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ON THE DEPENDENCY LOCI OF
SECTIONS OF SEMIAMPLE VECTOR
BUNDLES ON PROJECTIVE VARIETIES

EDOARDO BALLICO

To the memory of Umberto Gasapina

Here we study the topology of the dependency locus of sections of semi-
ample vector bundles on complex projective varieties. The main motivation
came from the study of subvarieties of the Grassmannians.

0. Introduction.

In this paper we are interested in the topology of the dependency loci of
sections of vector bundles which are rather “positive” i.e. in Lefschetz type
results for vector bundles. The results we use are rather standard (see Lemma 1.4
i.e. essentially [8] Theorem 1.1 of Part II, p. 152), but their use has for us at least
two different motivations. The first motivation is the study of the connectedness
of the O-locus of a section or of the dependency locus of a vector space of
sections of a spanned (but not ample) vector bundle i.e. the study of the 0-loci
(or dependency loci) of sections of the universal quotient bundle of subvarieties
of Grassmannians; see Corollaries 1.8 and 1.10 for the first interesting case:
therefolds contained in the Grassmannian G (2, 5) of lines of P4. The second
motivation came from the study of “positive” vector bundles with a section with
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as O-locus a very particular variety (e.g. a projective space or a quadric or
a quadric or a scroll over a curve of genus > 0) (see 2.3, 2.4, 2.6 and 2.8),
extending (under more restrictive numerical assumptions) the results proved in
[13], [14], [15] for ample vector bundles. Our main assumption of positivity of
a vector bundle E on a projective variety X is that E is semiample, i.e. that
there is m > 0 such that Op(g)(m) is spanned, i.e. that Op, (1) is semiample.
A source of inspiration was the notion of k-ampleness introduced by Sommese
([19]) and the connectivity results proved by him (see [19], n. 1 or [16], p.
36). However, the use of a finer measure of non-ampleness (see Definition 1.2)
is essential for non trivial applications to subvarieties of Grassmannians. At
the end of Section 1 we introduce what is (we believe) a useful definition
of sectional genus for a vector bundle E on a projective manifold X when
rank(E) > dim(X) > 3 (see Definition 1.11 and eq. (1)).

The author was partially supported by MURST and GNASAGA of CNR
(Italy). He want to thank E. Arrondo for several stimulating conversations and
examples on subvarieties of Grassmannians.

1. Subvarietie of Grassmannians.

Recall ([8], p. 25) that a proper morphism 7 : A — B of complex spaces
with A of pure dimension is said to be semismall if for every integer £ > O the
set F(m, k) :={x €A :dim(x (7 (x)) > k)} has codimension > 2k in A. By
definition the deviation D () of semismallness of 7 is 0 if 7 semismall, and it
is sup,_ o{2k — Codim(F (7, k))} otherwise.

Remark 1.1. Let U be a purely n-dimensional algebraic variety and 7 : U —
C¥ be a proper morphism. Let D(r) be the deviation of semismallness of 7.
Then H;(U;Z) =0fori > n+ D(r) ([8], p. 25).

For the next key Lemma 1.4 the main point is to prove parts (a) and (b).
We will use a method of Sommese (see [19], n. 1) related to k-ample bundles
in the sense of [19], n. 1. This method was popularized in [16], pp. 35-36,
and used again in [13], Theorem 1.3. However the use of the same method
for the deviation from semismallness of a bundle instead of the “defect of
ampleness” of E is crucial for the application to subvarieties of Grassmannians
(see Corollaries 1.8 and 1.10 for the case of 3-folds in G(2,5).

Definition 1.2. Ler X be a projective variety and E a vector bundle on E.
Set A = P(E*) and let O4(1) the tautological quotient line bundle on A.
Assume that there is an integer m > 0 such that O A(m) is spanned, i.e. assume
that Q4 (1) is semiample; we will say in this case that E is semiample. Let
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u: A — B be the morphism induced by H°(A, O,(m)) = H°(X, S™(E)). E
is said to be semismall if the morphism u is semismall. We define the deviation
D[ E] of semismallness of E as the deviation of semismallness D(u) of u. Note
that this definition does not depend on the choice of the integer m.

Remark 1.3. Instead of the morphism induced by
H(A, 04(m)) = H(X, S"(E))

in the Definition 1.2 of D[E] we may take the morphism A — P(V) associated
to any vector space V C H°(A, O4(m)) such that V spans O4(m).

