LE MATEMATICHE
Vol. LI (1996) — Fasc. 11, pp. 459-472

A REMARK ON THE REGULARITY OF SOLUTIONS
OF NON LINEAR ELLIPTIC EQUATIONS

A. ALVINO - V. FERONE - G. TROMBETTI

A Francesco Guglielmino

We prove regularity results for solutions of non linear elliptic equations
containing a term which grows as |u|”, o > 0, and satisfies a “sign
condition”. The source term is supposed to be in L! or in an intermediate

space between L! and L7, p > 1.

1. Introduction.

Let us consider the model problem:

u=~0 on 0¢2,

where €2 be an open bounded set of R", n > 3, o > 0, ¢, is a nonnegative
constant, {a;;(x)} is a bounded matrix which satisfies, for a.e. x € Q and any

%- cR",
a;j (0)&E > 1€,

and f belongs to L!($2). The main motivation of this paper is the study of the
regularity of solutions of problems having the structure of problem (1.1). The
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existence of a solution in the sense of distributions of (1.1) has been proved
under various assumptions (see, for example, [16], when ¢y = 0, [6], [7], when
co > 0). In particular a solution is proved to exist in the class:

(1.2) TQ) ={weW,"' : Th(w) e W,*(Q), Yk > 0},

where:

To(n) = {ksign(n) if [n| = k

if |n] < k.

As regards the regularity of such a solution the results can be summarized as

follows: if ¢y = 0 then a solution of problem (1.1) exists in Wol’q(SZ), for every
g < n/(n — 1) (see [16]), if cg > O then a solution of problem (1.1) exists
in Wol’q(Q), for every g < ¢ = max{n/(n — 1),20/(c + 1)} (see [6], [7]).
In particular the results described above show that the term “colu|° ~'u” has
a regularizing effect when o > n/(n — 2). We remark that the regularity
ue WOI’"/("_I)(Q), ifco =0,0ruec Wol’q(Q), if cg > 0, cannot be reached
in general under the assumption that f € L'(). In [11] it is proved that when
¢o = 0 the “limit regularity” u € W,”"/“""(2) can be obtained assuming that
f is slightly more summable. To be precise, if ¢cg = 0 and f belongs to the
Lorentz space L(1,n/(n — 1)), then there exists a solution u of problem (1.1)
which belongs to WOI’”/("_D(Q) (see also Remark 4.2).

An application of the results proved in the present paper allows us to handle
the case cp > 0. If we restrict our attention to the case o > n/(n — 2),
which is the interesting one, we prove an a priori estimate in WO1 (), with
q = 20/(o + 1), for solutions of (1.1) in the class 7(£2), under the assumption
that f belongs to the space L(log L)°/“*D (see the definition in Section
2). Such a result improves a similar result contained in [9], where the limit
regularity u € Wol’q(SZ) is obtained under the stronger hypothesis f € L(log L)
(see Remark 4.1).

Our proof is based on the fact that, using symmetrization techniques (see,
for example, [17], [2]), one obtains estimates of the following type for solutions
of (1.1) in the class T7(£2):

IDulzdeh/ | fldx,
(1 3) ) t<|ul<t+h lul>t
Co |” dx < | fldx,
L |u)>t |ie] >t

for every positive real numbers ¢ and /. Thus, in Section 3 we address the more
general problem of studing the regularity of a function u satisfying (1.3) when
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f belongs to L'(R) or to an intermediate space between L!(2) and L? (€2),
Vp > 1. Such results are finally applied in Section 4 to a problem which has
the structure of (1.1), obtaining, on one side, the known results when ¢, = 0,
and, on the other side, the improvement described above when ¢y > 0. In a
forthcoming paper [1] we will show how the methods used in this paper can be
extended to the more general case where the differential operator in (1.1) is like

the p-laplacian.

