3.10) Du is Hölder-continuous in Q.

We also obtain from Lemma 2.I of [5] and conditions (3.8) and (3.9)

u ∈ L
2,6+(n+2)(1−2

q )

loc (Q, R
N ), ∀q ∈

�
2,min(q̃, n + 2)

�
,

and hence, if n < 3q̃ − 2 (and in particular if n ≤ 4), we derive

(3.11) u is Hölder-continuous in Q.

The results (3.10) and (3.11) are similar to those obtained by S. Campanato in
Section 5 of [3].
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4. L
2,λ -regularity for systems of type (1.9).

Let f : Q → R
N be a vector of class L2(Q, R

N ) and u ∈ W 2(Q, R
N ) a

solution in Q of the parabolic system

(4.1) a
�
H (u)

�
−

∂u

∂ t
= f (X ),

with a(ξ ) vector of R
N , continuous onto R

n2N , satisfying the conditions (1.2)
and (A).

Let us show the following

Lemma 4.1. For each cylinder Q(σ ) ⊂ Q, with σ < 2, ∀τ ∈ (0, 1) and
∀q ∈

�
2,min(q̃, n + 2)

�
(7), one has:

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX ≤

≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX + c

�

Q(σ )

� f �2 dX,

where the constant c does not depend on σ and τ .

Proof. Fixed Q(σ ) ⊂ Q , with σ < 2, let w be the solution of the Cauchy-
Dirichlet problem:

(4.2)






w ∈W 2
0 (Q(σ ), R

N )

a
�
H (w)+ H (u)

�
−

∂w

∂ t
=

∂u

∂ t
in Q(σ )

(9).

Setting in Q(σ ) v = w + u, we have: v ∈W 2(Q(σ ), R
N ) and

(4.3) a
�
H (v)

�
−

∂v

∂ t
= 0 in Q(σ ).

We have for v the fundamental estimate (3.2):

�

Q(τσ )

�
�H (v)�2 +

�
�
�
∂v

∂ t

�
�
�
2�

dX ≤(4.4)

≤ cτ 2+(n+2)(1−
2
q
)

�

Q(σ )

�
�H (v)�2 +

�
�
�
∂v

∂ t

�
�
�
2�
dX,

(9) Theorem 1.2 ensures the existence of an unique solution of the problem (4.2).
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∀τ ∈ (0, 1) and ∀q ∈
�
2,min(q̃, n + 2)

�
.

On the other hand from (1.8), it follows

�

Q(σ )

�
�H (w)�2 +

�
�
�
∂w

∂ t

�
�
�
2�

dX ≤(4.5)

≤ c(α, γ, δ)

�

Q(σ )

�
�
�
∂u

∂ t
− a

�
H (u)

���
�
2

dX

and also, in virtue of (4.1):

(4.6)

�

Q(σ )

�
�H (w)�2 +

�
�
�
∂w

∂ t

�
�
�
2�

dX ≤ c(α, γ, δ)

�

Q(σ )

� f �2 dX .

From (4.4) and taking into account that u = v − w, it follows, ∀τ ∈ (0, 1):

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤

≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (v)�2 +

�
�
�
∂v

∂ t

�
�
�
2�
dX +

+ 2

�

Q(σ )

�
�H (w)�2 +

�
�
�
∂w

∂ t

�
�
�
2�
dX ≤

≤ cτ 2+(n+2)(1−
2
q
)

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX +

+ c

�

Q(σ )

�
�H (w)�2 +

�
�
�
∂w

∂ t

�
�
�
2�
dX

from which, by (4.6), we deduce:

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤

≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX + c

�

Q(σ )

� f �2 dX .

�

Lemma 4.1 enables us to prove the following
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Theorem 4.1. If f ∈ L
2,µ(Q, R

N ), 0 < µ < λ̃ = min
�
2+ (n+2)(1− 2

q̃
), n+

2
�
, if u ∈W 2(Q, R

N ) is a solution of the system

a
�
H (u)

�
−

∂u

∂ t
= f (X ) in Q

and if the vector a(ξ ) satis�es the conditions (1.2) and (A), then

(4.7) Du ∈ L
2,µ+2
loc (Q, R

nN )

and

(4.8) u ∈ L
2,µ+4
loc (Q, R

N ).

Proof. Fixed Q(σ ) ⊂ Q , with σ < 2, for each τ ∈ (0, 1) and for each
q ∈

�
2,min(q̃, n + 2)

�
, in virtue of Lemma 4.1, we get:

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤(4.9)

≤ cτ 2+(n+2)(1−
2
q )

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX + c

�

Q(σ )

� f �2 dX

and also, by assumption f ∈ L
2,µ(Q, R

N ) :

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤(4.10)

≤ cτ 2+(n+2)(1−
2
q
)

�

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�

dX + cσµ� f �2
L
2,µ(Q,RN )

.