The key parts of the next lemma are parts (a) and (b), because the remaining
assertions will follow as in the case of ample vector bundles.

Lemma 1.4. Let X be a connected projective manifold of pure dimension n
and E a rank r semiample vector bundle on X. Let D[E] be the deviation of
semismallness of E. Fix s € H*(X, E) and let Z be its O-locus. Then we have:

(a) for every integer i > n+ D[E]+r we have H{(X \ Z; Z) =0,

(b) Hyiripie)-1(X \ Z; Z) is finitely generated and torsion-free;

(c) for every integer i <n — D[E]+r we have H(X, Z; Z) =0,

(d) the restriction map H (X;Z) — H'(Z;Z) is an isomorphism if i <
n -+ D[E] + r — 1 and it is injective with torsion-free cokernel if i =
n— D[E]l+r;

(e) assume Z smooth; then the restriction map H'(X,0x) — H'(Z,0gz)
is an isomorphism if i < n —r — 1 — D[E] and it is injective if
i =n—r—DI[E];

(f) assume Z smooth; fix integers p > 0, g > 0, then the restriction map
HY(X,Qxr) > HI(Z,Q2z,) 0s an isomorphism if p+q <n—r — 1 —
DI[E] and it is injective if p +q =n —r — D[E];

(g) assume Z smooth and n > r + D[E] + 2; then the induced map
Alb(Z) — Alb(X) is an isomorphism;

(h) assume Z smooth and n = r + D[E] + 1, then the induced map
Alb(Z) — Alb(X) is surjective;

(i) assume Z smooth and n > r + DI[E] + 3 then the induced map
Pic(X) — Pic(Z) is an isomorphism;

(j) assume Z smooth and n = r + DI[E] + 2; then the induced map
Pic(X) — Pic(Z) is injective with discrete and torsion-free cokernel.
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Proof.  Proof of part (a): Look at the construction in [19], n 1 or [16], pp. 35-
36 or [13], proof of Theorem 1.3. Set A := P(E*) and ley O4(1) be the
tautological quotient line bundle on A. Let u : A — B be the morphism
induced by H%(A, O4(m)) = HO(X, S™(E)) for a large integer m such that
O, (m) is spanned. Let f : A — A’ be the Stein factorization of u (hence
B is normal, f has connected fibers and A’ — B is finite). Note that s™
induces a section s* € H%(A, O4(m)). Call M (resp. M’) the hypersurface of
A (resp. A") with M = f~'(M") and M O-locus of s*. Since A’ \ M’ is affine
of dimension n + r — 1, by Remark 1.1 and the definition of D[E] we have
H;(A'\M';Z) =0 fori > n+r+ D[E]. It was checked in [18],n 1, or [15],
p. 36 that the projection A \ m — X \ Z is a is an affine C"~!-bundle. Hence
A\ M and X \ Z are homotopy equivalent, proving part (a).
Proof of part (b): With the notations of the proof of part (a), A \ M has the
homotopy type of a CW-complex of dimension < n +r — 1 + D[E] by [8],
Theorem 1.1* of Part I, p. 152. Hence part (b) follows from [1], p. 717.
Part (c) follows from (a) and Alexander-Lefschetz duality. The injectivity
statement of part (d) follows from part (c) and the long cohomology exact
sequence of the pair (X, Z). The torsion-freeness in part (d) follows using also
part (b). Parts (e) and (f) follow from part (c), the injectivity statement of part
(d) and the fact the restriction map commutes with the Hodge decomposition.
- Parts (f) and (h) follow from part (c) with i = 2 and part (e) with i = 1, 2. Parts
(g) and (i) follow from part (c). Part (j) follows from part (b).

We stress the following remark because for the connectedness results for
subvarieties of Grassmannians we will use only part (a) of Lemma 1.4.

Remark 1.5. In the proof of Lemma 1.4, parts (a) and (b) we used only that
X\ Z is smooth and that the pair (X, Z) satisfies Poincaré-Alexander-Lefschetz
duality for a suitable range of integers over Q for part (a), over Z for part
(b). For instance to apply part (a) of Lemma 1.4 it is sufficient to assume
that X is a Q-homology manifold (e.g. that X has only quotient singularities).
For general spaces there is Verdier’s duality in the derived category or Kaup’s
duality complex (see [10], [11]) which measures the failure of the corresponding
duality statement. Hence it is trivial to use this approach for a singular space X
to obtain connectivity theorems in suitable range of integers.

