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Semigroups, ideal extensions of a right (left)-zero semigroup by a com-
pletely simple semigroup with zero adjoint, whose congruences are pairwise
permutable are completely determined.

Introduction.

Several authors investigated the characterization of semigroups (in some
classes) by the structure of their congruence lattice and the main results in this
topic have been collected in two wide surveys ([9], [10]).

Completely regular semigroups, i.e. semigroups which are union of
groups, form a class of semigroups for which this classification problem has
been solved with respect to the most important lattice types. In particular the
characterizations of completely regular semigroups with an M -symmetric, mod-
ular, distributive, relatively complemented, complemented, moduiar and com-
plemented, or Boolean congruence lattice can be found in [9], and completely
regular semigroups with semimodular or strongly semimodular lattice of con-
gruences are characterized in [8] (see also [10]).

The characterization of semigroups (in some classes) whose congruences
are pairwise permutable (shortly permutable semigroups) is a very similar
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problem, introduced by Hamilton in [6]; results on this subject are also collected
in [9] and [10], but the most recent ones (see, for instance [5]). Permutable
completely regular semigroups are described in [4] (see also [10]) modulo
two quotient semigroups that are in their turn permutable. These quotient
semigroups belong to a subfamily of completely regular semigroups, namely
they are ideal extension of a right (left)-zero semigroup by a completely simple
semigroup with zero adjoint.

This paper is devoted to prove the characterization of permutable semi-
groups which are ideal extension of a right-zero semigroup by a completely
simple semigroup with zero adjoint, completing the results of [4].

Then some examples of these semigroups are given in order to show how
to use the characterization theorem in a constructive way. |

At last all completely regular semigroups whose congruences are a totally
ordered set are described. |

1. We recall the following

Definition 1.1. A semigroup is called a permutable semigroup if its congru-
ences are pairwise permutable (see [6]).

Statement 1.1. Let S be an ideal extension of a right-zero semigroup Sy by a
completely simple semigroup S\ = M(G; I, A; P) with zero adjoint. If S is
permutable, then |I|, |A] < 2.

Proof. 1t is well known that if S is permutable, then §; is permutable (see for
instance [4], a). Then the-statement follows from ([4], Statement 1.2).

Notation. In the sequel of this paper § will denote the disjoint union of a right-
zero semigroup So, which is an ideal of §, and of a completely simple semigroup
S1 = M(G; I, A; P) where |I| <2, |A| <2 and P is normalized, this means
that at most one entry of P, to be denoted by p, is different from e, the identity
of G. We will write § = A @ B to indicate that § is the disjoint union of A and
B.

Statement 1.2. Sa = a for each a € S,.
Proof. Leta € §y then Sa = Saa C Sya = a.

Statement 1.3. If S is a permutable semigroup, then SyS; = S.
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Proof. Suppose by way of contradiction, SyS; C Sp. Let © be the relation
{(x,y)eSxS|x=yorx,yeS USyS}, t is a congruence on S. In fact let
(x,y) €t withx % y, then x, y € §; U S5y, hence cx, cy € S, U S,S; for every
¢ € §, moreover, if ¢ € S then both xc and yc are in S;U SyS; and if ¢ € S, then
Statement 1.2 implies xc = yc = c¢. Thus (cx, cy), (xc, yc) € t. Now denote
by p the Rees congruence modulo Sy. Let x € Sp \ SpS1, y € 1, z € S5, then
(x,2) €p, (z,y) €7, hence (x, y) € pt and (x, y) ¢ tp. Since S is permutable
we obtain Sy.5; = Sp.

Statement 1.4. If SyS1 = So, then for each a € Sy there exists A € A such that
a = a(i, p;il , A) for every i € I. Moreover for every A € A there exist a € Sy
such that a = a(i, p;l-l, A) foreveryiel.

Proof. For each a € Sy there exist b € Sy and x € S; such that a = bx; let
x=(j,g 1 (jel,geG,re), thusa(i, p;', A) = b(j, g, MG, pit M) =
a. Nowlet A € A and b € S5. Puta = b(i,e, 1), then a(i, p,; ,A) =
b(i,e, M), p;', ») = b(i, e, 1) = a.

Statement 1.5. If S is a permutable semigroup, then a;S1 N ay Sy # @ implies
a1S1 = a8 for every ay, ay € So. Moreover there exist ay, a, € Sy such that
either So = a151 or Sp = a1 51 ® a2 S;.

Proof. First we prove that if a;51 N a,S; # @ with a;, a; € Sy, then a; 5] =
a 8. Suppose a1x = a;y withx, ye Syandy = (i,g,A) (iel, g€ G, Ac A).
Let a, = az(i,p;[l,u) and put z = (i,p;ilg‘lp;il,u). Thus a;xz =
az(i,g,)»)(i,p;ilg"lp;il, w) = ag(i,p;il,,u) = ay. Hence a; € a;5; and
a8 € a1 §;. Similarly we can prove that and a;S; € a,5;. That being stated,
let T be the relation defined by v = {(x,y) € S x S| x,ye S;orx,y €z
for some z € So}. The relation 7 is a congruence on S, in fact if x, y € S; then
for every ¢ € Sy, cx, ¢y, xc, yc € S; and for every ¢ € Sy, cx,cy € ¢S; and
xc = yc = ¢ € ¢§; by Statement 1.3 and analogously if x, y € zS;. Moreover
the semigroup S/t is a right-zero semigroup T' (isomorphic to Sp/tl|s,) with
identity adjoint. Since every homomorphic image of a permutable semigroup is
permutable (see [4], ¢), S/t is a permutable semigroup, then T is a permutable
semigroup, whence |T'| < 2. Thus if |T| = 1 then there exists a; € Sy
such that Sy = a;5; otherwise, if |T| = 2, there exist a;, a, € Sy such that
So = a151 ® a8,

Statement 1.6. Let So = a; 5, or Sy = a151 ® a8, and suppose |I| = 2
and py; = e foreveryi e€l. If by = ay(i, g, A) (h €{l1,2)) for some i €1,
g8 € G then the following relations hold: by, = by(i,e, A) for each i € I,
bn(i, g, ) =bn(j, g, ) forevery g€ G, ue A, i, jel.
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Proof. Let by, = a,(i, g, A), then
br(i,e, ) = an(i, g, M)(i,e,A) = ay(i, g, A) = by,

and by (j,e,A) = an(i, g,2)(j,e,2) = an(i, g, A)bu, s0 by(i,e,A) = by, for
each i € I. Now by(i, g, ) = bu(j, e, M), g, ) = by(j, g, p) for every
geG,uel,i,jel.

