LE MATEMATICHE
Vol. LI (1996) — Supplemento, pp. 53-61

GROUPS IN WHICH ELEMENTS WITH
THE SAME p-POWER PERMUTE

M. BIANCHI - A. GILLIO BERTA MAURI - L. VERARDI

To the memory of Umberto Gasapina

We characterize finite groups satisfying the following property: if x, y
are two elements with the same p-power, then they permute.

Let G be a group and p a prime number. We say %, the class of those
groups G such that if, x, y € G and x” = y” then xy = yx. A C,-group G is
a group in the class €,.

Of course, abelian groups are in %), for all prime number p.

The case p = 2 was dealt in [3] and [2], where in particular one proves that
such a group is always soluble.

Here we study the class €, when p > 2 and, setting Q(G) = {x € G | x? = 1},
we will prove the following two main results:

Theorem A. If p is an odd prime and if G is a finite p-group then G € 6,
if and only if Q(G) C Z(G). In particular, the nilpotency class of a p-group
G € 6, is not bounded.
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Theorem B. Let G be a finite group whose order is a multiple of p. Then
G €%, if and only if it possesses a normal Sylow p-subgroup P € €.

First of all, we observe that subgroups and direct products of C,-groups
are C,-groups, while the same does not hold for factor groups of C,-groups.
The following lemma can be formulated and proved for p = 2 too.

Lemma 1. Let G be a finite group and p a prime number.

a) Let x,y € G such that xP = yP. If p does not divide the order of one of
the two elements then xy = yx.

b) If p |G| then G € %,.

c) If p||Gland G e 6, the set Q(G) is an abelian normal subgroup of G.

d) If G € 6, is a simple non abelian group, then p1IGl.

Proof. a)If p t o(x) itis (xP) = (x). Soif (o(x), p) = (o(y), p) = 1 the
two elements generate the same subgroup and so they permute. If p | o(x) but
pto(y)itis

¥) = (¥7) = (xP) < (x).

SO Xy = yx.
b) It follows from a) for p t |G|. |
¢) Ofcourse, if x, y € Q(G) itis x? = y? = 1. Soxy = yx and this implies
(xy)? =1, thatis xy € Q(G). The result follows immediately.
d) It follows from c).

Lemma 2. Let G be a p-group in .

a) If exp(G) = p then G is abelian.
b) If G has a maximal cyclic subgroup then G is abelian.
c) If |G| = p3 then G is abelian.

Proof. a) It follows immediately from Lemma 1. ,
b) If p > 2 and G is not abelian then (see [6] 5.3.4) it has the following

presentation:

1 n—2
=x? =1, a* =a'*"")

G~ {a,x|a”" :
s0 G is nilpotent of class 2 and it is (ax)? = a?, but [a, ax] = a”" # 1.
If p = 2, because of Theorem 5.3.4 of [6], G contains a subgroup of order 8
isomorphic either to the dihedral or to the quaternion group which are not in %5.
This means that G ¢ %, too.

¢) If p > 2 the non-abelian groups of order p? have either exponent p or they
possess a cyclic maximal subgroup and they are not in %, because of a) and b).
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Proposition 3. Let p be an odd prime, 1 < m,n,k € N such that m + k > n

and let
G~ l{abla” =b"" =1, a® =a't7.

Then G € %,. Besides G has nilpotency class ¢(G) > [n/k] — 1. So the
nilpotency class of a group G in 6, is not bounded.

Proof. First of all G = [(a)](b). From an element x = b‘'a’ € G, with some
calculations, one obtain:

: - :
1P = (bal)P = bPiad Do P,

So,if y =b"a®, itis x? = y” if and only if

pi = pr (modp™)
) S - -
S+ ) =s( X0+ pHY) (modp™.
r=0 . A=0

In particular i = r + tp™~! for a suitable ¢ € N.
As m + k — 1 > n, developing the following sum, we obtain:

p—1 : _ .
: : l . 2

D A+pH =14+ 14ip" + <2>ka 4+ 1+ QDPF+ (2’>p2k 4

A=0

— i
---—{—1+(P—-1)ipk+<(p ))p2k+...=p+i<§>pk+...=

2
p p -
=p+ r(z)pk +1p! <2>p" +- =Y (14 pH* (modp™).
A=0

The two sums are of the same type p(l + p*q) for a suitable g, so after a
division by p, they become invertible and congruent modp”~!. Thus they can

be simplified and so j = s (modp"~!) thatis j =s +¢'p"~!, ¥ eN.
It follows that:

xy et (biaj)(braS) — bi+raj(l+pk) +S’ yx — (braS)(biaj) — br+ias(l+pk)i+j.
We observe that

s(l+pk)i+j=s(1+ipk+...)+j=s(1+rpk+tpm+k"1+...)+jz
= s(1 +rp*) + j (modp") = s + j + srp* (modp™).
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JA+pY +s=jd4rp 4. )+s=jA+ipt+epmH £ )45 =
=j(1+ip") +5 (modp") =5+ j +ijp* (modp").

But ijp* = (r + tp™ V) (s + t'p" N p* = rsp* (modp™) asm 4+ k — 1 > n.
But then G € %,,.

Set now [a,; b] = [a, b] and [a,,; b] = [[a,, b], b]. By induction one easily
proves that it is [a,, b] € I",(G) and [a,, b] = a”".

Soforr <n/kitisI',(G) # 1 and ¢(G) > [n/k] — 1.

Remark. Among such groups, the smallest has order p* and it is the unique
group of such order in %,,.

Theorem A. Let p > 2 and G a p-group. Then G € ¢, if and only if
Q(G) < Z(G).

Proof. Let G € 6,. We prove that Q(G) < Z(G). If |G| < p? the result holds,
so we use induction on |G|. Let x € G, o(x) = p and let M be a maximal
subgroup of G containing x. Because of the inductive hypothesis, x € Z(M).
If M is the unique maximal subgroup, then G is cyclic and x € Z(G).

Now let N be another maximal subgroup, N # M.

If xe N, then G = MN < Cg(x). Considernow x e M\ N and ye N \ M.
Then G = M(y). If o(y) = p then xy = yx and therefore x € Z(G). If
o(y) > p, consider [x, y]: as x € M < G then [x, ¥l € M and so it permutes
with x. It follows that for all n € N, [x", y] = [x, y]*, so from o(x) = p one
gets o([x, y]) < p. Being N <G, it follows [x, y] € N and, because of its order
and of the inductive hypothesis, it belongs to Z(N), so it commutes with y too.

But then (xy)" = x"y"[x, y](;) and, for n = p, itis (xy)? = yP: this means
(xy)y =y(xy) soxy = yx and x € Z(G).

Vice-versa, let G be a p-group such that Q(G) < Z(G); we want to prove that
Ge%,. | |

Deny and suppose that G is a minimal counterexample, i.e. 2(G) < Z(G), but
there exist a, b € G such that a? = b? with ¢ = [a, b] # 1.

As the property Q(G) < Z(G) is inherited by subgroups, if it where (a, b) < G
one would get a contradiction. So G = (a, b).

Now (b~'ab)? = b~'aPb = b~'bPb = b? = a”. From b~'ab = ac € aG’' <
a®(G) it follows (a, b~lab) < G, so a and a® permute.

Therefore ac = b~'ab = a~'(b7'ab)a = ca, that is ¢ permutes with a. In a
similar way one proves that [b, a] permutes with b, so ¢ = [b, a]~! permutes
with b too.

This means that ¢ € Z(G) and consequently 1 = [b?, b][a?, b] = [a, b]P = c”
implies ¢ € Q(G).
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Besides b~'a = ab~'[b7',a] = ab~'c, from which it follows (ab~hHr =
a?b ¢l = 1,50 ab™' = z € Q(G) < Z(G). But then ¢ = bz and
¢ = [a, b] = 1. It follows that G is abelian, a contradiction.

Remark. For p = 2 the result is false, as proved by the following counterex-

ample:
G={(ab|a®=b*=1, a’b = ba®, (ab)? = (ba)?).

It is G € %, but G has non-central elements of order 2 (b, namely).