Let Y be an integral subvariety of the Grassmannian G(r, N + 1) of all
P"~I’s into PV Recall that a fundamental P* of ¥, 0 < k < r —2, is a projective
subspace A of PV, dim(A) = k, contained into infinitely many of the P"~!’s of
Y. We make the following general definition. '

Definition 1.6. Let Y be an integral subvariety of the Grassmannian G(r, N +
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1) of all P""1’s into PV, Let A be a linear subspaces of PV, Set t :=
dim(U(A,Y)). A is said to be a fundamental ¢-linear subspace of weight
u(A,Y)ifu(A,Y) > 0. Define the defect A(y) of Y in the following way. Let
u(Y) be the supremum for all integers ¢ with 0 < ¢ < r — 1 and all fundamental
t-linear spaces A of the integer u(A, ¥). Set A(Y) := max{0, 2u(¥Y)—dim(Y)}.

Recall that the 0-loci of the universal quotient bundles on the Grassmanni-
ans have a geometric interpretation. Hence by the Definitions 1.6 and 1.2 and
Lemma 1.4 we obtain the following result.

Proposition 1.7. Let Y be an integral subvariety of the Grassmannian G(r, N +
1) of all P=1"s into P" and let Q be the tautological quotient sheaf of Y. Then
D[Q] = A(Y). In particular if Y is smooth and N +2 —r + A(Y) < dim(Y),
then a general section of Q has connected 0-locus.

Corollary 1.8. Let X C G(2,5) be a smooth connected 3-fold and Q the
universal rank 2 quotient bundle on X. Assume that not all lines of X pass
through a fundamental point of X. Let C be the O-locus of a general section of
Q. Then C is connected.

Proof. By Lemma 1.4 (d) and Remark 1.3 it is sufficient to check that D[Q] =
0. Let u : P(Q*) — P* be the morphism associated to the embedding on X
into G (2, 5). By assumptions u has at most a one-dimensional family of fibers
of positive dimension and at most finitely many fibers of dimension 2. Since
dim(P(Q*)) = 4, we have D(u) = 0, as wanted.

A main feature of our approach is that using Remark 1.9 below we may
obtain a similar statement (see 1.10) for the dependency locus of the dual of the
tautological subbundle of a 3-fold in G(2, 5).

Remark 1.9. Let X be a smooth projective variety, E a vector bundle on X and
V € HY(X, E) afinite dimensional vector space spanning E. Set n := dim(X)
and r := rank(E) and assume r > n > 3. Let U C V, U’ C U be
general subspaces with dim(U) = dim(U") +1 =r — n. Setw := V/U,
W' :=V /U’ and let B (resp B’) be the subsheaf of E spanned by U (resp. U’).
Set F := E/B and F’ := E/B’. By Bertini’s theorem F’ is a rank n vector
bundle on X with ¢;(F’) = ¢;(E) for every i. By [4], n. 1, f is a smooth sheaf
in the sense of [4] and in particular it is a reflexive sheaf with ¢; (F) = ¢;(E)
for every i and which is not locally free exactly at c,(E) points of X. By [4],
Theorem 1, or [9], Remark 4.1.1, (stated only for the case n = 3 but the proof
given there works for arbitrary n) a general section of W vanishes exactly on a
smooth curve, C, with sectional genus g(E) defined by the formula

(1) 28(E) — 2 = (wx + ¢1(E)) - cy—1(E) + cn(E)
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(see [9], Theorem 4.1 for n = 3 and X = P3 and hence deg(Kx) = —4, but
the proof given there works in general) and passing through the ¢, (F) points
Sing(F). C is the dependency locus of W, i.e. the dependency locus of a
general (r —n+1)-dimensional subspace of V. if r = n, then a local calculation
contained in [4] (or see [3], n. 1) shows that P(E) is smooth, i.e. E is a Banica
sheaf in the sense of [3]. Hence if r = n we may apply Lemma 1.4 even if
F' .= F = E/B is not locally free. For a discussion of the integer g(e), see
Definition 1.11 below.