‘

Notation. We recall that S is the disjoint union of a right-zero semigroup So,
ideal of S, and of a completely simple semigroup S; = M(G; I, A; P) where
Il < 2, |A] < 2 and P is normalized, so in the sequel we suppose that
pri = e for every i € I. Then taking into account of previous Statement,
for every a;, € Sy with a;, = a,(i, e, 1), we will write a,(g, v) to denote the
element a,(i, g, v) (= a,4(j, g, v) if |I| = 2) and, denoting by K a subset of
G, we will use the notations a, (K, v) and a,(K, A) to indicate respectively
the sets {a,(i,k,v) | i €I, k € K} and {ay(i,k,2) | iel, ke K, A € A).
Moreover writing Sy = a;.51 or Sy = a;.5; @ a,S; we assume that the elements
ay (h € {1, 2}) satisfy the condition a;, = a; (e, A). This assumption depends on
Statements 1.4, 1.5 and 1.6.

Definition 1.2. For every a;, € Sy with a;, = a;(e, ) we call stabilizer of a;, in
G theset H,, = {g€G | a, = a,(g, M)}

Statement 1.7. The stabilizer of ay, in G is a subgroup of G, and if by, =
an(g, A) for some g € G (h € {1, 2}) then the stabilizer of by, is g 'H, g.

Proof. Leta, = ap(e, 1) and let g, k € H,, then a, = a,(g, A) = a,(k, ).
Thus we have a,(gk,2) = ay(g, M) (G, k,X) = ay(j, k,A) = a, and a, =
ar(e, V) = an(g.2)(j.g7" AN = an(j, g 1) = ay(i, g~ ). Now let
brn = ap(g,A) and x € Hy,. Then a, = ap(e,r) = an(g, MG, g~ 1) =
bai, 871, 2) = by(x, MGG, g7, A) = an(g, M) (x, M) (i, g, A) = ay(gxg™", )
and gxg~ !¢ H,, .

Statement 1.8. Let Sy = a1 5 or So = a1 5| ® a»8,. For every subgroup M of
G containing the stabilizer of ay, the relation 0y = {(x,y) €S x § | x = y or
X,y €a,(Mg,v) for some g€ G, ve A orx,yea,(Mg, A) and there exists
m € M such that a,(mg, ) = ay(mg, L) with u % A} is a congruence on
S. Conversely for each congruence 6 on S there exists a subgroup M = Mg g,
containing the stabilizer of a, such that for every pair (x, y) € 0N (ay Sy x aySy),
x,y € ap(Mg, A) for some g € G and if P has a non trivial entry p then

(an(mig, A), ay(mag, 1)) €6 with ju # A implies pe g~ 'Mg.
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Proof. Let M be a subgroup containing the stabilizer of aj,, the relation
Oy is obviously an equivalence relation. Let (x,y) € 6y and ¢ € S. By
definition of 0y if x # y then x,y € Sy, hence by Statement 1.2 cx = x,
cy = yand if c € S, xc = yc = ¢c. If ¢ = (j,k,u) € S§; and
x,y € ay(Mg,v), then xc, yc € a,(Mgp,;k, 1u); at last suppose that there
exist m, my,my € M, g € G such that a,(mg, n) = a,(mg, A) with u # A
and x = ap(mg, 1), y = ap(myg, 1), then xc = a,(migp,ik, 1) and
yc = an(magpijk, u). Suppose p.; # paj, hence p,; = e and p =
puj # e. Then ay(mg, ) = a,(mg, ) implies a,(mgpg~'m=1,1) =
an(mg, w)(j, &7\ m™"\ 1) = ap(mg, \)(j, g7'm™ 1) = an(e, ) = a, s0
that mgpg~'m~' € H,,, whence gpg™' € M, so xc = a,(m,gpg~' gk, u) =
an(msgk, u) for some ms € M. Thus (xc, yc), (cx,cy) € O and 6y is a
congruence on S.

Conversely let 0 be a congruence on S. Put M = {g € G | (a,(g, 1), ap) €
0}. It is easy to prove that M is a subgroup of G containing the stabilizer
of a;,. Let x,y € a,8; with (x,y) € 0 and suppose x = ay(g,v) and
y = ah(gz,u) Let i € I such that p,; = e for every A € A. Then
(an(g1, V)G, g7\ M), an(g2, Wy g7 ') € 6 and since @ (g1, V)G, &1, ) =
ap, and ap(g2, w)(, g Ly = ah(gzg1 L A) we obtain gzgl1 € M, whence
x = ay(g1,v) € ay(Mgy,v) and y = a,(g287'g1, 1) € ah(Mg1,u) Now
suppose (a,(mig, ), ay(mag, n)) € 6 with u # A and p = p,; # e
whence py; = e and p,; = e fori # j; thus (ap(myig, X)(J, ‘lmz ,A),
ap(mag, 1), g lmz L) €0, hence (ah(m1m2 JA), an(magpg™'my' M) €
6 whence (ah(m]m2 yA)(@, mogpg™ m2 '), an) € 6. Thus migpg 1m21 €
M, so p € g~ Mg and the statement is proved.

Remark 1.1. It is easy to prove that if b, = ay(g,A) for some g € G,
(h €{1,2}), then My, is conjugate to My ,, .

Remark 1.2. Let M be a subgroup of G containing the stabilizer of ay,, if P
has a non trivial entry p, then by the previous proof the relation ¢y = {(x, y) €
SxS|x=yorxyeca,(Mg,v) forsome ge G,ve Aorx,yeca,(Mg, A)
and p € g~'Mg} is a congruence on §.

Statement 1.9. Let S be a permutable semigroup and let Sy = a,S; or
So = a; 81 ® ayS,. Then every pair of subgroups of G containing the stabilizer
of ay, is permutable.

Proof. Let M, N be two subgroups of G both containing the stabilizer of

ap and let 6y and Oy be the congruences built according Statement 1.8. Let
x = ap(m,A), then for each y € a,(MNm, X), (x,y) € Oy0y, hence, by
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permutability of S, (x,y) € O0x, but if (x, z) € 6, there exists v € A such
that z € a, (M, v) for some v € A, and if (z, y) € Oy then y € a,(NM, n) for
some n € A, whence MNM C NM so MN € NM. Analogously we can
prove the opposite inclusion.

