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A REMARK ON DIFFERENTIABILITY PROPERTIES
OF SOLUTIONS OF SOME ELLIPTIC EQUATIONS

ORAZIO ARENA

A tribute to Professor Francesco Guglielmino in his 70th birthday

A class of nondivergence uniformly elliptic equations with measurable
coefficients in a bounded smooth domain € C R?, d > 2, is studied.
The oscillation of the coefficients near a Lebesgue point, measured in L9-
norm, is assumed to be controlled by an increasing function satisfying Dini’s
condition.

Under this assumption, slightly weaker than that of L.A. Caffarelli [2],
a pointwise estimate for “good solutions” is established and related second
order differentiability properties are pointed out.

1. Introduction and results.

Let © be a bounded smooth domain of R?, d > 2. In Q let L be a second
order linear uniformly elliptic nondivergence operator:

d
82
1.1 L= a;i(x)D;;, where D;; = ———,
(1.1 i; (D )= T
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with measurable coefficients a;;(x) (a;; = aj;) satisfying for some constant
v € (0; 1] the ellipticity condition:

d
(12) vIEP < ) ay0gE < vEP,

i j=1

for all x € Q and & € RY. We emphasize that no smoothness assumptions are
made on the a;;’s.

For operators of the form (1.1) the notion of classical solution of the
equation

(1.3) Lu=f inQ,

with f a given function, turns out to be too limited. The results of N.V. Krylov
and M.V. Safonov [12] have suggested that, in general, Holder continuity is
the optimal regularity for “solutions” of (1.3). So several notions of solutions
have been built up by many mathematicians; see R.R. Jensen [11] for a through
examination of the various definitions. Among the others recall the “viscosity
solutions” of M.G. Crandall and P.L. Lions for which we refer to M.G. Crandall,
H. Hishi and PL. Lions [8], or the “good solutions” of M.C. Cerutti, L. Escau-
riaza and E.B. Fabes [4], [S]. Actually, as it has been shown by R.R. Jensen in
[11], the notion of viscosity solution and that of good solution to (1.3) coincide.

In this paper we will deal with the latter notion. We recall that a function
u € C°%(Q) is a “good solution” to the equation Lu = f € L% in Q if there

d

exists a sequence of elliptic operators {L"}, L" = ) a;;Djj with smooth
ij=1

coefficients af’j satisfying (1.2) for all n, a;’j (x) = a;j(x) almost everywhere in

Q, and functions u" € C°(Q) N Wli’cd(Q) so that the sequence {u"} converges
uniformly to # on Q and L"u" = f in 2.

Observe that good solutions to (1.3) do exist; for, recall that the results of
N.V. Krylov and M.V. Safonov [12] imply that the sequence {u"} of smooth
solutionsto L"u" = f admits a subsequence which converges uniformly on Q.

As a matter of fact, within the class of solutions we are dealing with, a
relevant question is that of the uniqueness for the Dirichlet problem associated

to the operator L of the form (1.1):
(1.4) Lu=f inQ, u=g onoaf2.

Let me shortly, at the end of this sections, dwell upon this matter to just
remind what is the state of art.
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In this paper, actually, we will investigate second order differentiability
properties of “good solutions” to elliptic equations of the type (1.3).

According to a result due to N.S. Nadirashivili [14] a good solution u
possesses for almost every xo € 2 a so-called derivative of order 2 in the sense
that

(1.5) u(xo + h) — Py(h) = o(|h)?) ash—0

with P,, a polynomial in / of degree 2.

Let us still denote by D*u = (D; ju) the second derivatives of u, in the
quadratic approximation sense (1.5).

In [6] M.C. Cerutti, E.B. Fabes and P. Manselli pointed out that, as a
consequence of a result of L.A. Caffarelli [2], a good solution u has for almost
every xo € Q first derivatives Vu, defined by the linear approximation:

u(xg +h) = u(xg) + Vu(xg) - h +o(|h]), ash — 0

and moreover its gradient Vu is almost everywhere the pointwise limit of the
gradients {Vu"} of the approximating sequence {u"}.

