GROUPS IN WHICH ELEMENTS WITH
THE SAME p-POWER PERMUTE

M. BIANCHI - A. GILLIO BERTA MAURI - L. VERARDI

To the memory of Umberto Gasapina

We characterize finite groups satisfying the following property: if x, y are two elements with the same p-power, then they permute.

Let G be a group and p a prime number. We say \mathcal{C}_p the class of those groups G such that if, $x, y \in G$ and $x^p = y^p$ then $xy = yx$. A C_p-group G is a group in the class \mathcal{C}_p.

Of course, abelian groups are in \mathcal{C}_p for all prime number p.

The case $p = 2$ was dealt in [3] and [2], where in particular one proves that such a group is always soluble.

Here we study the class \mathcal{C}_p when $p > 2$ and, setting $\Omega(G) = \{ x \in G \mid x^p = 1 \}$, we will prove the following two main results:

Theorem A. If p is an odd prime and if G is a finite p-group then $G \in \mathcal{C}_p$ if and only if $\Omega(G) \subseteq Z(G)$. In particular, the nilpotency class of a p-group $G \in \mathcal{C}_p$ is not bounded.

Research partially supported by G.N.S.A.G.A. of C.N.R. and M.U.R.S.T. of Italy.

A.M.S. Classification: 20D40, 20D08.
Theorem B. Let G be a finite group whose order is a multiple of p. Then $G \in \mathcal{C}_p$ if and only if it possesses a normal Sylow p-subgroup $P \in \mathcal{C}_p$.

First of all, we observe that subgroups and direct products of C_p-groups are C_p-groups, while the same does not hold for factor groups of C_p-groups. The following lemma can be formulated and proved for $p = 2$ too.

Lemma 1. Let G be a finite group and p a prime number.

- a) Let $x, y \in G$ such that $x^p = y^p$. If p does not divide the order of one of the two elements then $xy = yx$.
- b) If $p \nmid |G|$ then $G \in \mathcal{C}_p$.
- c) If $p \mid |G|$ and $G \in \mathcal{C}_p$ the set $\Omega(G)$ is an abelian normal subgroup of G.
- d) If $G \in \mathcal{C}_p$ is a simple non abelian group, then $p \nmid |G|$.

Proof. a) If $p \nmid o(x)$ it is $\langle x^p \rangle = \langle x \rangle$. So if $(o(x), p) = (o(y), p) = 1$ the two elements generate the same subgroup and so they permute. If $p \mid o(x)$ but $p \nmid o(y)$ it is

$$\langle y \rangle = \langle y^p \rangle = \langle x^p \rangle \leq \langle x \rangle,$$

so $xy = yx$.

b) It follows from a) for $p \nmid |G|$.

c) Of course, if $x, y \in \Omega(G)$ it is $x^p = y^p = 1$. So $xy = yx$ and this implies $(xy)^p = 1$, that is $xy \in \Omega(G)$. The result follows immediately.

d) It follows from c).

Lemma 2. Let G be a p-group in \mathcal{C}_p.

- a) If $\exp(G) = p$ then G is abelian.
- b) If G has a maximal cyclic subgroup then G is abelian.
- c) If $|G| = p^3$ then G is abelian.

Proof. a) It follows immediately from Lemma 1.

b) If $p > 2$ and G is not abelian then (see [6] 5.3.4) it has the following presentation:

$$G \simeq \langle a, x \mid a^{p^2 - 1} = x^p = 1, a^x = a^{1 + p^{n-2}} \rangle,$$

so G is nilpotent of class 2 and it is $(ax)^x = a^p$, but $[a, ax] = a^{p^n - 1} \neq 1$.

If $p = 2$, because of Theorem 5.3.4 of [6], G contains a subgroup of order 8 isomorphic either to the dihedral or to the quaternion group which are not in \mathcal{C}_2.