Statement 1.10. Let S be a permutable semigroup and let Sy = a1S| or
So = a151 @ a2 S1. If A = {X, u} then there exist an integer h (h € {1, 2}),
and an element g € G such that a,(g, A) = a,(g, ).

. Proof. Suppose by way of contradiction that for every a; and for every g € G
it is ap(g,A) # au(g, ). If there are g1, g» € G such that a,(g;,A) =
an(g2, 1), then, choosing i € I such that p,; = p,; = e, we have a; =
an(gr, MG, g7, A) = an(ga, Wi, 8" A) = an(g287", 1), whence gag;”
belongs to the stabilizer of a;, hence a, (g2, M) = ax(g1, ») = an (g2, ). Then,
for every g1, 82 € G, an(g1,A) # ap(ga, pv). So ¥ ={(x,y)eSx S |xe
u(l,G,v), yev(l,G,v) for some v e A, u, v e S} is an equivalence relation
on S. Moreover i is a congruence on S, in fact let x = u(g,v), y = v(k, v)
for some ve A, g,ke G, u,ve S andlet c €S, then cx = cu(g,v) and
cy = cv(k,v), and if c € Sy then xc = yc = ¢, otherwise if c = (J, g’, n) € 5,
xe = u(g,vie = u(gp,g'.n), yo = vlk.v)c = v(kpyg'.n), whence
(cx,cy) € ¥ and (xc, yc) € Y. The relation i is not permutable with the
Rees congruence p modulo Sy. In fact let x = u(i, g1, A) with u € Sy,
z = ay(i,g1,A), y = a,(i, g1, n), then (x,z) € ¥ and (z, y) € p whence
(x,y) € ¥p, but (x,y) ¢ pyr. Then there are g € G and a;, € Sy such that
an(g, A) = an(g, 1.

Statement 1.11. Let S be a permutable semigroup and let Sy = a; S, or
So = a151 ® axSy and let A = {A, u}. Let M,, be a proper subgroup of G
containing the stabilizer H,, of a, and the entries of P, then for every m € M,
and n € G\ M,, there is an element g belonging either to M, n or to (H,, , n)m
such that ap (g, X)) = a,(g, u).

Proof. By way of contradiction suppose that there are m € M,, and n € G\ M,
such that a,(g, ) # an(g, n) for every g € M,n U (H,, ,n)m. If there
are g, g» both of them belonging either to M, n or to (H,, , n)m such that
an(g1, A) = an(g2, ), then by the same argument used in the previous proof we
deduce a;, (g, A) = an(g, n) for some g € M, n U (H,, , n)m, so we can assume
an(g1,A) # an(ga, ) and v = {(x,y) €S x S | x = y or x, y € ap(My,, A)
or x,y € a,(M,,g,v), or x,y € a,(Mgy, g, A) and there exists m € M,, such
that a,(mg, ) = a,(mg,A) with u # A} is an equivalence relation on S.
Moreover 7 is a congruence. In fact suppose (x, y) € t with x # y, with
the same arguments used in Statement 1.8 we prove that (cx,cy) € T and
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that if ¢ € S or if x,y ¢ a,(M,,, A) then (xc, yc) € . Then suppose
c = (,g,u) e S and x = a,(m,v), y = a,(n, ) for some m,n € M,,,
v, A € A, hence xc = ay(mp,; g, 1£), yc = ap(np,; g, 1), and since the entries of
P belong to M,, , then (xc, yc) € T. Now put N,, = (H,,, n) and consider the
congruences 9Ma,, and 9Na,, defined in Statement 1.8; then (a, (m, 1), a,(e, 1)) €
T, (ap(e, n), ap(n, 1)) € QNa,,’ hence (a,(m, 1), ap(n, 1)) € r@Nah. But the 7-
class containing a, (n, ) is ap (Mg, n, 1) and the QNa,, -class containing ay, (m, A)
is ap(Ng,m, A), hence v and 9Na,, are not permutable. Then there is g €
M, nU (H,,, n)m such that a, (g, A) = a,(g, 1).

Statement 1.12. Let S be a permutable semigroup and let Sy = a;S; ® ayS;.
Then the stabilizers of a; and a, generate G.

Proof. Suppose by way of contradiction that (H, , H,,) = K C G. The
relation 0 = {(x,y) € S x S | x = yor x,y € a;(G, A)} is obviously an
equivalence relation. Let c € S and (x, y) € o with x # y, then x = a;(g, A),
y = a(m,v) for some g,m € G, A,v € A. Thencx = x, cy = y
and if ¢ € Sy then xc = yc = ¢, otherwise if ¢ = (j,g’,n) € S; then
xc = ay(g, M)(j, g n) €ar(G, A) and so ye = a;(m, v)(j, &', 1) € a1 (G, A),
then (cx, cy), (xc, yc) € o. Therelation yx = {(x,y) e SxS|x =yorx,ye
a1 (Kg,v)Ua,(Kg,v)forsomegeG,veAorx,yea (Kg, A)Ua(Kg, A)
and there exist k € K, h € {1, 2} such that a; (kg, u) = ay(kg, A) with u #% A}
is a congruence on S. In fact let (x, y) € g with x # y, if x, y € a,S; the
same argument used to prove that 0x is a congruence can be applied. So let
x €a;S; and y € ap5;. Obviously forevery ce Sitiscx = x andcy = y
hence (cx,cy) € yx. If c € Spitis xc = yc = c hence (xc; yc) € Y,
then suppose ¢ = (j,m,n), x = a;(kg,r), y = ay(kg,v), y = ay(kg,v),
whence xc = aj(kgpy;m,n), yc = ax(kgp,jm,n), so if p,; = p,; then
(xc, yc) € Yk, otherwise A # v and there exist k € K, h € {1, 2} such that
an(kg,v) = ay(kg, 1) that implies that both p;; and p,; are in g7! K g, hence
xcea(Kgm,n), yc € ay(Kgm,n), and again (xc, yc) € ¥¢. Moreover the
congruences o and g are not permutable. In fact, being a, = aj(e, A),
(ap,ai1(e, 1)) € ¥k and (aj(e,A), ai;(g,A)) € o for every g € G. Hence
(az,a1(g,A)) € ygo for every g € G. Since (ay,x) € o if and only if
a, = x and (ay,y) € ¥x implies y € a;(K, A) U a3(K, A) then for each
g€G\K (ap,a:1(g, ) e¥go but (az,a,(g,A)) ¢ oyx. Then K = G.
Theorem 1.1. Let S be a completely regular semigroup which is the ideal
extension of a right-zero semigroup Sy by a semigroup S = M(G; I, A; P)
(where P is normalized) with zero adjoint. Then S is permutable if and only if
the following hold:

(D 11 =2,]A] =2
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and denoting by e the identity of G and supposing A € A such that p,; = e for
every i € I either

(2) So =a15; witha; So and a; = a;(e, ).