The question that can be of some interest is the following: does the
sequence of second derivatives {D?u"} converge almost everywhere in €,
having D?u as its pointwise limit ?

We will give an affirmative answer (Theorem 1) to the above question
provided the coefficients a;; of L satisfy a suitable condition: roughly the
oscillation of a;; near xo, measured in L4-norm, is controlled by a function
satisfying Dini’s condition. Precisely, we will make the following assumption:

Assumption (A). Let xo € 2 be a Lebesgue point for the g;;’s and let B, =
B, (xo) denote the ball with radius r centered at xj.

There exists an increasing function w(r) with w(0) = 0, satisfying the
Dini’s condition:

1
(1.6) f s lw(s)ds < oo,
0

such that for r sufficiently small:

1/d
(1.7) (f |al~,~<x>—ai,~<xo>|d) < (r).
Br
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This assumption is slightly weaker than that used by L.A. Caffarelli [2] to
get C>“ interior estimates for viscosity solutions.
We will be able (see Section 3) to prove the following result:

Theorem 1. Assume that the assumption (A) on the coefficients a;; of L holds.
Let u be a good solution to Lu = f € LY(Q). Let {u"} be a sequence of
functions C°(Q) such that L"u" = f, with {L"} a sequence of smooth elliptic
operators whose coefficients aj; satisfy (1.2) for all n, ai; — aj; a.e. in 2, and

such that u, — u uniformly on Q.
Then the sequence of the second derivatives {D;ju"} (i, j =1,2,...,d)is
convergent almost everywhere in Q asn — oo and fori, j =1,2,...,d

D;;u" — D;;u pointwise a.e. in Q2.
ij j

First of all, in Section 2, we will focus our attention to get a pointwise es-
timate for a good solution #, approximating it in L* by a quadratic polynomial
(Theorem 2). Such an estimate is the key, indeed, to establish Theorem 1.

Before concluding this section, let me say on uniqueness of solution to the
Dirichlet problem (1.4).

If the dimension d = 2, uniqueness in W22 holds-as it is well known-
without any smoothness of the coefficients a;; (we refer to G. Talenti [18]).

Let d > 3. Let E denote the set of points of 2 where the coefficients
a;; are allowed to be discontinuous. Uniqueness is, then, guaranteed if E is a
sufficiently “small” set as in [4], [5], [13], [17]; to the best of my knowledge
a somewhat more general case is that due to M.V. Safonov [17]: the set E
has zero Hausdorff measure corresponding to the function i(s) = s* for some
positive . And what is more, very recently, N.S. Nadirashivili [15] has been
showing that — in general — there is no uniqueness for the Dirichlet problem:
precisely, there exist a elliptic operator L of the form (1.1), defined in the unit
ball B, ¢ RY, d > 3, and a function g € C*(3B;) such that the Dirichlet
problem Lu = 0 in B, u = g on d B; has at least two “good solutions” #; and
uy with u1(0) # u,(0).

Later on a relationship between non weak uniqueness for elliptic equations
and non existence of solutions in W2 has been pointed out by C. Giannotti
[10] in dealing with maximinimal operators, an extension of Pucci’s extremal
operators [16].

In the same context, recall the study of elliptic operators in R? with
coefficients depending on (d — 1) variables as in L. Escauriaza [9], O. Arena
and P. Manselli [1] where d = 3, M. Cerutti, E.B. Fabes and P. Manselli [6].
Moreover, it is particularly worth mentioning the result due to F. Chiarenza,
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M. Frasca and P. Longo [7]: the Dirichlet problem for elliptic operators with
L*® N VMO (vanishing mean oscillation) coefficients is uniquely solved in
WP,

At this stage a question must be cleared up: does the assumption (A) of our
paper guarantee uniqueness of good solutions to Dirichlet problems of the form
1.4)?