Corollary 1.10. Let X C G(3,5) be smooth connected 3-fold, Q the universal
rank 3 quotient bundle on X and c the dependency locus of two general sections
of Q. Assume that for a general P € P* there is no 3-dimensional family of lines
of X passing through P. Then C is smooth and connected.

Proof. Let V € H°(X, Q), dim(V) = 35, be the subspace corresponding to
the embedding of X into G(3,5). Fix a general s € V and set W := V /K
as quotient vector space. By the generality of s. Q' := Q/s(O,) is a rank 2
reflexive sheaf with exactly c3(Q) non-locally free pits and which is smooth in
the sense of [4]. Q' is curvilinear in the sense of [9]. W spans Q. C is smooth
(see e.g. [9], Remark 4.1.1 for the case n = 3 but the proof given there works in-
general). C is the O-locus of a general section of W. Hence the smoothness
of C follows from [4], Theorem 1) (see the proof of Remark 1.9) and the
connectedness of C follows from the last part of the discussion of Remark 1.9.

We are unable to deduce directly 1.10 from 1.8 using the duality isomor-
phism G(2,5) = G(3, 5).
Motivated by Remark 1.9 we introduce the following integer g(E) which will
be called the sectional genus of E.

Definition 1.11. Let X be a Gorenstein projective variety with dim(X) = n > 3
and E a vector bundle on X with rank(E) > n. The sectional genus g(E)yof E
is defined by the formula (1).

Lemma 1.12. Assume X Gorenstein with isolated singularities and r > n > 3.
Then g(E) is an integer.

Proof. Fix an ample H € Pic(X). Then for large ¢ there are r — n + 1
sections of E(rH) whose dependency locus is a smooth curve Z(7) C Xeg-
We have g(E(tH)) = p,(Z(t)). Hence g(E(tH)) is an integer. Now use the
transformation formulas (see e.g. [9], Lemma 2.1, for the case X = P" and an
hint of the general formulas) for ¢;(E(tH)). These formulas are “universally
true” since the Chern classes of a vector bundle are cohomology classes, i.e.



ON THE DEPENDENCY LOCI OF... 27

operators. Thus 2g(E(x, h)) — 2 i1s a polynomial with rational coefficients, say
2p(x), in x which takes even values for large ¢. Hence p(x) has integers values
for all x. Thus g(E) = p(0) +1€Z.

2. Bundles with a section with very special O-locus.
We recall the following definition

Definition 2.1. Let X be an integral projective variety and E a vector bundle
on X. Let w : P(E*) — X be the projection. Assume that E is semiample,
i.e. assume that Opg+) (1) 1s semiample and fix an integer m > O such that
Op(g+(m) is spanned. Let u : P(E*) — PV be the morphism associated to
HO(P(E*). Op(g+(m)) and set A := {x € P(E*) : dim, (™! (u(x))) > 0}. Set
Disamp(E) := m(a) € X and call Disamp(E) the disamplitude locus of e. The
definition of disamp(E) does not depend on the choice of the integer m > 0
such that Op g+ (m) is spanned.

Lemma 2.2, Let X be an integral quasi-projective variety and C C Xy a
smooth complete rational curve. Let {a;}1<i<n—1 the degree of the rank 1 direct
summands of the normal bundle Nc;x of C in X. Let I be an irreducible
component of Hilb(X) containing C. Assume a; > O for every i. Let Z be an
integral subvariety of X with dim(Z) = t < n — 2. Then for a general curve
Del, =P wehave DNZ = 0.

Proof. Since a; > —1, for every i, Hilb(X) is smooth at ¢ and hence I is the
unique component of Hilb(X) containing X. Since a; > 0 for every i, y is a
covering family of rational curves whose general element is smooth. Let A be
the open subset of I, parametrizing the smooth rational curves a such that the
normal bundle N4, x has splitting type {b;}1<i<,—1 With b; > 0O for every i, i.e.
such that N4,x is spanned. We have C € A. Fix D€ A and P € D. Since
rY(D, Np /x(—=P)) = 0, the family of curves near D and passing through P is
smooth of dimension x (Np,x (—P)) = Xi<ij<n—1a; —n + 1. Hence we see that
for every P € Z the subfamily of A formed by the curves containing P has at
least codimension ¢ + 1 in I'. Hence a general D € A does not interest Z.