(3) MN = NM for every subgroups M, N of G containing the stabilizer of
a.

4) If IAl = 2, putting A = {\, u}, there exists g € G such that a,(g, A) =
ai(g, v). Moreover for every proper subgroup M of G containing each entry
of P and a conjugate g~ H, g of the stabilizer H,, of a;, and for every m € M,
n € G\ M there exists k belonging either to Mn or to (g~ H,, g, n)m such that
ay(gk, A) = a;(gk, )

or

(2/) So = a1S81 @ a, S, with ai,a, € So and a1 = ay(e, \), a; = a(e, A).

(3') MN = NM for every subgroups M,N of G containing either the
stabilizer of a; or the stabilizer of a;.

(4) If |A| =2, putting A = {A, u}, there exist g € G and some h € {1, 2} such
that ay(g, A) = an(g, w). Moreover for every h € {1, 2} and for every proper
subgroup M of G containing each entry of P and a conjugate g~ H,, g of the
stabilizer H,, of ay, and for every m € M, n € G \ M there exists k belonging
either to Mn or to < g‘lHahg, n > m such that ay(gk, A) = a,(gk, ).

(5') Each pair of subgroups H, K respectively conjugated to the stabilizers of
a; and a, generate G.

Proof. The only if part easily follows from previous Statements. To prove the
converse we start showing that for every congruence p on S, p N (Sy x S;) # @
implies p = o, where w denotes, as usual, the universal congruence on
S. Let sg € S and let sy = (i, g,n) € S; with (so,5,) € p, then, being
so = (I, G, m)so, {so} x {(I, G, n)(i, g, M)} C p whence {so} x (I, G, ) C p.
Suppose sy = a; (k, v) and choose i such that p,; = e, then {so} x (I, G, 1) C p
implies {so(i, k=1, M)} x {(I, G, A, k™', D)} = {a1} x I, G,A) € p and
{a1} x {a1(G, M)} € p hence {a1} x {a1(G,A) U, G, 1)} C p. Moreover if
So = a181 ® a2 51, {a1} x (I, G, A) € p implies {aa;} x {ay(G, 1)} € p hence
{a1} x {a(G, M)} € p then {a1} x {a1(G, 1) Uax (G, M) U (I, G, 1)} C p. Now
by (4) or (4°) there exist & € {1, 2} and g € G such that a,(g, A) = ax(g, 1),
whence {a,, (G, M)} x {a,(G, n)} C p. Then, being {a,(G, 1)} x (I, G, A) € p,
it is also {a, (G, M)} x (I, G, u) € p, whence p = w.

Now let p, T be two non universal congruences on S, to prove that they
are permutable it is enough to show that their restrictions to Sy and to S
are permutable. Since §; is a permutable semigroup and the restrictions to
Sy of congruences on § are congruences on S; we have only to prove that
pls, and tl|s, are permutable. Let b € Sy and suppose b = a;(g;,v). Put
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M, = {geG | (ai(g, A),a1) € p}. From Statement 1.8, if bp C a;5; then
either

(a) bp = {b}, or
(®) bp = {a1(Ma81, 1)}, or
(©) bp = {a1(My g1, M)}, or
) bo = S.

If there exists a,(gy, ) such that (b, ay(g2, w)) € p, then we eas-
ily obtain (al,az(g'zgl“lHal,/\)) € p, hence (b,ag(gzgi‘lHalgl,v)) € p SO
(a2(82, 1), a2(8287 ' Hay 81, V) € p, whence (a2, a2(g287 ' Ha 8185 ", 1)) € p.
Thus gog; 1Ha1g1g2_ ! is contained in H,, and H,, = G by (5'). Analogously
we obtain H,, = G whence bp = Sy. So in any case for every non universal
congruence p the p-classes of b are of the types (a), (b), (c), (d).

If for every b € Sy both the p and the t-classes are of types (a), (b), (d) (or
(a), (c), (d)) then pl|s, and 7|5, are permutable by (3) and (3’). In fact putting
N, = {g€G | (ai(g,A),a;) € T} we obtain bpt = {a;(N, M, g1, v)} and
brp = {a1 (Mg, Ny, g1, v)} (respectively bot = {a1(N, My 81, A)} and btp =
{a1 (M4 Ny, 81, M)}). Otherwise suppose that there exists b = a;(g;, v) € Sy
such that bp = {a;(Mgg1,v)} and bt = {a1(Ng g1, A)} with |A] = 2.
Obviously for each m € M,, n.€ N,, u € A, (ai(mg;,v),a;(ng;, w)) €
pt. If m € N, it is straightforward that (a;(mgi,v),a;(ng, n)) € zp.
Suppose g; 'mg, ¢ glea,gl; by definition N, contains the stabilizer of
a; so g; 1Na,,gl is a proper subgroup containing g lHa1 g1 and we prove
that g, 'N, g1 contains all the entries of P. This is obvious if all the en-
tries of P are e, then suppose p,; # e, (a1(g1, ), ai(g1,v)) € v implies
(@1(g1, M(j, g7 M), ar (g1, v)(J, g7 M) € T whence (ay, a1(g1pv;8; ' v)) €
T that implies g; p,,jgl”1 € N,, thatis p,; € g{ lNal g1. Thus there is an element

- ] ~1 - —1 _
g either in g, N, g18; mg orin g, M, g1g; ng: such that a;(g1g,A) =
a(gig,v). If g = gl_ln”mgl then a;(n"mg1, ) = a;(n”"mg;, v) whence
aj(mgy, v)t = {a1(Ngmgy, A)}; so (a1(mgy, v), aj(n’'mg;, A)) € t for every
n' € N, (a1(n’'mgy, 1), ai(m'n’'mgy, 1)) € p for every m’ € M, , hence by (3)
and (3") (ay(mgq,v), a1(ng;, M) etp. If g = gl“lm”ngl then a;(m"ng, A) =
aj(m'ngy, v) whence ai(ngi,v)p = {a1(Mayngi, A)}; so (aj(m'ngy,v),
ai(ngi, 1)) € p for every m’ € M,,, (a;(n'm'ng,,v), a;(m’ng;, v)) € t for ev-
ery n’ € M,, hence by (3) and (3') (a;(mg1,v), ai(ng, v)) € tp. Then p|s, and
7|5, are permutable and the statement is proved.