At any rate, further investigations are still worthy making to fully under-
stand the theory of linear second order uniformly elliptic operators with merely
measurable coefficients.

Acknowledgment. Ihave had the great opportunity to have been able to discuss
about the questions of this paper, with Eugene Fabes, before his unexpected
untimely passing away; I have fond memories of him.

2. A pointwise estimate.

In this section we will establish for good solutions of equation (1.3) a
pointwise estimate, which gives a control for any second differential quotient.
Precisely, we will prove the following theorem.

Theorem 2. Let u be a bounded solution of Lu = 0 in the unit ball B,. Assume
that the assumption (A) holds, i.e. at Lebesgue points xy, for r sufficiently small,

1/d
<7L la;j (x) — a;j(x0)|* dX) < o(r)
BV

with w(r) increasing function, w(0) = 0 and such that fol s \w(s)ds < oo.
Then there exists a quadratic polynomial P such that:

2.1) sup [u(x) — P(x)| < C r*ij(r),
B,

where the constant C depends on v and ||u|~, and 1 = 7(r) is a function
determined by w(r) with n(r) - 0 asr — 0.

Remark 2.1. If u is a bounded solution of Ly = f, f continuous, the same
conclusion holds provided that

1/d
(ﬁ GO = Fro)l dx) < o),

with ¢(r) increasing function, ¢(0) = 0 and satisfying Dini condition
fo (p(r)dr—’ < 00. Moreover, one may assume xy = 0 and f(0) = 0.
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Remark 2.2. The result of Theorem 2 is of the type of that due to L.A. Caffarelli
[2], [3] for viscosity solutions. The assumption on the coefficients a;; made in
[2] is, here, relaxed to the assumption (A). The same also about the function f.
In [2], actually, w(r) = ¢(r) =r* (0 < @ < 1) and also n(r) = r“.

The proof of Theorem 2 is based essentially on an approximation argument
for which next Lemma, due to L.A. Caffarelli [2] and below stated for reader’s
convenience, is crucial.

Lemma 2.1 (L.A. Caffarelli [2]). Let u be a bounded solution of Lu = f € L¢
in the unit ball By with ||u|| .~ < 1. Assume that:

d
la;j(x) — 8;;19dx < .
B,

Then there exists a harmonic function h such that:

It = ll gy = € (&7 + 1 )

for some positive y, with a constant C depending on the ellipticity constant v.

To go on now we need to make some considerations, starting from the
assumptions (A) on the coefficients a;; .
To begin with let us note that the Dini condition (1.6) satisfied by the

o

function w is equivalent to the convergence of the series ) »(27%). Observe,
k=0

then, there exists an increasing sequence {A} such that:

(2.2) Zw(Z_k)Ak < oo.
k=0

On the other hand, by rearranging the terms of the series (2.2), it turns out
that there exists a decreasing sequence {a;} such that:

(2.3) ar > o(27"A,  and Zak = Zw(Z_k)Ak < oo.
k=0 k=0

Hence, define for 7 € (0, 1]:

(2.4) o) = Ay for 2781 < <27k
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and
(2.5) nt)=a, for 271 < <27k
The functions ® and 7 are respectively non-increasing and non-decreasing

functions of ¢.
From (2.3), (2.4) and (2.5) it follows that:

(2.6) wt)®P() <n@), te(@,1].
Moreover
(2.7) Z 77(2_1‘) < 00.
k=0

Keeping in mind the above considerations, we are ready to get the point-
wise estimate (2.1).

Proof of Theorem 2. First of all let us observe that the assumptions are invariant
by dilation and notice that we may assume [[ul|,~ < 1.

To prove the theorem we start from the approximation result of Lemma 2.1
to construct a converging sequence of second order harmonic polynomials
approximating the function u solution of Lu = 0.