This means that $G \notin \mathcal{C}_2$ too.

c) If $p > 2$ the non-abelian groups of order p^3 have either exponent p or they possess a cyclic maximal subgroup and they are not in \mathcal{C}_p because of a) and b).
Proposition 3. Let p be an odd prime, $1 < m, n, k \in \mathbb{N}$ such that $m + k > n$ and let
\[G \cong \langle a, b \mid a^{p^k} = b^{p^m} = 1, a^b = a^{1+p^k} \rangle. \]
Then $G \in \mathcal{C}_p$. Besides G has nilpotency class $c(G) \geq \lfloor n/k \rfloor - 1$. So the nilpotency class of a group G in \mathcal{C}_p is not bounded.

Proof. First of all $G = \langle \langle a \rangle \rangle \langle b \rangle$. From an element $x = b^i a^j \in G$, with some calculations, one obtains:
\[x^p = (b^i a^j)^p = b^{pi} a^{j \left(\sum_{\lambda=0}^{p-1} (1+p^k)^{\lambda i} \right)}. \]
So, if $y = b^i a^s$, it is $x^p = y^p$ if and only if
\[\begin{align*}
 pi & \equiv pr \quad (\text{mod} \ p^m) \\
 \left(\sum_{\lambda=0}^{p-1} (1+p^k)^{\lambda i} \right) & \equiv s \left(\sum_{\lambda=0}^{p-1} (1+p^k)^{\lambda r} \right) \quad (\text{mod} \ p^n).
\end{align*} \tag{*}
\]
In particular $i = r + tp^{m-1}$ for a suitable $t \in \mathbb{N}$.
As $m + k - 1 \geq n$, developing the following sum, we obtain:
\[\sum_{\lambda=0}^{p-1} (1+p^k)^{\lambda i} = 1 + 1 + ip^k + \binom{i}{2} p^{2k} + \cdots + 1 + (2i) p^k + \binom{2i}{2} p^{2k} + \]
\[\cdots + 1 + (p-1)ip^k + \binom{p-1+i}{2} p^{2k} + \cdots = p + i \binom{p}{2} p^k + \cdots = \]
\[= p + r \binom{p}{2} p^k + tp^{m-1} \binom{p}{2} p^k + \cdots \equiv \sum_{\lambda=0}^{p-1} (1+p^k)^{\lambda r} \quad (\text{mod} \ p^n). \]

The two sums are of the same type $p(1+p^k q)$ for a suitable q, so after a division by p, they become invertible and congruent mod p^{n-1}. Thus they can be simplified and so $j \equiv s \pmod{p^{n-1}}$ that is $j = s + t' p^{n-1}$, $t' \in \mathbb{N}$.
It follows that:
\[xy = (b^i a^j)(b^i a^s) = b^i r a^j (1+p^k)^{i+j} + s, \quad xy = (b^r a^s)(b^i a^j) = b^r + a^s (1+p^k)^{i+j}. \]

We observe that
\[s(1+p^k)^i + j = s(1+ip^k + \ldots) + j = s(1+rp^k + tp^{m+k-1} + \ldots) + j \equiv \]
\[\equiv s(1+rp^k) + j \pmod{p^n} \equiv s + j + sr p^k \pmod{p^n}. \]
\[j(1 + p^k)^r + s = j(1 + rp^k + \ldots) + s = j(1 + ip^k + t'p^{m+k-1} + \ldots) + s \equiv j(1 + ip^k) + s \pmod{p^n} \equiv s + jip^k \pmod{p^n}. \]

But \(ip^k \equiv (r + tp^{m-1})(s + t'p^{n-1}) \pmod{p^n} \equiv rsp^k \pmod{p^n} \) as \(m + k - 1 \geq n \).

But then \(G \in \mathcal{G}_p \).

Set now \([a, b] = [a, b]\) and \([a, r+1 b] = [a, r b, b]\). By induction one easily proves that it is \([a, r b] \in \Gamma_r(G)\) and \([a, b] = a^{\rho^k}\).

So for \(r < n/k \) it is \(\Gamma_r(G) \neq 1 \) and \(c(G) \geq [n/k] - 1 \).

Remark. Among such groups, the smallest has order \(p^4 \) and it is the unique group of such order in \(\mathcal{G}_p \).