Remark 1.3. Theorem 1.1 is easily proved to be equivalent to Theorem 1.2 in
[4]. Moreover in Theorem 1.1 conditions (2) and (2') can be rewritten in the

following way
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(2) 8 acts transitively on the right on Sj.
(2') Sy acts on the right on S, generating two orbits.

Remark 1.4. If Sy is a left-zero semigroup, we can easily reformulate Theo-
rem 1.1, simply considering S; acting on the left on Sj.

2. In this section we give some examples of permutable semigroups which are
the disjoint union of a right-zero semigroup S, which is an ideal of S and of a
completely simple semigroup S} = M(G; I, A; P) (i.e. semigroups which are
ideal extension of Sy by S with zero adjoint).

First we consider the case |A| = 1,1i.e. S; = I xG. Theorem 1.1 becomes:

Corollary 2.1. Let S be the ideal extension of a right-zero semigroup Sy by a
left group Sy = I x G with zero adjoint. Then S is permutable if and only if the
following hold:

(D =2

(2) S; acts on the right on Sy generating at most two orbits;

(3) MN = NM for every subgroups M, N of G containing the stabilizer of
an element of Sy.

(4) If a1, ay € Sy belong to different orbits then their stabilizers generate G.

If Sy acts transitively on Sy, let H be a subgroup of G such that every
pair of subgroups containing H are permutable (at least H = G satisfies this
condition). Let Sy be aright-zero semigroup disjoint by S; with | Sy| = [G : H],
where [G : H] denotes, as usual, the cardinality of the set of right cosets of H
in G. Fix an one to one map between Sy and the set of right cosets of H in
G and denote by ap, the element of Sy corresponding to the coset Hg. In
the set § = §; @ S introduce a product in this way: if x, y are both in the
same S; then they are composed by the product of S;, if x = (j, g) € S; and
Yy = apy € So then put xy = y and yx = apgy,. The groupoid so generated is
a permutable semigroup that is the ideal extension of a right-zero-semigroup S
by a left group S; with zero adjoint. v

If S; does not act transitively on Sy, let H, K be subgroups of G such that
every pair of subgroups both containing either H or K are permutable, and such
that (H, K) = G (for instance two maximal subgroups of G, if any, or at least
H = K = G satisfy these conditions). Let Sy be a right-zero semigroup disjoint
from S, with Sy = §; @ S§; with |S;| = [G : H] and ISg| = [G : K]. Fix an
one to one map between S (S;) and the set of right cosets of H(K) in G and
denote by ap, (ak,) the element of S, corresponding to the coset Hg (Kg).
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In the set S = S; @ Sy introduce a product in this way: if x, y are both in the
same S; then they are composed by the product of S;, if x = (j, g) € §; and
y = agx € So (¥ = akk € So) thenput xy = y and yx = amy, (¥x = agyy).
The groupoid so generated is a permutable semigroup that is the ideal extension
of a right-zero-semigroup Sy by a left goup S; with zero adjoint. Conversely
each permutable semigroup that is the ideal extension of a right-zero-semigroup
So by a left group S; with zero adjoint can be constructed in one of the previous
ways.

Then consider the case |G| = 1, 1e. §; = I x A where we suppose
|A| > 2. Theorem 1.1 becomes:

Corollary 2.2. Let S be a completely regular semigroup which is the ideal
extension of a right-zero semigroup Sy by a semigroup S; = I x A with zero
adjoint and suppose |A| > 2. Then S is permutable if and only if the following
hold:

() 111 <2,|Al =2

(2) S; acts on the right on Sy generating at most two orbzts

(3) Putting A = {A, u}, there exists a; € Sp such that a;(i, A) = al(z u,) for
everyi€l.

Hence all permutable semigroup we are concerning with are:

a) S; = {@, 1), (i, w} So = {a}, both right-zero semigroups with a(i, ) =
(i, Va = a(i,n) = (i, u)a = a (i.e. aright-zero semigroup of order 2 with
zero adjoint)

b) S = {GN),E w}, So = {a,b}, both right-zero semigroups with
a(i,\) = (i, \)a = a(i,n) = (i, w)a = a and b(i, A) = (i, A)b = b(i, u) =
(G uwb=2>b ' |

c) S1 = {G M), E w}, So = {a,b,c}, both right-zero semigroups. with
a(i,») =(@{,Ma=a(i,u) = ({,ua=aand b(i,r) = (i, )b = (i, w)b = b,
b, pu)y=c,c@i,u) =G uec=(=GMNc=c,c(i,r)=b

d) Sy = {G, ), G, w), (,A), (j, W)} rectangular band, S = {a), with
a(i,\) = (i,AM)a = ai,n) = (,wa = a(j,\) = (j,Ma = a(j,u) =
(j, w)a = a (i.e. arectangular band of order 4 with zero adjoint)

e) S; = {(i, A), (i, w), (j, 1), (j, u)} rectangular band, Sy = {a, b} right-zero
semigroup with a(i, A) = (i, A)a = a(i, ) = (i, nw)a = a(j,r) = (j,AM)a =
a(j,u) = (j,m)a =aand b(i,r) = ({, )b =b(i,n) = (i, wb =b(j,A) =
(. Wb =b(j, ) = (j,wb=b |

) S = {G, M)E, w), (, ), (J, w)} rectangular band, Sy = {a, b, c} right-
zero semigroup with a(i,A) = (,M)a = a(i,u) = @G, pwa = a(j,r) =
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(s Ma =a(j,pn) = (j,wa = aand b(i, ) = (i, )b = (i, w)b = b(j, A)
(s Vb = (j, b = b, b(i, n) = b(j, p) = ¢, ci, ) = (i, w)c = (i, e
c(Jy ) = (j, e =(j,Mec=c,cl,1) =c(j,A) =b.

Such semigroups were yet described in [3], n. 3.