2. Preliminary results.

First of all we recall the definition of decreasing rearrangement of a
measurable function w : 2 — R. If one denotes by | E| the Lebesgue measure
of a set E, one can define the distribution function ., (¢) of w as:

puw®) = {xeQ: wk)| >}, >0

The function w,, is decreasing and right continuous, and its generalized inverse
function is the decreasing rearrangement w* of w:

2.1) w*(s) =sup{t > 0: u, (1) > s}, s5e(0,|Q).
We recall that w and w* are equimeasurable, i.e.,
Pw(t) = fry«(t), t=>0.

This implies that for any Borel function v it holds:

1$2]

(2.2) /llf(IW(X)I)dx = v (w*(s)) ds,
Q 0

and, in particular,

(2.3) lw*llzro0n = lwllr@, 1<p<oo.

A simple consequence of (2.3) is that one can bound the L”-norm of a function
w by the corresponding norm of a function v every time one knows that
w*(s) < v*(s). We recall that such a result still holds under the weaker

assumption (see, e.g., [2])

(2.4) /w*(r)drf/ vi(r)ydr, s€(0,|Q).

0 0
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Proposition 2.1. Suppose that w, v € L' (Q) satisfy (2.4). Then, for every non
decreasing convex C! function F : [0, +00) — [0, +00), we have:

12 12|
2.5) / F(w*(r))drf/ F(v*(r))dr.

0 0

The theory of rearrangements is well known and exhanstive treatments of

it can be found for example in [14], [13], [17], [2].
We finally introduce the Zygmund spaces L?(logL)?, 0 < p < 00,
—00 < o < +00. We say (see, for example, [5]) that w belongs to L?(log L)“

if
(2.6) /[!f(X)IIOg“(2+ |f(x)D]” dx < oo.
Q

We remark that (2.2) implies that (2.6) is equivalent to the following
condition involving rearrangements

|
/ [f*(s)log® (2 + f*(s)]” ds < oo.

0

3. Main result.

In this section we will consider functions u in the class 7 (2) introduced in
(1.2). For such functions it is possible to define, for any positive 4, the function

(3.1) th(t):/ |Dul*dx, t>0.

t<{u|<t+h

Suppose that there exists a nonnegative function g € L'(Q) such that the
following inequality holds:

(3.2) on(t) < h/ gdx, Yt>0, h>0.
lu|>t

A standard argument (see for exdfnple [11]) proves that (3.2) implies an im-
proved summability of |[Du| on Q.
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Proposition 3.1. Suppose that u belongs to the class T(Q2) and that g is

a nonnegative function in L'(). If (3.2) holds then u € WO1 (Q), for any
n

1<g< T
n —
If, furthermore, g is such that

n

12| s w1 ds
(3.3) / </ g ) dt) — < 400,

0 0

then (3.2) implies that u € WOI’”/(”_I)(SZ).

Proof.  We observe that the above statement is already contained in several

papers, where it has been proved in different contests (see, for example, [17],

[18], [8], [11]). We only sketch the proof in the case where g belongs to L1(2).
Using Holder’s inequality in (3.2) we have, for 1 < g < 2,

6o L[ ipurars et

t<|u|=t+h

() = (2 + h) )“WZ
: .

For g = 1 we have:

LI buars et (

t<lul<t+h

:Uvu(t) - //Lu(l‘ + h) )1/2
A .

Passing to the limit as # — 0% and using Fleming-Rishel formula [12] and
isoperimetric inequality [10], in a standard way (see, e. g., [17]) we get:

— 1, (©)
n2Co" ()32

I < gl forae. t > 0,

where C, is the measure of the unit ball in R”. Integrating between 0 and u* (s)
and using the properties of rearrangements we obtain:

o lgh 1 o
U (S) = n(n__Z)Cz/n Sl—-2/n ’ SE( al |)>

which gives:

gl 1
Q7%

3.5 F <
G M= - 2

,
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forany 0 <r <n/(n—2).
Going back to (3.4) and passing to the limit as # — 0 we have:

d
— f |Dul? dx < |Igl{"* (—p,(1))' 7%, forae.t >0,

luj<t

where 1 < ¢ < n/(n — 1). Integrating the above inequality between 0 and +oco
and using Holder’s inequality, it results:

[0.9)
(3.6) f |Dul? dx sngn?/zf (—p, @)™ d1 <
£ 0

- o] 1 q/2
q/2
<llglli"" 12 + Iul”ga/(z_q) ([ W dt) ,

where o is chosen in such a way that 0 < 2a/qg < 1 and 0 < 20/(2 — q) <
n/(n — 2). Then (3.5) and (3.6) imply that u € W,'Y(Q), forany 1 < g <
n

O

n—1"

Remark 3.1. The assumption (3.3) on g is equivalent to say that it belongs to
the Lorentz space L(1,n/(n — 1)) (see [4]). We point out that the following
strict inclusions hold:

L'>L,n/(n—1)>LP, Vp>1.

It should be clear that if one assumes more summability on g (for example
g € LP(2), p > 1) then Du will be more regular than in Proposition 3.1. But
here we are interested in showing how it is possible to get more regularity on Du
by adding suitable assumptions on u, letting ¢ belong only to an intermediate
space between L!(Q2) and L?(R2), with p > 1. More precisely we will assume
that for o > 1 the following inequality holds:

(3.7) / lul® dx < / gdx, Vit>0,
lul>t |u|>¢

where g is a nonnegative function as in (3.2). We begin to show how (3.7) allows
us to transfer any information on the summability of g to the summability of u.
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Proposition 3.2. Suppose u € L°(2),0 > 1, satisfies (3.7) under the
assumption that g € L(log L)*, o > 0. Then u € L° (log L)*/°.

Proof. First of all we show that inequality (3.7) implies:

(3.8) Ur)<V(r), re(,]Q),

where

(3.9) U(r)=/ (m*(s))° ds and V(r) =/ g (s) ds.
| 0 0

Indeed, inequality (3.7) implies (3.8) for any r € (0, [2]) such that r = w,(¢),
for some ¢ > 0. Let now 7y be a value which is not in the range of u,. Because
of the monotonicity and the right continuity of u,, there exists #, such that

r1 = Uy (l) <rg < 1y (ty) =y,

and
u*(r)y=1ty, selry,nl

On the other hand the functions U and V defined in (3.9) are concave in (0, |2])
and furthermore U is linear in the interval [r;, ro]. Thus, once we observe that
U(ry) < V(r) and U(rp) < V(rp), we immediately have that U (ry) < V(ry).
So we have proved completely (3.8).

A straightforward calculation shows that the function

Y1) =1tlog®(2 +1)
is a positive convex function on (0, +00), for ¢ > 0. Using (3.8), Proposition
2.1 and the definition of L7 (log L)*/° we complete the proof. [
‘We are now in position to prove our main result.

Theorem 3.3. Suppose that u € 7(2) N L°(Q), 0 > n/(n — 2), and that
g is a nonnegative function in L'(2) such that (3.2) and (3.7) hold. Then

ue Wol’q(SZ),for any 1 < q < q, where g =20/(c + 1).
If, furthermore, g € L(log L)°/©*Y then u e Wol’q (2).

Proof. The proof of the theorem will be obtained by using both the results of
Propositions 3.1 and 3.2 and the arguments contained in their proofs. We will -
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first consider the case g € L(log L)°/“+V, Using assumption (3.2) we have:

Dul? 1
(3.10) Dul” 1 < -——-f \Dufdx <
t<|u|<t+h W(,ul) w(t) t<|u|<t+h
N
<—_ | gdx,
v 4, ¢

where we have set ¥ (t) = (2 +1)(log(2 + £))!/©+D_ Then Hélder’s inequality
and (3.10) imply:

1 .
— [Dulfdx <

t<|u|<t+h

1 / |Du? ) a ( / 3 ) T
<L dx WDy dx) <
h <t<|u15t+h w(lul) t<|u|<t+h

1 / =T T
<|—= gdx —/ (W(lul))"dX) :
<w(t) |se]>¢ ) <h t<lu|<t+h

As in the proof of Proposition 3.1 we can pass to the limit as # — 0, obtaining,

d i 1 B (2) Ez3) 1
——f |Dul|?dx < ——/ g*(s)ds (=, )W ®)°) 7T,
dt |ul<t ¥ () 0 A

for a.e. t > 0. Integrating the above inequality between 0 and +o0 and using

Holder’s inequality it results:

) +o0 / pi(0) g\
(3.11) /QIDqu dx < </ ({ g (s)ds> W(ﬂ) .

0
+00 -;i:r
< / (—u;(t))(w(t))"dt> <
0
+00 TRO) AT
dt
* d .
s([ ([ o) S)W))

: (/(2 + ) (log(2 + |u])) 5 dx) .
Q
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We claim that

+00 My (2)
. dt _
(3.12) / (/ g (s)ds) el

0 0

e 1 M (£)
=[ 2+ 1)(log(2 + 1))/ @+ <[ g (s) dS> dt < +o0.
We firstly prove that
12|
G139 f 8" (5)(10g (2 + u* ()" ds < +o0.

0

A simple proof of (3.13) is based on the fact that, as in Proposition 3.2,
assumption (3.7) implies that (3.8) holds true. Indeed, using the inequalities

2+a)f <3712 +4af), a>o, B >1,

and
(@+b) <a”+b", a,b>0,0<y <1,

we have:

12|
(3.14) / g*(5)(Iog(2 + u*(5))) 7 ds <
0

<

g o

€2
/ 8" (6)(e ~ 1) log3 + log(2 + (u*(5))*)) #T ds <
" €]
<cillgl + e / 8*(5)(log(2 + (%)™ (5))) ¥ ds,
0

where c;, ¢, are constants which depend only on o and, as usual, we have put:

1 s
@?)*(s) = -S—/ @) (rdr > u*(s))°.
0
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Now, using (3.8) in (3.14) we get:

12
(3.15) / g (9)(og(2 4+ u*(s))) 7 ds <
0

€]
< cillglh +e2 f §°(5)(1og(2 + gl /) 7T ds = e1liglh+
/ |

+cz[/ (...)ds—{—/ (...)a’s]f
{s:g*®)>Uglh/H12} {s:g*)=llgl /%)

ol
= ciliglh + 23%02/ g*(5)(log(2 + g*(5))) 7 ds + cs,
0

where c3 is a constant which depends only on o, ||g]|; and |2]. Then (3.13) is

proved.
Secondly we observe that (3.13) immediately implies (3.12) because the

continuity of the function (y (t))~! and (3.13) allow us (see, for example, [15])
to perform an integration by parts:

+00 M (2)
d
/ ( / g (s) ds) T[(t?)— <

0 0

-+00
o+41 . o
=— / 8 (y (1)) (0g(2 + 1)) o+ (—dy (1)) =
0

2]
1 .
= ";f / g*()(log(2 + u*(5))) T ds.

0

Now, collecting (3.11), (3.12) and taking into account Proposition 3.2 we get
the assertion.

The case g € L'(2) can be treated in a similar way. One has to put
Y(t) = 1+4¢in (3.10) and then proceed as above (see also [8]). ]

4. An application.

Let us consider the problem

(41) { —div(a(x, DLL)) + b(x, Lt) = f inQ

u=20 on 9<2.
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We assume that a : Q& x R" — R” is a Carathéodory function which satisfy, for
a.e. x € Q and any & € R",

(4.2) la(x, )| < L(k(x) + [£]),

(4.3) a(x, £)§ > [E],

where L is a positive constant and k(x) > 0 belongs to L?(2). Furthermore
b : Q@ xR — R is a Carathéodory function satisfying, for some o > 1, the

assumption:
4.4) b(x, n)sign(n) > coln|”, forae. xeQ, VneR,

where ¢y is a positive constant.
We will say that u is a weak solution of (4.1) if it satisfies:

/a(x, Du)Dg + /b(x, e =(f, ) YoeCP(Q)
(4.5) Q Q

ue W, (Q), alx, Du) e LY(Q), b(x, u) € LY().