Theorem A. Let \(p > 2 \) and \(G \) a \(p \)-group. Then \(G \in \mathcal{G}_p \) if and only if \(\Omega(G) \leq Z(G) \).

Proof. Let \(G \in \mathcal{G}_p \). We prove that \(\Omega(G) \leq Z(G) \). If \(|G| \leq p^2 \) the result holds, so we use induction on \(|G| \). Let \(x \in G \), \(o(x) = p \) and let \(M \) be a maximal subgroup of \(G \) containing \(x \). Because of the inductive hypothesis, \(x \in Z(M) \). If \(M \) is the unique maximal subgroup, then \(G \) is cyclic and \(x \in Z(G) \).

Now let \(N \) be another maximal subgroup, \(N \neq M \).

If \(x \in N \), then \(G = MN \leq C_G(x) \). Consider now \(x \in M \setminus N \) and \(y \in N \setminus M \). Then \(G = M(y) \). If \(o(y) = p \) then \(xy = yx \) and therefore \(x \in Z(G) \). If \(o(y) > p \), consider \([x, y] \): as \(x \in M \triangleleft G \) then \([x, y] \in M \) and so it permutes with \(x \). It follows that for all \(n \in \mathbb{N} \), \([x^n, y] = [x, y]^n \), so from \(o(x) = p \) one gets \(o([x, y]) \leq p \). Being \(N \triangleleft G \), it follows \([x, y] \in N \) and, because of its order and of the inductive hypothesis, it belongs to \(Z(N) \), so it commutes with \(y \) too.

But then \((xy)^n = x^n y^n[x, y]^n \) and, for \(n = p \), it is \((xy)^p = y^p \): this means \((xy) y = y(xy) \) so \(xy = yx \) and \(x \in Z(G) \).

Vice-versa, let \(G \) be a \(p \)-group such that \(\Omega(G) \leq Z(G) \); we want to prove that \(G \in \mathcal{G}_p \).

Deny and suppose that \(G \) is a minimal counterexample, i.e. \(\Omega(G) \leq Z(G) \), but there exist \(a, b \in G \) such that \(a^p = b^p \) with \(c = [a, b] \neq 1 \).

As the property \(\Omega(G) \leq Z(G) \) is inherited by subgroups, if it where \(\langle a, b \rangle < G \) one would get a contradiction. So \(G = \langle a, b \rangle \).

Now \((b^{-1}ab)^p = b^{-1}a^pb = b^{-1}b^p = a^p \). From \(b^{-1}ab = ac \in aG' \leq a\Phi(G) \) it follows \(\langle a, b^{-1}ab \rangle < G \), so \(a \) and \(a^b \) permute.

Therefore \(ac = b^{-1}ab = c^{-1}b^{-1}ab \) \(a \) = \(c \), that is \(c \) permutes with \(a \). In a similar way one proves that \([b, a] \) permutes with \(b \), so \(c = [b, a]^{-1} \) permutes with \(b \) too.

This means that \(c \in Z(G) \) and consequently \(1 = [b^p, b][a^p, b] = [a, b]^p = c^p \) implies \(c \in \Omega(G) \).
Besides $b^{-1}a = ab^{-1}[b^{-1},a] = ab^{-1}c$, from which it follows $(ab^{-1})^p = a^pb^{-p}c^p(\frac{b}{a}) = 1$, so $ab^{-1} = z \in \Omega(G) \leq Z(G)$. But then $a = bz$ and $c = [a, b] = 1$. It follows that G is abelian, a contradiction.

Remark. For $p = 2$ the result is false, as proved by the following counterexample:

$$G = \langle a, b \mid a^8 = b^2 = 1, a^2b = ba^2, (ab)^2 = (ba)^2 \rangle.$$

It is $G \in \mathcal{G}_2$ but G has non-central elements of order 2 (b, namely).

Proposition 4. Let $G \in \mathcal{G}_p$ be a p-group with $p > 2$ and $1 \neq u \in G$. Then:

a) $\{ x \in G \mid x^p = u^p \} = u\Omega(G)$.
b) If $o(u) = p^2$ then $u \in Z_2(G)$.
c) If $o(u) = p^2$, $\langle u \rangle \lhd G$ then $(G/\langle u^p \rangle) \in \mathcal{G}_p$.