- Now we consider the case Sy = M(G; I, A; P) where |I| < 2, |A] <2
and P is normalized (the case S| = I x G x A is hereby included and
it is obtained when all the entries of P are the identity e of G). For each
given G there are examples of permutable semigroups § which are disjoint
union of a right-zero semigroup, ideal of S, and of §; whether with S; acting
transitively on Sp or not. In fact S; with zero adjoint is an example of a
permutable semigroup where S acts transitively on Sy, moreover if we take
So = {a1, a2} with a;(i, g,v) = ay, forevery h e {1,2}, i €1, geG,veA
or So = {ai, az, a3} with a;(i, g,v) = ay, for every i € I, geG,veA,
aZ(i’ 8, )\') = 4z, aZ(is 8> M) = das, a3(i’ 8 ,LL) = das, a3(ia 8 A) = a, for every
I €1, g € G, we again get permutable semigroups S where S; does not act
transitively on Sy and the stabilizers of a;, for & € {1, 2} are G. Conversely each
permutable semigroup which is the disjoint union of a right-zero semigroup
So, 1deal of S, and of a completely simple semigroup S; = M(G; I, A; P),
satisfying the condition a,(g, A) = ay, for every a;, such that a (e, A) = ay, 1S
one of the three above semigroups.

In general to construct a permutable semigroup which is the disjoint
union of a right-zero semigroup, ideal of S, and of a given semigroup S; =
M(G; I, A; P), we have to select one or two subgroups of G satisfying either
condition (3) or condition (3') and (5") according with S, acts transitively on S
or not, then we have to construct an Sy such that conditions (2) and (4) or (2')
and (4') are satisfied, in such construction the selected subgroup are conjugates
to the stabilizers of the elements of Sy. Obviously conditions (4) and (4") may
be fulfilled in different ways depending on the choice of the subgroups, and we
have not a general tool to use. We notice that when these subgroups are either
maximal or normal, then conditions (4) and (4') become simpler.

As an example we construct all the permutable semigroups which are
disjoint union of a right-zero semigroup, ideal of S, and of a semigroup
S1 = M(S5; I, A; P), where S; denotes as usual the substitution group on three
elements. Obviously we can assume |I| < 2, |A| < 2 and we can suppose that
A € A and i €] satisfy the condition: p,; = e foreachi eI, pui = e for each
p € A. In the sequel we denote by T,,(h) a right-zero semigroup of order n,
whose elements are indexed by #, different 4 are used to indicate disjoint zero-
semigroups in which S; can be decomposed. In order to make the construction,
first we consider the following semigroups S = Sy @ S; where S; acts on the
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right on Sy and Sja = a for every a € Sy

1) S =M(Ss3; 1, A; P), So = T1(h) = {a,} with the right action of §; on S
determined by a; (53, A) = ay;

2) S; = M(S5; 1, A; P) with [A] = 2, S = T,(h) = {ay, by} with the right
action of S; on Sy determined by a;, (S3, A) = ay, a5 (53, u) = by;

3) S; = M(Ss; I, A; P) such that all the entries of P are in the alternating
subgroup As, So = Tp(h) = {an, by} with the right action of S; on Sy
determined by a,(As, A) = ay, an(Aszg, A) = by, forevery g € S5\ As;

4y S, = M(S5; 1, A; P) with |[A| = 2 such that all the entries of P are in
Az, So = T5(h) = {au, by, ci} with the right action of §; on Sy determined by
an(As, A) = ay, ap(Aszg, A) = by, ay(Azg, u) = c;, forevery g € §3\ As;

5) Sy = M(S3; I, A; P)with |A| =2 and p of order 2 a possible entry of P,
So = T4(h) = {ay, by, ¢, dy} with the right action of §; on Sy determined by
an(As, A) = ay, ap(Asp, A) = by, an(As, n) = cp, ap(Azp, 1) = dp;

6) S; = M(Ss3; I, A; P) such that all the entries of P are e (1.e. S, =
I x S3 x A), S = T3(h) = {ay, by, ¢y} with the right action of §; on Sy
determined by a,(H, A) = ay, an(Hg, A) = by, an(Hg? A) = ¢, for a
subgroup H of G of order 2 and g € S3 of order 3;

7) S; = M(Ss; I, A; P) with [A] = 2 all the entries of P equal to e (i.e.
S =1x 83 xA), Sy = Tyh) = {an, by, ci, dy} with the right action of
S; on Sy determined by a,(H, A) = ay, a,(Hg, A) = by, ah(ng, A) = ¢y,
an(Hg?, 1) = dy for a subgroup H of G of order 2 and g € S; of order 3;

8) S = M(S3; I, A; P) with |A] = 2 such that all the entries of P are in
a subgroup H of order 2 of G, Sy = Ts(h) = {ay, by, ¢y, dy, €,} with the
right action of S; on Sy determined by a,(H, A) = ay, ay(Hg.A) = by,
an(Hg? A) = cp, ay(Hg, 1) = dy, a,(Hg*, u) = e, for g € S3 of order
3;

9) §; = M(S3; 1, A; P) with |[A| = 2 and p of order 3 a possible entry
of P, So = Te(h) = {an, by, ch,dn, ey, fr} with the right action of §; on
So determined by ay(H,A) = aj, ay(Hp,X) = by, an(Hp*, A) = cu,
ap,(H, ) = dy, any(Hp, n) = ey, ap(Hp*, u) = f, for a subgroup H of
G of order 2.