To begin with, because of the assumption (A), for a sufficiently small value
of r, we apply Lemma 2.1 to obtain a harmonic function 4, and a positive y

”M - h1||L°°(B]/2) =< Ca)y(r),

with a constant C depending on the ellipticity constant.
If &, is the quadratic part of /; at the origin, then we have:

lu = hill g, < C (@7 () +2%) (A < 1/2).
Choose now a value of A, call it A, and a value of r, call it ry, such that
(2.8) et = il g,y < 25n(ho)

where 7 is the function related to the function @ and introduced by (2.4).
We claim that there exists a sequence of second order harmonic polynomi-
als

1
P*x)=d*+b* - x + Ex’Ckx,
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with b* a d-dimensional vector and C* = (cf.‘j) a dxd matrix, so that:

(@) It = PAll gy = A" max n(ag)n*~ (xo)
" <js
k-1
(8) sup |ej;| < C<1 +> n(ké))
L s=1
for some suitable Ay. )
We will prove the claim by induction, starting with P! = h; for which
(2.8) holds.

Assuming then the k-th step to be correct, let us show the validity of the
(1 4 k)-th step.
To this end we consider the function
[u — PFI(A§x)

k= ;
2k Jypk—j
Ay 112?;(1( ngIn*=7(ho)

for x € B;.

Notice that ||w ||~ < 1. Moreover, it turns out that:

1 a k k
Y lai(grox) — 8ijl supefy|

}ka,r U)k} =< i :
" max n(Ap)n*= (ko) 2}
I<j<k ’

where

d
_ § : k
LASJ’O = aij(korox)Dij.
i,j=1

Hence:

a)()\.kl"o)
0 sup |cf.‘j |

max n(A))n*=i (ko) ij
1<j<k

(29) ”Lkg,r(]wk”]‘d(B]) S

Observe that, either 1maxk n(ké)nk_j (Ao) = n(k’é) or it is not so, we have:
<j<

w(kéro) - w(kéro)

max <<, 1D (o) — NG
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Therefore, since

a)(k’é:o) 5 w(x]’éro) 5 1k 5 1
n(ke) — nlgro) = ®(Agro) — P(ro)

with & defined by (2.3), from (2.9) we get:

k
ijl-

(2.10) L3 rywell sy < —— sup e

1
D(ro) i,;

We apply now Lemma 2.1 to wy approximating it by a harmonic function
hi. If h; denotes the quadratic part of & at the origin, using also (2.10), we
obtain that:

i = il o, ) < C[wy(kgro) + sup |cf;] + ﬁ], (ho < 1/2).

D(ro) i,

Taking into account the induction assumption (8), now we choose 1y and
ro so that

1w = hell g, < Ao1(ho)-

Rescaling back we come up with

@2.11) “u _pk_ xgk( max ()< (xo))ﬁk(xg"x)u <
I=j<k L*(B,xr1)
0

2(k+1) JNy k1=
<
<X 151}%}“ n(Ay)n (o)

and we set
(2.12) pH = pk Agk( max n(xg)nk—f(xo))ﬁk(xgkx).
1<j<k+1
Therefore the (1 4 k)-th step is clearly valid.
Moreover, it follows from (2.12) that:

|ak+l _ akl
(2.13) Ml = b= Cagl max nGon T (o)

To go through the convergence problem, let us now make the following
remark. For fixed k, call j; the value of j for which the maximum in (2.13) is
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attained: max NODN 1 (ho) = NI ().
=J=
If ji = k/2 then
i — i 2
NN I (o) < n(hg')
(recall n < 1) and Z NG = Z n(Ak) < 4o0.
If instead j; < k/2 then

NN (ho) < n*2(h0)

00 00
and Y_ n**(h) = 37" < +o0, where 7] = [n(10)]"/* < 1.
k k

Consequently, by (2.13) the sequence of polynomials P* converges uni-
formly to a quadratic polynomial P.
Finally, if r = )J(; then in B, we have:

oo
u— Pl <|u—P+ > |PH - P <
s=k+1

< C22F max n(A)n* 7 (o) < Crii(r)
0 0
1<j<k

with 7(r) — O as r — O.
Observe that if
max n(kg DN () = n(A)

then 7(r) = n(r). Otherwise n(r) = [77()»0)]]5 W
The theorem is completely proven. O

3. The proof of Theorem 1.

To prove the claimed convergence result for the second derivatives we will
need the following proposition.