Proof.
a) From $x^p = u^p$ it follows $xu = ux$ and so $(u^{-1}x)^p = 1$, that is $x \in u\Omega(G)$. The converse follows from $\Omega(G) \leq Z(G)$.

b) It is $u^p \in \Omega(G) \leq Z(G)$ so, for all $g \in G$, $(u^g)^p = (u^p)^g = u^p$, from which it follows $u^g = uc$ with $c \in \Omega(G)$.

Consequently $[u, g] = u^{-1}(u^g) = c \in Z(G)$, which implies $u \in Z_2(G)$.

c) Let $K = \langle u^p \rangle$ and consider G/K: for each couple xK, yK of elements such that $(xK)^p = (yK)^p$, it is $x^p = y^pc$ with $c \in K$.

So there exists $v \in \langle u \rangle$ such that $c = v^p$ and this means $x^p = (yv)^p$. Being $\langle u \rangle \lhd G$ one gets $[v, x] \in \langle u \rangle$ and, moreover $[v, x] \in \langle u^p \rangle = K$ for G is nilpotent.

Besides it is $xyv = yuv = yx[v, x] = yx[v, x]v$, which means $xy = yx[v, x]$. But then $xK yK = yxK$ and so $G/K \in \mathcal{G}_p$.

Remarks. a) One of Thompson’s theorems states that if G is a p-group where $\Omega(G) \leq Z(G)$, then the number of generators of G is bounded by the number of generators of $Z(G)$ (see [4], p. 342).

b) Let G be a finite group, $N_p = \left| \{(a, b) \in G \mid a^p = b^p \} \right|$ and, for all $x \in G$, $\theta_p(x) = \left| \{ y \in G \mid y^p = x \} \right|$. Then $N_p = \sum_{x \in G} \theta_p(x^p)$.

As θ_p is a function class (constant on the conjugacy classes) for all irreducible character χ of G there exists an algebraic integer $\nu_p(\chi)$ such that

$$\theta_p = \sum_{\chi \in \text{Irr}(G)} \nu_p(\chi) \chi.$$

Therefore

$$N_p = \sum_{x \in G} \sum_{\chi \in \text{Irr}(G)} \nu_p(\chi) \chi(x^p) = \sum_{\chi \in \text{Irr}(G)} \nu_p(\chi) \sum_{x \in G} \chi(x^p).$$
It is well-known (see [5], 4.4) that

\[v_p(\chi) = \frac{1}{|G|} \sum_{x \in G} \chi(x^p) \]

so

\[\sum_{x \in G} \chi(x^p) = |G|v_p(\chi). \]

It follows that

\[N_p = |G| \sum_{\chi \in \text{Irr}(G)} (v_p(\chi))^2 \]

and, as \(v_p(\chi) \in \mathbb{Z} \), then \(|G|\) divides \(N_p \). Now if \(G \) is a \(p \)-group \(G \in \mathcal{C}_p \) for each couple \((a, b)\) it is \(a^p = b^p \) if and only if \(b \in a\Omega(G) \). So, if we fix \(a \), one gets \(|\Omega(G)|\) couples \((a, b)\) such that \(a^p = b^p \). It follows \(N_p = |G| \cdot |\Omega(G)| \) so

\[|\Omega(G)| = \sum_{\chi \in \text{Irr}(G)} (v_p(\chi))^2 \]

(see [3] for the case \(p = 2 \)).

Now let us examine the case of a finite group \(G \) whose order is a multiple of the odd prime \(p \). First of all we observe that with the following lemma one reduces the problem to the comparison among \(p \)-elements.

Lemma 5. A group \(G \) belongs to \(\mathcal{C}_p \) if and only if for each \(x, y \in G \) such that \(x^p = y^p \), \(o(x) = o(y) = p^h m \), \(h > 0 \) and \((p, m) = 1\) it is \([x^m, y^m] = 1\).