Then, taking £~ = 1, the semigroups of types 1), 3), 4), 6), 7), 8) are
permutable semigroups in fact So = a1 8; with a; € Sp and a; = a(e, A).
Moreover in case 1) the stabilizer of a, is S3, in cases 3) and 4) it is the
alternating subgroup A; and in cases 6), 7) and 8) is a subgroup H of order
2, hence MN = NM for every subgroups M, N of G containing the stabilizer
of a;. Moreover if |A| = 2 then there is g € G such that a,(g, A) = a;(g, u).
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Finally if P has an entry different from e then this entry belongs to the stabilizer
of a;, and, by the maximality of these stabilizers, condition (4) of Theorem 1.1
is satisfied. Conversely if S is a permutable semigroups that is the disjoint union
of a right-zero semigroup Sy, ideal of S, and of §; = M(S;; I, A; P) where S
acts transitively on Sy, then S is isomorphic to a semigroup of 1), 3), 4), 6),
7), 8). In fact conditions (2) and (3) of Theorem 1.1 imply So = a;5; with
~ the stabilizer of a; either equal to S3, or to a A3, or to a subgroup of order 2.
Moreover condition (4) implies that the possible entry of P different from e is in
a subgroup conjugate to the stabilizer of a;. Since the stabilizer of a; (g, A) is the
conjugate of the stabilizer of a; by g, we can assume without loss of generality
that this entry belongs to the stabilizer of a; (in the opposite case we consider
So = (a1(g, A))S1) hence we can assume that a; (g, A) = a;(g, u) for every g
belonging to the stabilizer of ;. Finally if k does not belong to the stabilizer
of a; we can put a;(k, A) = a;(k, u) only if the possible entry of P different
from e belongs to the conjugate of the stabilizer of a; by k, and since in all
cases the stabilizer of g; is maximal, we can freely choose a; (k, 1) = a(k, 1)
or ai(k, A) # ay(k, ) for all the k such that kpk~! belongs to the stabilizer of
a; for all entries of P. We stress that semigroups of types 2), 5), 9) with & = 1
satisfy conditions (1), (2) and (3) of Theorem 1.1 but there is no g in S3 such
that a;(g, 1) = a;(g, 1), so condition (4) is not fulfilled.
Now suppose that S| does not act transitively on Sp.

Then we consider the following semigroups:

a) Sy = M(S3;1, A; P), So = Ti(1) @ T,(2) right-zero semigroup with the
actions of Sy on T;(1) and on T;(2) defined as in 1);

b) S1=M(Ss; 1, A; P), Al =2,8 =Ti(1)® 1> (2) right-zero semigroup
with the action of S; on Ti(1) defined as in 1) and the action of S1 on T,(2)
defined as in 2);

c) S; = M(S5; 1, A; P) and all entries of P are in the alternating subgroup
A3, So = Ti(1) @ T,(2) right-zero semigroup with the action of S; on T (1)
defined as in 1) and the action of S} on T,(2) defined as in 3);

d) §1 = M(S;5;1, A; P), |A| = 2 and all entries of P are in the alternating
subgroup As, Sop = T»(1) @ T5(2) right-zero semigroup with the action of S; on
T5(1) defined as in 2) and the action of S; on 7,(2) defined as in 3);

e) S1 = M(Ss; 1, A; P), |A| = 2 and all entries of P are in the alternating
subgroup A3, So = T1(1) @ T5(2) right-zero semigroup with the action of S; on
T1 (1) defined as in 1) and the action of S} on T3(2) defined as in 4);

f) S = M(S5;1, A; P), |A| = 2 and all entries of P are in the alternating
subgroup As, Sy = T5(1) @ T3(2) right-zero semigroup with the action of S| on
T>(1) defined as in 2) and the action of S; on T5(2) defined as in 4y,
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g S1=M(S3 1, A; P), Al =2 §o = T1(1) & T4(2) right-zero semigroup
with the action of §; on T7(1) defined as in 1) and the action of S| on 74(2)
defined as in 5);

h) S, = M(Ss; I, A; P), and all the entries of P are equal to e, Sy =
T1(1) @ T5(2) right-zero semigroup with the action of S; on T;(1) defined as in
1) and the action of S on 73(2) defined as in 6);

1) §1 = M(S3; 1, A; P), |A| = 2 and all the entries of P are equal to e,
So = T»(1) & T5(2) right-zero semigroup with the action of S; on 7>(1) defined
as in 2) and the action of S; on 73(2) defined as in 6);

D St = M(S5; I, A; P), |A|l = 2 and all the entries of P are equal to e,
So = T1(1) @ T4(2) right-zero semigroup with the action of S; on T;(1) defined
as in 1) and the action of S; on T4(2) defined as in 7);

k) Sy = M(S3; 1, A; P), |[A] = 2 and all the entries of P are equal to e,
So = (1) ® T4(2) right-zero semigroup with the action of S; on T5(1) defined
as in 2) and the action of S; on 74(2) defined as in 7);

) 81 =M(Ss; I, A; P), |Al =2 and all the entries of P are in subgroup H
of order 2 of S3, So = T1(1) @ T5(2) right-zero semigroup with the action of S,
on T;(1) defined as in 1) and the action of S; on 75(2) defined as in 8);

m) Sy = M(S83; 1, A; P), |A| =2 and all the entries of P are in subgroup H
of order 2 of S3, So = T5(1) ® T5(2) right-zero semigroup with the action of S;
on T, (1) defined as in 2) and the action of S; on 75(2) defined as in 8);

n) Sy = M(S3; I, A; P), [Al =2 8 = T1(1) @ Ts(2) right-zero semigroup
with the action of S; on T;(1) defined as in 1) and the action of S; on T(2)
defined as in 9);

o) §1 = M(S3; 1, A; P), |A| = 2 and all entries of P are equal to e,
So = T7(1) & T5(2) right-zero semigroup with the action of S; on T5(1) defined
as in 3) and the action of S; on 75(2) defined as in 6);

p) S1 = M(S3; I, A, P), |A|] = 2 and all entries of P are equal to e,
So = T3(1) @ T5(2) right-zero semigroup with the action of S; on T3(1) defined
as in 4) and the action of §; on 75(2) defined as in 6);

qQ St = M(S83,1,A; P), |Al = 2 and all entries of P are equal to e,
So = To(1) @ T4(2) right-zero semigroup with the action of Sy on T,(1) defined
as in 3) and the action of §; on T4(2) defined as in 7);

r) Sy = M(Ss5; 1, A; P), |A] = 2 and all entries of P are equal to e,
So = T3(1) ® T4(2) right-zero semigroup with the action of S; on 75(1) defined
as in 4) and the action of S; on T4(2) defined as in 7);
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s) St = M(S3;1,A; P), |A| = 2 and all entries of P are equal to e,
So = T>(1) @ T5(2) right-zero semigroup with the action of S1 on T5(1) defined
as in 3) and the action of S; on 75(2) defined as in 8);

t) S1 = M(S5; 1, A; P), |A] = 2 and all entries of P are equal to e,
So = T3(1) & T5(2) right-zero semigroup with the action of S} on 75(1) defined
as in 4) and the action of S| on T5(2) defined as in 8);

u) S = M(S5; 1, A; P), |A| = 2 and all the entries of P are in A3z,
So = T5(1) @ T5(2) right-zero semigroup with the action of S; on T5(1) defined
as in 3) and the action of S| on T(2) defined as in 9),

