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LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS INVOLVING THE GENERALIZED

GAMMA FUNCTION

VALMIR KRASNIQI - FATON MEROVCI

By a simple approach, two classes of functions involving generaliza-
tion Euler’s gamma function and originating from certain problems are
proved to be logarithmically completely monotonic and a class of func-
tions involving the psi function is showed to be completely monotonic.

1. Introduction and Preliminaries

Euler’s classical gamma function, defined for positive x by

Γ(x) =
∞∫

0

tx−1e−tdt,

The logarithmic derivative of the gamma function is called the digamma func-
tion. It is know as the psi function and is denoted by ψ(x).

ψ(x) =
d
dx

lnΓ(x) =
Γ
′
(x)

Γ(x)
.
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The following integral and series representations are valid (see [1]):

ψ(x) =−γ +

∞∫
0

e−t − e−xt

1− e−t dt =−γ− 1
x
+ ∑

n≥1

x
n(n+ x)

(1)

It’s derivatives are given by

ψ
(n)(x) = (−1)n+1

∞∫
0

tne−xt

1− e−t dt (2)

for x > 0 and n ∈ N, where γ = 0.57721566490153286... is the Euler-Masche-
roni constant.

Euler, gave another equivalent definition for the Γ(x) (see [7],[8],[13]),

Γp(x) =
p!px

x(x+1) · · ·(x+ p)
=

px

x(1+ x
1) · · ·(1+

x
p)
, x > 0, (3)

where

Γ(x) = lim
p→∞

Γp(x). (4)

The p-analogue of the psi function is defined as the logarithmic derivative of the
Γp function (see [7]), that is

ψp(x) =
d
dx

lnΓp(x) =
Γ′p(x)
Γp(x)

. (5)

The function ψp defined in (5) satisfies the following properties (see [7]). It has
the following series representation

ψp(x) = ln p−
p

∑
k=0

1
x+ k

. (6)

It is increasing on (0,∞) and it is strictly completely monotonic on (0,∞). It’s
derivatives are given by

ψ
(n)
p (x) =

p

∑
k=0

(−1)n−1 ·n!
(x+ k)n+1 . (7)

Definition 1.1. A function f is said to be completely monotonic on an interval
I if f has derivatives of all orders on I and

(−1)n f (n)(x)≥ 0 (8)

for x ∈ I and n≥ 0.
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Let C denote the set of completely monotonic functions.

Definition 1.2. A positive function f is said to be logarithmicaly completely
monotonic on an interval I if its logarithm ln f satisfies

(−1)n[ln f (x)](n) ≥ 0 (9)

for x ∈ I, and n≥ 0.

Let L on (0,∞) stand for the set of logarithmically completely monotonic
functions. The notion ”logarithmically completely monotonic function” was
posed explicity in [10] and published formally in [9] and a much useful and
meaningful relation L⊂C between the completely monotonic functions and the
logarithmically completely monotonic functions was proved in [9, 10].

Kershaw (see [5]) prove that for positive x and 0≤ s≤ 1,

exp
(
(1− s)ψ(x+ s

1
2 )
)
≤ Γ(x+1)

Γ(x+ s)
≤ exp

(
(1− s)ψ

(
x+

1+ s
2

))
.

2. Main Results

Chen [3] proved that the function

x 7−→ 1

[Γ(x+1)]
1
x

is logarithmically completely monotonic in (0,∞). The following theorem is a
generalized result of Chen [3].

Theorem 2.1. The function

f (x) =
1

[Γp(x+1)]
1
x

(10)

is logarithmically completely monotonic in (0,∞).

Proof. Using Leibnitz rule

[u(x)v(x)](n) =
n

∑
k=0

(
n
k

)
u(k)(x)v(n−k)(x),
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we obtain

[ln f (x)](n) =
n

∑
k=0

(
n
k

)(1
x

)(k)(
− lnΓp(x+1)

)(n−k)

=− 1
xn+1

n

∑
k=0

(
n
k

)
(−1)kk!xn−k

ψ
(n−k−1)
p (x+1)

,− 1
xn+1 g(x)

g
′
(x) =

n

∑
k=0

(
n
k

)
(−1)kk!(n− k)xn−k−1

ψ
(n−k−1)
p (x+1)+

+
n

∑
k=0

(
n
k

)
(−1)kk!xn−k

ψ
(n−k)
p (x+1)

=
n−1

∑
k=0

(
n
k

)
(−1)kk!(n− k)xn−k−1

ψ
(n−k−1)
p (x+1)+

+ xn
ψ

(n)
p (x+1)+

n

∑
k=0

(
n
k

)
(−1)kk!xn−k

ψ
(n−k)
p (x+1)

=
n−1

∑
k=0

(
n
k

)
(−1)kk!(n− k)xn−k−1

ψ
(n−k−1)
p (x+1)+

+ xn
ψ

(n)
p (x+1)+

n−1

∑
k=0

(
n

k+1

)
(−1)k+1(k+1)!xn−k−1

ψ
(n−k−1)
p (x+1)

=
n−1

∑
k=0

[(n
k

)
(n− k)−

(
n

k+1

)
(k+1)

]
(−1)kk!xn−k−1

ψ
(n−k−1)
p (x+1)

+ xn
ψ

(n)
p (x+1) = xn

ψ
(n)
p (x+1)

= xn(−1)n
p+1

∑
k=1

n!
(x+ k)n+1

If n is odd, then for x > 0,

g
′
(x)> 0⇒ g(x)< g(0) = 0 ⇒ (ln f (x))(n) < 0 ⇒

⇒ (−1)n(ln f (x))(n) > 0.