Proof. Lemma 1 shows that to prove that \(G \in \mathcal{C}_p \) it is sufficient to examine those couples of elements \(x, y \) such that \(x^p = y^p \) and whose order is a multiple of \(p \) and it is the same for \(x \) and \(y \). Now if \(n = p^hm \), \(h \geq 1 \) is the common order, it is \(x = x'x'' \) and \(y = y'y'' \) with \(o(x') = o(y') = p^h \), \(o(x'') = o(y'') = m \). Being \(x^p = y^p \) it is \(x'' = x^{p^h} = y^{p^h} = y'' \). If follows \(xy = yx \) if and only if \(x'y' = y'x' \), that is if and only if their \(p \)-components permute.

Theorem B. Let \(G \) be a finite group and \(p \) an odd prime divisor of \(|G|\). Then \(G \in \mathcal{C}_p \) if and only if \(G \) possesses a normal Sylow \(p \)-subgroup \(P \in \mathcal{C}_p \).
Proof. Let P be a Sylow p-subgroup of G and suppose $P \triangleleft G$, $P \in \mathcal{S}_p$. Let $x, y \in G$ such that $x^p = y^p$ with $(o(x), o(y))$ multiple of p.

According to Lemma 5, let us consider their p-components x' and y': they belong to P and they have the same p-power and, being $P \in \mathcal{S}_p$, they permute. It follows that x and y permute too and $G \in \mathcal{S}_p$.

Vice-versa let $G \in \mathcal{S}_p$ a minimal counterexample; this means that P is not normal in G. Because of Lemma 1.c, $\Omega(G)$ is normal and abelian, so $\Omega(G) \leq P$ and therefore $\Omega(G) = \Omega(P)$ and Theorem A assures that it is included in $Z(P)$. Therefore P is a Sylow p-subgroup of $C = C_G(\Omega(G))$.

If C were a proper subgroup of G, then P would be normal in it, better P would be characteristic in C. But being C normal in G then P would be normal in G, a contradiction. So $\Omega(G) \leq Z(G)$. If $\exp(P) = p$ then $P = \Omega(G) \triangleleft G$ again a contradiction. So $\exp(P) \geq p^2$. Besides for each $x \in G$ it is $\{y \in G \mid y^p = x^p\} = x\Omega(G)$.

Being $\Omega(G) \leq P$, if $x \in P$, from $x^p = y^p$ it follows $y \in P$. In particular if $u \in P$, $o(u) = p^2$, it is $u^p \in \Omega(G) \leq Z(G)$, which means that, for all $g \in G$, it holds $(u^g)^p = (u^p)^g = u^p$ and then $u^g \in u\Omega(G) \leq P$. In this case the elements of order p^2 belong to each Sylow p-subgroup of G. Besides $u \in Z_2(G)$ and $(ug)^p = u^p g^p \forall g \in G$.

Now let us suppose that for such an element u of order p^2 the subgroup $\langle u \rangle$ is normal in G. If $K = \langle u^p \rangle$, with the same argument of Proposition 4.c), for each couple xK, yK of p-elements of G/K such that $(xK)^p = (yK)^p$ one gets either $x^p = y^p$ or $x^p = y^p c$, with $c \in K$, so one can suppose $c = u^p$ and $x^p = (yu)^p$. In the first case it follows $xy = xy$ in the second one $xyu = yux = yx[u, x] = yx[u, x]u$ so $xy = yx[u, x]$.

Being $\langle u \rangle \triangleleft G$ it is $\langle [u, x] \rangle \in \langle u \rangle$ and since $x \in P^g$, which is nilpotent, it follows $[x, u] \in \langle u^p \rangle = K$.

But then $xKyuK = yKxK$ and therefore $G/K \in \mathcal{S}_p$, because of Lemma 5. For the minimality of G it follows $P/K \triangleleft G/K$ so $P \triangleleft G$, a contradiction. This means that $\langle u \rangle$ is non normal in G. Then $C_G(u) \leq N_G(\langle u \rangle) < G$ and, as $u \in Z_2(G)$ and $G' \leq C_G(u)$,(see [6] 5.1.11. (iii)), it is $G' < G$.