Proposition 4. Let G € 6, be a p-group with p > 2 and 1 # u € G. Then:

a) (xeG | xP =u?} =ul2(G).
b) If o(u) = p? then u € Z,(G).
c) If o(uw) = p?, (u) <« G then (G/{uP)) e ©y.

Proof. a) From x? = u? it follows xu = wux and so (u~"'x)? = 1, that is
x € uS2(G). The converse follows from Q(G) < Z(G).

b) Itis u? € Q(G) < Z(G) so, for all g € G, (u8)? = (uP)® = u?, from
which it follows ué = uc with c € Q(G).
Consequently [u, g] = u~'(u8) = c e Z(G), which implies u € Z,(G).

c) Let K = (u”) and consider G/K: for each couple xK, yK of elements
such that (xK)? = (yK)?, itis x? = yPc withce K.
So there exists v € (1) such that ¢ = v? and this means x? = (yv)?. Being

(u) <« G one gets [v, x] € (u) and, moreover [v,x] € (u?) = K for G is
nilpotent.
Besides it is xyv = yvx = yxv[v,x] = yx[v, x]v, which means xy =

yx[v, x]. Butthen xKyK = yKxK andso G/K €6,.

Remarks. a) One of Thompson’s theorems states that if G is a p-group where
2(G) < Z(G), then the number of generators of G is bounded by the number
of generators of Z(G) (see [4], p. 342).

b) Let G be a finite group, N, = I{(a, byeG|af = b"}] and, for all x € G,
0,(x) =|{yeG |y’ =x}|. Then N, =3, 5 6,(xP).
As 6, is a function class (constant on the conjugacy classes) for all irreducible
character x of G there exists an algebraic integer v, () such that

Qp = Z vp(X)X-

x €l (G)

Therefore

Ny=D Y vGOox@E) = Y 1,00 x(xP).

xeG xeln(G) x €lrr(G) xeG
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It is well-known (see [5], 4.4) that
1
w0 = o > o xxh)

SO

> x(xP) =[Gy, ().

xeCG

It follows that
N, =G| Y mp(0)?

x €lrr(G)

and, as v,(x) € Z, then |G| divides N,.

Now if G is a p-group G € %, for each couple (a, b) itis a” = b? if and only if
b €a2(G). So, if we fix a, one gets |2(G)| couples (a, b) such that a? = b?.
It follows N, = |G| |2(G)] so

G = > W(x))?

x €lrr(G)

(see [3] for the case p = 2).

Now let us examine the case of a finite group G whose order is a multiple
of the odd prime p. First of all we observe that with the following lemma one
reduces the problem to the comparison among p-elements.

Lemma S. A group G belongs to 6, if and only if for each x, y € G such that
xP =yP, o(x) =o(y) = pPm, h > 0 and (p, m) =1 itis [x™, y"] = 1.

Proof. Lemma 1 shows that to prove that G € %, it is sufficient to examine
those couples of elements x, y such that x» = y” and whose order is a
multiple of p and it is the same for x and y. Now if n = p*m, h > 1 is
the common order, it is x = x'x” and y = y'y” with o(x") = o(y") = p",
o(x") =o(y") = m. :

Being x? = y? itis x" = x?' = y?" = y".

If follows xy = yx if and only if x’y’ = y'x’, that is if and only if their p-
components permute.

Theorem B. Let G be a finite group and p an odd prime divisor of |G|. Then
G €€, ifand only if G possesses a normal Sylow p-subgroup P € %,.
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Proof. Let P be a Sylow p-subgroup of G and suppose P <G, P € 6,. Let
x, y € G such that x” = y? with (o(x), o(y)) multiple of p.

According to Lemma 5, let us consider their p-components x’ and y’: they
belong to P and they have the same p-power and, being P € %,, they permute.
It follows that x and y permute too and G € %, .

Vice-versa let G € %, a minimal counterexample; this means that P is not
normal in G. Because of Lemma 1.c), Q(G) is normal and abelian, so
Q(G) < P and therefore 2(G) = Q(P) and Theorem A assures that it is
included in Z(P). Therefore P is a Sylow p-subgroup of C = C5(2(G)).
If C were a proper subgroup of G, then P would be normal in it, better P
would be characteristic in C. But being C normal in G then P would be
normal in G, a contradiction. So Q(G) < Z(G). If exp(P) = p then
P = Q(G) <« G again a contradiction. So exp(P) > p?. Besides for each
xeGitis{yeG | y? =xP} =xQ(G).