Theorem 2.3. Let X be a smooth projective variety and E a semiample vector
bundle on X. Set n := dim(X), r := rank(E) < n — 2 and assume the
existence of s € H(X, E) whose O-locus Z (as scheme) is P"™". Assume
n >r + 2+ D[E]. Assume dim(Disamp(E)) < n — 2. Then X = P" and
E is the direct sum of r line bundles of degree 1.
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Proof. By Lemma 1.4 (part (i) if n > r + 3 + DI[E], part (j) and the fact
Pic(P*") Z2Zifn=r+2+ DIE]), the restriction map Pic(X) — Pic(Z)
is an isomorphism. Fix a line D C Z. Since E is semiample, Nz,x | D
is semiample and hence we may apply Lemma 2.2 to D. By the adjunction
formula X is a Fano manifold and the positive generator L of X has L - D = 1.
Since dim(Disamp(E)) < n — 2, by Lemma 2.2 there is a deformation D’ of D
such that £ | D’ is ample. Hence deg(E | D) > r. By the adjunction formula
we have —Ky - D > n + 1. Hence X is a Fano manifold of index > n + 1.
By a theorem of Kobayashi-Ochiai ([12]) we have X = P". Furthermore, by
the adjunction formula Z is embedded as a linear subspace of X. Fix a plane
IT C P* and assume E | IT ample. Since deg(E | IT) = rank(E), we obtain
that (E | IT) is a uniform vector bundle of splitting typer (1, ..., 1) and hence
(E ® L*) | I is a uniform vector bundle of splitting type (0, ...,0). This
implies that £ @ L* | I is trivial (see e.g. [17], Chapter I, Theorem 3.2.1).
Hence E ® L* is trivial ([5], Corollary 1.7), proving the theorem under the
assumption E | IT ample. For a géneral plane [T C X Disamp(E) N I1
is finite (or empty). E | IT is semiample and we have Disamp(E | I1) C
Disamp(E)NTI. Since a spanned line bundle which does not contract any curve
is ample, if Disamp(E | TI) is finite, then it is empty, i.e. E | IT is ample.
Hence the theorem is proved. .

Theorem 2.4. Let X be a smooth projective variety and e a semiample vector
bundle on X. Set n := dim(X), r := rank(E) < n — 2 and assume the
existence of s € H'(X, E) whose 0-locus z (as scheme) is a smooth quadric Q
with dim(Q) = n —r. Assume n > r + 2 + D[E]l and n > r 4+ 3. Assume
dim(Disamp(E)) < n — 2. Then (X, E) is one of the following pairs:

(1) X =P", E direct sum of a line bundle of degree 2 and r — 1 line bundles
of degree 1,
(2) X is a smooth quadric Q and E = O, ()%,

Proof. By Lemma 1.4 (part ) if n > r + 3 + DI[E], part (j) and the fact that
Pic(Q) = Z if n = r + 2 4+ D[E])), the restriction map Pic(X) — Pic(Z) is an
isomorphism. Fix aline D C Z. since E is semiample Nz,x | D is semiample
and hence we may apply Lemma 2.2 to D. By the adjunction formula X is
a Fano manifold and the positive generator L of X has L - D = 1. Since
dim(Disamp(E)) < n — 2, by Lemma 2.2 there is a deformation D’ of d such
that £ | D’ is ample. Hence deg(E | D) > r. By the adjunction formula we
have —Ky - D > n. Hence X is a Fano manifold of index x > n. By a theorem
of Kobayashi-Ochiai ([12]) X is either P” or a smooth quadric Q. Furthermore,
by the adjunction formula we see that if X = Q, then Z is embedded as a
linear section of X while if X % P"Z is embedded as a hypersurface of a linear
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subspace of X. If X = Q and K C X is aline such that E | K is ample, then
by the adjunction formula £ | K has splitting type (1,...,1). If X = P” and
K C X isaline such that E | K is ample, then by the adjunction formula E | K
has splitting type (2, ..., 1). Since a semiample bundle F on a variety T with
Disamp(F) finite or empty is ample and Disamp(E | K) C Disamp(E) N K,
we see that E | K is ample for every line K not contained in Disamp(E). First,
we assume X = (. We want to find a smooth quadric A C Q, dim(4) = 3,
and such that E | k is ample for every line K C A. A exists and we may
take as A general 3-dimensional linear section of Q, unless Disamp(E) has an
irreducible component, M, whose general codimension n — 3 linear section is
a-curve containing a line. No such variety M exists in Q. Fix such a quadric
A. Since E ® L* | A is uniform of splitting type (0,...,0),E ® L* | A is
trivial (see e.g. [2], Proposition 3). Hence the proof of [5], Corollary 1.7, (see
e.g. [2], n. 1, for full details) given that £ = L®", as wanted. from now on, we
assume X = P". Fix P ¢ Disamp(FE). As in the previous case for every line K
with P € K C X, we have E | K ample, and hence E | K has splitting type
(2,...,1). Since r < n — 3, this condition (a pfiori weaker than the condition
that E is a uniform vector bundle with splitting type (2, 1, ..., 1)) is exactly
the condition used in [18] to obtain that E is the direct sum of r line bundles.
Hence the theorem is proved also in the case X = P",