Under the further assumption that for a.e. x € Q

(4.6) (a(x,€) —a(x, EN(E — &) >0, VEA£E,
and
4.7) sup{|b(x, )| : In| < t}eLl (), V>0,

it has been proved that if f € L'(), then at least one weak solution # of 4.1)
exists, such that u € W 9(Q) forany ¢ < g, g = 20 /(0 +1) (see, for example,
[8], [9]). It turns out that such a solution belongs to the class 7(2) defined in
(1.2). As an application of the results contained in the previous section we will
study the regularity of u when the summability of f is improved.

Theorem 4.1. Suppose that u € T7(QQ) is a weak solution of (4.1), that is, u
satisfies (4.5), under the assumptions (4.2), (4.3), (4.4), witho > 2n /(n—2).
We have:

i) if feLY(Q), thenu e WOI’Q(Q),forﬁany q <q,withq =20/(c +1);

ii) if f € L(og L)/, then u e W, (), where G = 20/ (o + 1).
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Proof. The proof is based on the fact that if ¥ € 7(2) satisfies (4.5), then one

can use T, (u) as test function in (4.5), for any £ > 0. Choosing k = ¢ and
k =1t + h,where t, h > 0, we get:

a(x, Du)Dudx + / b(x, u)(lu] — t)sign(u) dx+

t<lul<t+h t<|u|<t+h
+h/ b(x, u)sign(u) dx =
lu|>t+h
== / S (u| —t)sign(u) dx + h/ fsign(u)dx.
t<lu|<t+h |lu|>t+h

Using assumptions (4.3) and (4.4) we have:

(4.8) / |Dul? dx +hcof lul® dx < h/ [f]dx.

t<|ul<t+h |u|>t+h |uf>t

Inequality (4.8) implies:

(4.9) / |Dul*dx < h/ | f|dx
t<lu|<t-+h U lul>t
and
(4.10) Cof_ | dx < / | fldx.
|u|>t+h Ju|>t

It is immediate to observe that (4.9) is exactly (3.2) and that letting & go to zero,
(4.10) implies (3.7). Thus one obtains the theorem as an application of Theorem

3.3. 4

Remark 4.1. As already observed, part i) of Theorem 4.1 recovers well known
results contained for example in [8]. Part ii) of Theorem 4.1 improves a result
contained in [9], where the existence of a weak solution of (4.1) belonging to
W, 1() is proved under the assumptions (4.2), (4.3), (4.4), (4.6), (4.7) and
feL(logL). As alre%dy observed in Section 2 the space L(log L) is stricily
contained in L(log L) +T .

Remark 4.2. By the same arguments used in Theorem 4.1 one can study the
case when b(x,n) = 0. This time one obtains only inequality (4.9) and then
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one can apply Proposition 3.1. It follows that if f € L'(2) then u € WOl (),
for any g < n/(n — 1) (see also [6], [7]), while, if f satisfies (3.3) then

ue WOI’"/("—'I)(Q) (see also [11]).

Remark 4.3. The previous remark explains why we assume o > n/(n — 2).
Indeed,if 1 <o <n/(n—2),theng =20/(c +1) < n/(n—1). Therefore in
such a case the presence of the term b(x, u) in the equation does not give any
improvement on the summability of Du. We point out that when o = n/(n — 2)
then g = n/(n — 1) and the regularity u € WO1 n/ (”_1)(9) can be obtained under
one of the following assumptions:

a) f belongs to L(log L)_2_<"'“'—'17;

b) f satisfies (3.3).

A straightforward calculation proves that if n > 4 then condition a) is
weaker than b).
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