Now, choosing q ∈
�
2,min(q̃, n+2)

�
in such a way that 2+ (n+2)(1− 2

q
) > µ,

by (4.10) (written for this value of q ) and Lemma 1.I, p. 7 of [1], we obtain:

�

Q(τσ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX ≤(4.11)

≤ cτµ
��

Q(σ )

�
�H (u)�2 +

�
�
�
∂u

∂ t

�
�
�
2�
dX + σµ� f �2

L
2,µ(Q,RN )

�
.

The estimate (4.11) ensures that

(4.12) H (u)∈ L
2,µ
loc (Q, R

n2N )
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and

(4.13)
∂u

∂ t
∈ L2,µloc (Q, R

N ),

and hence (4.7), by Lemma 2.II of [5].
Finally the condition (4.8) is a consequence of (4.7), (4.13) and Lemma 2.I of
[5]. �

If n < 2q̃ − 2 (and in particular if n = 2) and if f ∈ L
2,µ(Q, R

N ) with
µ ∈ (n, λ̃), in virtue of (4.7), we get:

Du ∈ L
2,µ+2
loc (Q, R

nN ), with µ + 2 > n + 2,

and hence

Du is Hölder-continuous in Q.

Similarly, if n < 3q̃ − 2 (and in particular if n ≤ 4) and if f ∈ L
2,µ(Q, R

N )
with µ ∈ (n − 2, λ̃), in virtue of (4.8) we obtain:

u ∈ L
2,µ+4
loc (Q, R

N ), with µ + 4 > n + 2,

and hence

u is Hölder-continuous in Q.

5. L
2,λ-regularity for systems of type (1.10).

Let u ∈W 2(Q, R
N ) be a solution of the system

(5.1) a
�
H (u)

�
−

∂u

∂ t
= b(X, u, Du) in Q,

where a(ξ ) is a vector of R
N , continuous onto R

n2N and satisfying the condi-
tions (1.2) and (A) and b(X, u, p) is a vector of R

N , measurable in X , continu-
ous in (u, p) and satisfying the condition

(5.2) there exists a constant c such that, ∀u ∈ R
N , ∀ p ∈ R

nN and for almost
every X ∈ Q :

�b(X, u, p)� ≤ c
�
1+ �u� + �p�

�
.
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Lemmas 2.1 of [8] and 2.II of [5] and Theorem 3.1 of [8] ensure that

u ∈ L
2,4+(n+2)(1−2

q
)

loc (Q, R
N ), Du ∈ L

2,2+(n+2)(1− 2
q
)

loc (Q, R
nN ), ∀q ∈ (2, q̄)(10),

and, hence, u and Diu, i = 1, 2, . . . , n, belong to L
2,µ(Q∗, R

N ), ∀µ ∈�
0, 2 + (n + 2)(1 − 2

q̄
)
�
and ∀Q∗ ⊂⊂ Q . From this, taking into account

condition (5.2), it follows that the vector f (X ) = b(X, u, Du)∈ L
2,µ(Q∗, R

N ),
∀µ ∈

�
0, 2+ (n + 2)(1− 2

q̄
)
�
and ∀Q∗ ⊂⊂ Q .

Then Theorem 4.1 implies

(5.3) Du ∈ L
2,µ+2
loc (Q, R

nN ) , u ∈ L
2,µ+4
loc (Q, R

N ), ∀µ ∈ (0, λ∗),

where λ∗ = min
�
2 + (n + 2)(1 − 2

q̄
), 2 + (n + 2)(1 − 2

q̃
), n + 2

�
=

min
�
2+ (n + 2)(1− 2

q∗ ), n + 2
�
, q∗ = min(q̄, q̃).

Now if n < 2q∗ − 2, it results n < λ∗ . Then denoting by µ� a number of the
interval (n, λ∗), from the �rst statement of (5.3) it follows

Du ∈ L
2,µ�+2
loc (Q, R

nN ),

and hence, being µ� + 2 > n + 2, Du is Hölder-continuous in Q . In particular

Du is Hölder-continuous in Q if n = 2.

If n < 3q∗ − 2, then n − 2 < λ∗ and hence, �xed µ�� ∈ (n − 2, λ∗), from the
second statement of (5.3), it follows

u ∈ L
2,µ��+4
loc (Q, R

N ),

from which, being µ�� + 4 > n + 2, the Hölder-continuity of u in Q follows. In
particular the vector

u is Hölder-continuous in Q if n ≤ 4.

(10) q̄ is the constant (> 2) which appears in the Theorem 3.1 of [8]. In [8] Lemma 2.1
and Theorem 3.1 are proved in the hypothesis n > 2. These results are true also for
n = 2.
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