Remark 2.5. Asremarked in [13], 2.4, the first part of the proof of Theorem 2.3
and 2.4 applies also if the O-locus Z of s is assumed to be a Fano manifold of
index dim(Z) — 1 and with Pic(Z) = Z.

Theorem 2.6. Let X be a smooth projective variety and E a semiample vector
bundle on X. Set n = dim(X), r := rank(E) < n — 2 and assume the
existence of s € H*(X, E) whose 0-locus Z (as scheme) is a smooth scroll
f : P(A) — B over a smooth curve B genus > 0. Assume n > r -+ 3 + D[E].
Assume dim(Disamp(E)) < n — 3. Then X is a P" -bundle 7 : X — B over
B and there is L € Pic(X) with deg(L | T) = 1 for every fiber T of w and a
vector bundle J on B with E = #n*(J) ® L.

Proof. By Lemma 1.4 (i) the restriction map Pic(X) — Pic(Z) is an iso-
morphic. By Lemma 1.4 (2) we have Alb(X) = B and the Albanese map
f=az: Z =P(G) — B factors through the Albanese map a¢ : X — B. Fix
aline D C Z. Since E is semiample Nz,x | D is semiample and hence we may
apply Lemma 2.2 to D. Since dim(Disamp(E)) < n — 2, by Lemma 2.2 there
is a deformation D’ of D such that E | D’ is ample. Hence deg(E | D) > r.
By the adjunction formula we have —Ky - D > n. Let T be a general fiber
of ay (hence smooth and with dim(Disamp(E) N T) < dim(Disamp(E))).
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Since oy is the Albanese fibration, T is connected. Since 7 — 1 >r + 2 and
T'NZ = P!, by Theorem 2.3 T = P*! and E | T is direct sum of r
degree 1 line bundles. Furthermore, there is L Pic(X) such that E ® L* is
trivial. since S := ax, (E ® L*) has no torsion, we see that S is a rank r vec-
tor bundle on B and the natural map f : ay(S) — E ® L* has kernel and
cokernel supported by finitely many fibers of ay. Since ay (S) is locally freen
ker(f) = 0. Note that L is ay -ample. Since B is a smooth curve to obtain that
7 = ax : X = B is a smooth scroll it is sufficient to check that o + X has
no singular fiber. Let M be a fiber of ay. Since B is a smooth curve and X is
smooth. ay is flat. M has pure dimension # — 1 and is locally Cohen-Macaulay
and the top intersection number (L | M)"! is one ([7], Corollary 10.1). Fur-
thermore, by semicontinuity we have oM, L | M) > n. Hence (L,L | M)
is a polarized variety with A-genera < 0. Since M has only Cohen-Macaulay
singularities, we have (M, L | M) = (P!, O(1)) by a theorem of Goren and
Kobayashi- Ochiai (see [6], Theorem 1.1). Now (and only now) we use the
strong assumption Codim(Disamp(E)) > 3. Hence for every fiber T of 7 we
have Codim (Disamp(E | T)) > 2 and we may apply 2.3 to E | T and obtain
that £ | T = (L | T)®. Now we will check that E & a*(U)(H) with U rank r
vector bundle on B and H € Pic(X) with deg(H | T) = 1 for every fiber T on
7. fix any such H € Pic(X). It was shown in [15], proof of Theorem A, that the
restriction of E(—H) to every fiber of 7 is trivial. hence R'7 . (E(—H)) =0
and U := n,(E(—H)) is a rank r vector bundle on B. It is easy to check that
E=n*(u)(H).