v) 81 = M(S3;1,A; P), |A| = 2 and all the entries of P are in As,
So = T3(1) & T(2) right-zero semigroup with the action of S; on T3(1) defined
as in 4) and the action of S; on T(2) defined as in 9);

w) S1 = M(Ss5;1,A; P), |A| = 2 and all the entries of P are e, S =
14(1) & T3(2) right-zero semigroup with the action of S; on 74(1) defined as in
5) and the action of S; on 75(2) defined as in 6);

y) St = M(S5;1,A; P), |A| = 2 and all the entries of P are e, Sy =
T4(1) @ T4(2) right-zero semigroup with the action of S; on 74(1) defined as in
5) and the action of S on 75(2) defined as in 7);

z) St = M(S3; 1, A; P), |A| =2 and all the entries of P are in a subgroup
H of order 2, Sy = T4 (1) ® T5(2) right-zero semigroup with the action of S, on
T4(1) defined as in 5) and the action of S; on T5(2) defined as in 8).

All the subgroups of types a)-z) are permutable semigroups, in fact Sy =
a1 Sy @ apS; with ay,a, € Sy and a; = ai(e,r), ay = ay(e, A). Moreover
the stabilizers of a; and a, are either 83, or As, or a subgroup H of order 2,
hence MN = NM for every subgroups M, N of G containing the stabilizer
of some a;,. Moreover the stabilizers of a; and of a; in all cases satisfies
(5') of Theorem 1.1. Moreover if |A] = 2 then there are g € G and a;, € S,
such that a,(g, A) = a,(g, ) and by the maximality of the stabilizers of a,
conditions (4') of Theorem 1.1 is satisfied. Conversely if S is a permutable
semigroup that is the disjoint union of a right zero semigroup Sy, ideal of S,
and of §; = M(S3; I, A; P) where S; does not act transitively on Sy, then S
is isomorphic to a semigroup of types a)-z). In fact conditions (2') and (3') of
Theorem 1.1 imply Sy = a, S| ® a,5, with the stabilizers of a1, a, either equal
to 53, or to A3 or to a subgroup of order 2 and condition (5) implies that the
stabilizers are neither both equal to A3, nor both of order 2. Moreover it is easy
to notice that §; @ a;S; and S| @ a,S; are subsemigroups of S and at least
one of them is a permutable semigroup that is the disjoint union of a right-zero
semigroup a; S or a,S;, ideal of S, and of § 1 where S acts transitively on the
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right-zero semigroup. Then condition (4') gives the classification taking into
account the previous remarks on condition (4) on permutable semigroups with
a unique orbit.

3. The classification of completely regular semigroups whose congruences
form a totally ordered set (shortly completely regular A-semigroups) can be
easily deduced by some results in [1] and [2], and completely regular A-
semigroups form a subclass of the permutable semigroups here described, so
we state the following theorem for sake of completeness.

Theorem 3.1. A completely regular semigroup S is a A-semigroup if and only
if either

(1) S is a group whose normal semigroup form a chain with respect to the
inclusion (shortly A-group); or

(2) S is aright (left)-zero semigroup of order 2; or

(3) S is aright (left)-zero semigroup of order 2 with identity adjoint; or

(4) S is the ideal extension of a right (left)-zero semigroup Sy by a group S,
with zero adjoint such that:

— Sy isa A-group

— Sy transitively acts on the right (left) on Sy

— each normal subgroup of S transitively acts on the right (left) on Sy

— denoting by H the stabilizer of an element of Sy the subgroups of S
containing H form a chain with respect to the inclusion.

Proof. If S is a completely regular A-semigroup, then § is either a A-group
or a right (left) zero semigroup of order 2 or the ideal extension of a right
(left) zero semigroup by a rectangular band of order 2 with zero adjoint, or the
ideal extension of a right (left) zero semigroup by a A-group with zero adjoint
by statements h), g) and 1) in [2]. Moreover if § is the ideal extension of a
right (left) zero semigroup by a rectangular band of order 2 with zero adjoint
Theorems 3.1 and 3.2 in [1] state that S is a A-semigroup if and only if it is
a right (left)-zero semigroup of order 2 with identity adjoint. If § is the ideal
extension of a right (left) zero semigroup by a A-group with zero adjoint, then
it is a semigroup called in [2] of type B and by Theorem 3.2 of [2] S is a A-
semigroup if and only if it satisfies conditions given in point (4) of the statement.



80

[1]

(2]

(3]

[4]

(5]

(6]

(7]
(8]

[9]

[10]

CELESTINA BONZINI - ALESSANDRA CHERUBINI

REFERENCES

C. Bonzini - A. Cherubini, Sugli E — m A-semigruppi, Istituto Matematico
“F. Enriquez”, Milano, Quaderno n. 22/S, giugno 1979.

C. Bonzini - A. Cherubini, Sui A-semigruppi di Putcha, Ist. Lomb. (Rend. Sc.),
A 114 (1980), pp. 179-194.

C. Bonzini - A. Cherubini, Sugli E —2 semigruppi permutabili, Ist. Lomb. (Rend.
Sc.), A115 (1981), pp. 73-89.

C. Bonzini - A. Cherubini, Permutable completely regular semigroups, Semi-
groups, algebraic theory and application to formal languages and codes (Eds.
Bonzini, Cherubini and Tibiletti), World Sci., 1993, pp. 36-41.

A. Cherubini - B. Piochi, Permutability and modularity of Bruck-Reilly exten-
sions, to appear.

H. Hamilton, Permutability of congruences on commutative semigroups, Semi-
group Forum, 10 (1985), pp. 55-66.

J. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
P. Jones, On congruences lattices of regular semigroups, J. Algebra, 82 (1983),
pp. 18-39.

H. Mitsch, Semigroups and their lattice of congruences, Semigroup Forum, 26
(1983), pp. 1-63.

H. Mitsch, Semigroups and their lattice of congruences II, Semigroup Forum, 54
(1997), pp. 1-42.

Celestina Bonzini,

Dipartimento di Matematica,
Universita di Milano,

Via C. Saldini 50,

20133 Milano (ITALY),

e-mail: bonzini@vmimat.mat.unimi.it

Alessandra Cherubini,
Dipartimento di Matematica,
Politecnico di Milano,

Piazza Leonardo da Vinci 32,
20133 Milano (ITALY),

e-mail: Aleche@mate.polimi.it