If n is even, then for x > 0,

g
′
(x)< 0 ⇒ g(x)< g(0) = 0 ⇒ (ln f (x))(n) > 0 ⇒

⇒ (−1)n(ln f (x))(n) > 0.
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Hence,

(−1)n(ln f (x))(n) > 0

for all real x ∈ (0,∞) and all integers n≥ 1. The proof is completed.

For the next result we will make use of the following Lemma.

Lemma 2.2. Let f ′′ be completely monotonic on (0,∞), then for 0≤ s≤ 1, the
functions

x 7→ exp
(
− f (x+1)− f (x+ s)− (1− s) f ′

(
x+

1+ s
2

))
x 7→ exp

(
f (x+1)− f (x+ s)− 1− s

2
f ′(x+1)+ f ′(x+ s)

)
are logarithmically completely monotonic on (0,∞).

Proof. See [2].

The following Theorems are Γp analogues of the results from [2].

Theorem 2.3. For 0≤ s≤ 1, the functions

x 7→
Γp(x+ s)
Γp(x+1)

exp
(
(1− s)ψp

(
x+

1+ s
2

))
and

x 7→
Γp(x+1)
Γp(x+ s)

exp
(
− 1− s

2

(
ψp(x+1)+ψp(x+ s)

))
are logarithmically completely monotonic.

Proof. Applying Lemma 2.2 to f (x)= logΓp(x), and using the fact that f ′′(x)=
ψ ′p(x) is completely monotonic on (0,∞) (see [7]), one obtains the proof.

Theorem 2.4. For positive x and 0≤ s≤ 1, then

exp
(1− s

2

(
ψp(x+1)+ψp(x+ s)

))
≤

Γp(x+1)
Γp(x+ s)

≤

≤ exp
(
(1− s)ψp

(
x+

1+ s
2

))
.
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Proof. Let fp(x) =
Γp(x+s)
Γp(x+1) exp

(
(1− s)ψp

(
x+ 1+s

2

))
and

gp(x) =
Γp(x+1)
Γp(x+ s)

exp
(
− 1− s

2

(
ψp(x+1)+ψp(x+ s)

))
.

Since,

lim
x→∞

fp(x) = lim
x→∞

gp(x) = 1

and fp(x),gp(x) are decreasing from theorem 2.3 we have

exp
(1− s

2

(
ψp(x+1)+ψp(x+ s)

))
≤

Γp(x+1)
Γp(x+ s)

≤

≤ exp
(
(1− s)ψp

(
x+

1+ s
2

))
for 0≤ s≤ 1. The proof is completed.

Let s and t be two real numbers with s 6= t,α = min{s, t} and β ≥−α, for
x ∈ (−α,α), define

hβ ,p(x) =


[

Γp(β + t)
Γp(β + s)

·
Γp(x+ s)
Γp(x+ t)

] 1
x−β

x 6= β

exp[ψp(β + s)−ψp(β + t)] x = β

for p > 0.

The following theorem is a generalization of a result of [12].

Theorem 2.5. The function hβ ,p(x) is logarithmically completely monotonic on
(−α,+∞) if s > t.

Proof. For x 6= β , taking logarithm of the function hβ ,p(x) we have



LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS... 21

lnhβ ,p(x) =
1

x−β

[
ln

Γp(β + t)
Γp(β + s)

− ln
Γp(x+ s)
Γp(x+ t)

]
=

lnΓp(x+ s)− lnΓp(β + s)
x−β

−
lnΓp(x+ t)− lnΓp(β + t)

x−β

=
1

x−β

x∫
β

ψp(u+ s)du− 1
x−β

x∫
β

ψp(u+ t)du

=
1

x−β

x∫
β

[ψp(u+ s)−ψp(u+ t)]du

=
1

x−β

x∫
β

s∫
t

ψ
′
p(u+ v)dvdu

=
1

x−β

x∫
β

ϕp,s,t(u)du

=

1∫
0

ϕp,s,t((x−β )u+β )du,

and by differentiating lnhβ ,p(x) with respect to x,

[lnhβ ,p(x)]
(k) =

1∫
0

uk
ϕ
(k)
p,s,t((x−β )u+β )du (11)

If x = β formula (11) is valid.
Since functions ψ

′
p and ϕp,s,t are completely monotonic in (0,∞) and (−t,∞)

respectively, then (−1)i[ϕp,s,t(x)](i) ≥ 0 holds for n ∈ (−t,∞) for any nonnega-
tive integer i.

Thus

(−1)k[lnhβ ,p(x)]
(k) =

1∫
0

uk(−1)k
ϕ
(k)
p,s,t((x−β )u+β )du≥ 0

in (−t,∞) for k ∈ N. The proof is completed.
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