Remark 2.7. Note that, assuming E ample Theorem 2.6 gives a small improve-
ment of the statement of [15], Theorem A, i.e. a more precise description of the
bundle E. This is due only to the last part of the proof of 2.6.

Now we recall the definition of quadric fibration used in [15] and hence
used here. A polarized manifold (X, L) (ie. L ¢ Pic(X) is ample) is said to
be a quadric fibration over a smooth curve C if there is a surjective morphism
m : X — C such that every fiber of 7 is irreducible and reduced and every
smooth fiber T of 7 is a hyperquadric Q C P" with (T, L | T) = (0, 00(1)).
Let M be a fiber of . It was shown in [15], n. 1 that (L | M)"~! = 2, that
L | M is very ample with A%(M,L | M) = n + 1 and that L | M embeds M
into P” as an integral normal quadric. furthermore, setting G := m, (L), G is
arank n 4 1 vector bundles on C, and there is an embedding i : X — P(G)
and H € Pic(G) with i*(H) = [ and n = foi(with f : P(G) - C the
projection).

The proof of the next result is completely different from the proof of the
corresponding result with E ample proved in [15], Theorem 5. The drawback
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is that for our proof we had to assume p,(B) > 0 and n > r + 4.

Theorem 2.8. Let X be a smooth projective variety, H € Pic(X), H ample and
E a semiample vector bundle on X. Assume dim(Disamp(E)) < n — 3. Set
n = dim(X), r := rank(E) and assume n > r + 4. Assume the existence
of s € H'(X, E) whose O-locus Z (as scheme) is a smooth quadric fibration
Z — B over a smooth curve B of genus > 0 with respect to H | Z. Assume
n > r + 3+ D[E]. Then one of the following cases occur:

(a) there is a surjective morphism ¢ : X — B such that any general fiber
T of @ is a smooth hyperquadric of P! with H | T = O(1) and
E|T =Z0:(1)%®;

(b) Pic(X) = Pic(Z); (X, Z) is a smooth scroll over B; for every fiber
T = T of the scroll fibration * : X — B we have H | T =
07(2) ® O7r(Q)®"=V. There are A € Pic(B) and a rank r — 1 vector
bundle U on B such that E fits in the following exact sequence:

(2) 0> n*"(A)QH® - E—> n*(U)® H — O.

Proof. By Lemma 1.4 (i) the restriction map Pic(X) — Pic(Z) is an isomor-
phism. By Lemma 1.4 (h) we have Alb(X) = B and the albanese map oz :
Z = P(G) — B factors through the Albanese map oy : X — B. By proper-
ties of the Albanese fibration a general fiber of ay is connected. Fix any smooth
connected fiber T of ay. Since n > r+4 and dim(Disamp(E | T)) < n—3, we
may apply 2.4 to the pair (7', E | T') and obtain that either all such T are smooth
quadrics or all such T are projective spaces and in all cases E | T is a direct sum
of line bundles. If T is a quadric by 2.4 E(— H) is trivial on every fiber of 7. set
G := n.(E(—H)). By a theorem of changing bases the sheaf G is arank r vec-
tor bundle on B and the restriction of the natural morphism 7n*(G) — E(—H)
to every smooth fiber of 7 is an isomorphism. Note that for every line D con-
tained in a singular fiber of 7 and disjoint from Disamp(E), E(—H) | D is
trivial and the restriction of b to D is an isomorphism. Hence E(—H) is a vec-
tor bundle whose restriction to an open subset 77 with codim(T \ T/) > 2 is
trivial. Since T is normal, we obtain that E(—H) | T is trivial. Since a gener-
ically injective map between vector bundles of the same rank drops rank on a
divisor, we obtain that b is an isomorphism. Now assume that every smooth
fiber of 7 is a projective space. The last part of the proof of 2.6 shows that 7 is
a smooth scroll. The existence of an exact sequence (2) follows from standard
properties of the relative Harder-Narasimhan filtration and the application of a
theorem of changing bases made also in the proof of Remark 2.7.
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