If $PG' < G$, then, again for the minimality of G, the group P would be characteristic in $PG' \triangleleft G$, then $P \triangleleft G$, which forces $PG' = G$.

Besides, if M is maximal in P and contains $P \cap G'$, it follows $MG' < G$: consequently, being M a Sylow p-subgroup of the proper normal subgroup MG', it is $M \triangleleft G$ and so M is the unique maximal subgroup of P containing $P \cap G'$. Then $P/P \cap G'$ is cyclic and G'/G' is cyclic too.

Let $t \in P$ such that $\langle tG' \rangle = G/G'$ and let $T = \langle t \rangle$. Then $G = TG'$ and $P = TM$. Let $u \in T$ of order p^2: then $t \in C_G(u)$ too and this means $G = TG' \leq C_G(u)$ and $u \in Z(G)$, a contradiction. Then $o(t) = p$ and
\(t \in Z(G), T \triangleleft G \) and \(P = T \times M \triangleleft G \), a final contradiction.

Therefore such a group \(G \) does not exist and the theorem is proved.

In [2] one proves that if \(G \in \mathcal{C}_2 \) then \(G \) is soluble. The same property does not hold if \(p > 2 \), as the following proposition shows:

Proposition 6.

(a) Let \(p \) be an odd prime. \(S \) a simple group whose order is prime to \(p \), and consider a faithful action of \(S \) on a set with \(n \) elements. Let \(G \) be the wreath product of \(Z_p \) by \(S \) through this action. Then \(G \in \mathcal{C}_p \).

(b) For each prime \(p > 2 \) there exists in \(\mathcal{C}_p \) a non-soluble group whose order is a multiple of \(p \).

Proof.

a) Let \(K \) be a normal subgroup of \(G \) isomorphic to \((Z_p)^n \), on which \(S \) acts. As \(|S| \) is prime to \(p \), \(K \) is the Sylow \(p \)-subgroup of \(G \) and besides it is abelian. The assertion follows from Theorem A.

b) If \(p = 3 \), let \(S \cong S_3(8) \); if \(p = 5 \) let \(S \cong PSL(2, 7) \), if \(p > 7 \) let \(S \cong A_5 \). In all the 3 cases it is \((p, |S|) = 1 \). So one can apply a) to get a non-soluble group \(G \in \mathcal{C}_p \) whose order is multiple of \(p \).

Corollary 7. Let \(G \) a finite group of odd order. For each \(p_i \) such that \(p_i \) divides the order of \(G \) it is \(G \in C_{p_i} \) if and only if:

a) \(G \) is nilpotent, and

b) if \(x \in G \) has prime order then \(x \in Z(G) \).

Proof. Let \(G \in C_{p_i}, \forall p_i \): then every Sylow \(p_i \)-subgroup \(S_i \) is normal in \(G \), so \(G \) is nilpotent. Then \(Z(G) = \prod_{p_i \mid |G|} Z(S_i) \geq \prod_{p_i \mid |G|} \Omega(S_i) \) and the thesis follows.

Vice-versa, let \(G \) be a nilpotent group such that all \(x \in G \) of prime order are central. Then \(\forall p_i \mid |G| \) it is \(\Omega(S_i) \leq Z(G) \cap S_i = Z(S_i) \), which implies \(S_i \in \mathcal{C}_p \) and besides being normal in \(G \), \(G \in C_{p_i} \) for all \(i \).

The class of finite \(p \)-groups such that \(\Omega(G) \leq Z(G) \) is very large and well-known. Several other properties of these \(p \)-groups can be found for example in [1] and [7].
REFERENCES

\textit{Mariagrazia Bianchi and Anna Gillio Berta Mauri,}
\textit{Dipartimento di Matematica “F. Enriques”,}
\textit{Università di Milano,}
\textit{Via C. Saldini 50,}
\textit{20133 Milano (ITALY)}

\textit{Libero Verardi,}
\textit{Dipartimento di Matematica,}
\textit{Università di Bologna,}
\textit{Piazza di Porta San Donato 5,}
\textit{40127 Bologna (ITALY)}