Being 2(G) < P, if x € P, from x? = y? it follows y € P. In particular if
ueP,o(u) = pz, itis u? € Q(G) < Z(G), which means that, for all g € G, it
holds (u8)? = (uP)8 = u” and then ué e u2(G) < P. Inthis case the elements
of order p? belong to each Sylow p-subgroup of G. Besides u € Z,(G) and
(ug)? =uPgP vVgegG.

Now let us suppose that for such an element u of order p? the subgroup (u)
is normal in G. If K = (4”), with the same argument of Proposition 4.c), for
each couple xK, yK of p-elements of G/K such that (xK)? = (yK)” one
gets either x? = y? or x? = yPc, with ¢ € K, so one can suppose ¢ = u”
and x? = (yu)?. In the first case it follows xy = yx in the second one
xXyu = yux = yxulu, x] = yx[u, xJu so xy = yx[u, x].

Being (1) <« G itis [u, x] € (1) and since x € P&, which is nilpotent, it follows
[x,u]leu?) =K.

But then xKyK = yKxK and therefore G/K € €),, because of Lemma 5. For
the minimality of G it follows P/K < G/K so P <« G, a contradiction. This
means that (#) is non normal in G. Then Cg(u) < Ngs({u)) < G and, as
u e Z(G) and G' < Cg(u), (see [6] 5.1.11. (iii)), itis G’ < G.

If PG' < G, then, again for the minimality of G, the subgroup P would be
characteristic in PG’ < G, then P < G, which forces PG’ = G.

Besides, if M is maximal in P and contains P N G’, it follows MG' < G:
consequently, being M a Sylow p-subgroup of the proper normal subgroup
MG',itis M < G and so M is the unique maximal subgroup of P containing
P NG’'. Then P/P N G’ is cyclicand G’/ G’ is cyclic too.

Let t € P such that (tG') = G/G' andlet T = (¢t). Then G = TG’ and
P = TM. Letu € T of order p?: then t € Cg(u) too and this means
G = TG' < Cg(u) and u € Z(G), a contradiction. Then o(¢) = p and
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teZ(G), T<aGand P =T x M <G, afinal contradiction.
Therefore such a group G does not exist and the theorem is proved.

- In[2] one proves that if G € %, then G is soluble. The same property does
not hold if p > 2, as the following proposition shows:

Proposition 6.

a) Let p be an odd prime. S a simple group whose order is prime to p, and
consider a faithful action of S on a set with n elements. Let G be the wreath
product of Z, by S through this action. Then G € Cp-

b) For each prime p > 2 there exists in €, a non-soluble group whose order
is a multiple of p

Proof. a) Let K be a normal subgroup of G isomorphic to (Z,)", on which §
acts. As |S| is prime to p, K is the Sylow p-subgroup of G and besides it is
abelian. The assertion follows from Theorem A.

b) If p=3,let S~ S5z®8);if p=5let S~ PSLQ2,7),if p>TletS ~ As.
In all the 3 cases it is (p, |S|) = 1. So one can apply a) to get a non-soluble
group G € 6, whose order is multiple of p.

Corollary 7. Let G a finite group of odd order. For each p; such that p; divides
the order of G itis G € Cy, if and only if:

a) G is nilpotent, and
b) if x € G has prime order then x € Z(G).

Proof. Let G € Cp,, Vp;: then every Sylow p;-subgroup S; is normal in G,
s0 G is nilpotent. Then Z(G) =[], 6/ Z(Si) = [1,.16) 2(S;) and the thesis
follows.

Vice-versa, let G be a nilpotent group such that all x € G of prime order are
central. Then V p; |G| itis Q(S;) < Z(G)N'S; = Z(S;), which implies S; € 6y
and besides being normal in G, G C » forall i.

The class of finite p-groups such that Q(G) < Z(G) is very large and
well-known. Several other properties of these p-groups can be found for
example in [1] and [7].
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