Lemma 3.1. Let A" = (Offlj)i,jzl,z,...,d be a sequence of dxd symmetric matrices
and let
(A"0,0) = a},6:0;, 0€R’ |0]=1,

be the corresponding sequence of quadratic forms.

If
lim (A"0,0) =0 forany®eR?, 10| =1,

n—oQ
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then
lim al.”j =0 fori,j=1,2,...,d.
n—oQ

Proof. Induction on the dimension d yields the result. ]

In what follows the following remark is also needed.

Remark 3.1. Under the assumption (A) on the g;;’s, the coefficients a;’j of the
regularizing operators L" satisfy too, for n sufficiently large, the assumption (A)
at Lebesgue points xg € 2\ S, with | S| = 0, with a possibly different increasing
function w such that w(r) — 0 as r — 0 and satisfying Dini’s condition.

For, remember that if o is any positive number, by Egorov theorem, there
exists a set E, such that |2\ E,| < o and the convergence of a;’j (x) to a;;(x)
is uniform on E,. Moreover the set of non density points of £, has measure
Zero.

Proof of Theorem 1. Without loss of generality we may prove the result at the
point xo = 0.

We will show that the sequence {D;;u"(0)} fori,j = 1,2,...,dis a
convergent sequence and its limit as n — oo is D;;u(0).

To start with let us observe that, by Remark 3.1 and Theorem 2, the smooth
solutions of L"u" = f satisfy for [x| < ry and n sufficiently large the estimate:

1
(3.1 lu" (x) — u"(0) — Vu"(0) - x — EX’DUM"(O)XI < Clx*7(|x)),
with 77(Jx|) = O as |x| — O.
Let x = h6, h > 0 and 6 € RY, |#] = 1. We easily get the following

estimate:

1
32 3 | Dyju™ (0)0;6; — Dy;;u"(0) 6,6;| <

<h?

1
Ethl'ij(O) Ql'gj + Vu" () - h6 4+ u™(0) — Mm(he)’ +

+h?

1
EhZDUu"(O) 6;0; + Vu"(0) - h6 + u"(0) — u"(h@)' +

+h7 | Vu™(0) -0 — Vu"(0) - 0] + h7* [u" (h0) — u" (hO)| +
+ 772 |u™(0) — u"(0)] .

Letting m, n — 00, the last three terms of the right-hand side of (3.2) go to
zero, since {#"} is uniformly convergent in 2 and {Vu"} is convergent almost
everywhere in .
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Consequently, owing to (3.1), from (3.2) we obtain that:

lim |D;;u™(0) 6,0, — D;;ju"(0) 6,6;| < Cij(h).
m,n— 00

The arbitrariness of 4 and the vanishing of n(h) as h — 0 yield that:
|Dijl/£m(0) 91'9]' — Diju"(O) 9i9j| — 0 asm,n — oo.

Thus the sequence of quadratic forms

d
(H"0,0) = Y Diju"(0)6:6;

ij=1

is convergent as n — o0 to a quadratic form

d
Z Cij 9591',

i,j=1
meaning that as n — oo

d

{Diju"(0) — c;;} 6,6, — 0

i,j=1

forany # eR?, 16| = 1.
Hence, by Lemma 3.1, the sequence {D;;u"(0)}(i, j = 1,2,...,d) is
convergent as n — oo and

lim D;jju"0)=c¢; (G, j=1,2,...,d).
n—00

Because of the twice differentiability of u" and the existence of the second
derivatives of u in the Nadirashivili’s sense, since #” — u uniformly in € and
Vu" — Vu ae. in Q, we conclude that ¢;;(i, j = 1,2, ..., d) are nothing but
D,’jbt(O). U
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