A CHARACTERIZATION OF $\mathcal{R}, \mathcal{L}, \mathcal{J}, \mathcal{D}, \mathcal{H}$ -TRIVIAL QUASI REGULAR SEMIGROUPS

JOLANDA LAURA GALBIATI

To the memory of Umberto Gasapina

Introduction.

In [7] we may find a characterization of ρ -trivial periodic semigroups, where ρ is a Green relation. In this short note we extend those results to the class of quasi regular semigroups which includes periodic semigroups. We will denote by E the set of the idempotents of a semigroup S, by $Reg\ S$ the set of regular elements of S, by \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{D} , \mathcal{H} the Green relations and by \mathbb{N} the set $\{1, 2, \dots\}$ of natural numbers.

Definitions and notations not given here can be found in [1], [4], [6].

1. Preliminaries.

Definition 1.1. A semigroup S is *periodic* if $a^m = a^{m+r}$, for every $a \in S$ and for some $m, r \in \mathbb{N}$. If r = 1 for every $a \in S$, then S is called an *acyclic* semigroup (see [7]).

Definition 1.2. For any equivalence relation ρ on a semigroup S, S is said ρ -trivial if $a\rho b$ implies a=b, for every $a,b\in S$ (see [7]).

Theorem 1.3. ([7], Lemma 1.1). Let S be a periodic semigroup. Then

- i) S is \mathcal{R} -trivial if and only if $(ab)^m = (ab)^m a$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- ii) S is \mathcal{L} -trivial if and only if $(ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iii) S is \mathcal{J} -trivial if and only if $(ab)^m a = (ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iv) S is \mathcal{H} -trivial if and only if S is acyclic.

Proposition 1.4. Let S be a semigroup.

- i) If $(ab)^m = (ab)^m a$, for every $a, b \in S$ and for some $m \in \mathbb{N}$, then S is acyclic.
- ii) If $(ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$, then S is acyclic.

Proof. If we put a = b in i) and ii), we get $a^{2m} = a^{2m+1}$. Then S is acyclic, by Definition 1.1. \square

Noting that an acyclic semigroup is periodic, Proposition 1.4 allows to state the following theorem which is equivalent to Theorem 1.3.

Theorem 1.5. Let S be a semigroup. Then

- i) S is periodic and \mathcal{R} -trivial if and only if $(ab)^m = (ab)^m a$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- ii) S is periodic and \mathcal{L} -trivial if and only if $(ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iii) S is periodic and \mathcal{J} -trivial if and only if $(ab)^m a = (ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iv) S is periodic and \mathcal{H} -trivial if and only if S is acyclic.

2. The main results.

Definition 2.1. A semigroup S is quasi (completely) regular if a^m is (completely) regular, for every $a \in S$ and for some $m \in \mathbb{N}$ (see [2], Definition 1.4).

Proposition 2.2. Let S be a semigroup. Then

- i) S is periodic if and only if $a^m \in E$, for every $a \in S$ and for some $m \in \mathbb{N}$.
- ii) If S is periodic then S is quasi completely regular.
- iii) If S is acyclic then S is quasi completely regular.

- *Proof.* i) If S is a periodic semigroup, then every element of S has a power which is idempotent (see [4], Proposition I.2.7). Conversely, if $a^m \in E$, for every $a \in S$ and for some $m \in \mathbb{N}$, then it is obvious that S is periodic.
- ii) Let $a \in S$. By i), there exists $m \in \mathbb{N}$ such that $a^m \in E$. Then, it is obvious that a is quasi completely regular.
- iii) It follows from Definition 1.1 and from ii). □

From Propositions 1.4 and 2.2 iii), we obtain immediately

Proposition 2.3. *Let S be a semigroup.*

- i) If $(ab)^m = (ab)^m a$, for every $a, b \in S$ and for some $m \in \mathbb{N}$, then S is quasi completely regular.
- ii) If $(ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$, then S is quasi completely regular.

Lemma 2.4. Let S be a semigroup and let $a, b \in S$.

- i) If $(ab)^m \in E$, for some $m \in \mathbb{N}$, then $(ab)^m \mathcal{R}(ab)^m a$.
- ii) If $(ab)^m \in E$, for some $m \in \mathbb{N}$, then $(ab)^m \mathcal{L}b(ab)^m$;
- iii) If $(ab)^m \in E$, for some $m \in N$, then $(ab)^m \mathcal{J}(ab)^m a \mathcal{J}b(ab)^m$.
- *Proof.* i) If $(ab)^m \in E$ $(a, b \in S$ and $m \in \mathbb{N}$), then $(ab)^m = (ab)^{3m} = (ab)^m a(ba)^{2m-1}b \Rightarrow (ab)^m \in (ab)^m aS^1$. Since $(ab)^m a \in (ab)^m S^1$, we conclude that $(ab)^m \mathcal{R}(ab)^m a$.
- ii) The proof is analogous to that given in i).
- iii) If $(ab)^m \in E$ $(a, b \in S \text{ and } m \in \mathbb{N})$, then $(ab)^m \mathcal{R}(ab)^m a$ and $(ab)^m \mathcal{L}b(ab)^m$ by i) and ii). Since $\mathcal{R} \subseteq \mathcal{J}$ and $\mathcal{L} \subseteq \mathcal{J}$, we get $(ab)^m \mathcal{J}(ab)^m a$ and $(ab)^m \mathcal{J}b(ab)^m$.

Theorem 2.5. Let S be a semigroup. Then

- i) S is quasi regular and \mathcal{R} -trivial if and only if $(ab)^m = (ab)^m a$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- ii) S is quasi regular and \mathcal{L} -trivial if and only if $(ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iii) S is quasi regular and \mathcal{J} -trivial if and only if $(ab)^m a = (ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- iv) If S is quasi regular and \mathcal{R} or \mathcal{L} or \mathcal{J} -trivial, then S is acyclic.
- *Proof.* i) Let S be a quasi regular and \mathscr{R} -trivial semigroup. If $(ab)^m \in RegS$ $(a, b \in S \text{ and } m \in \mathbb{N})$, then $(ab)^m = (ab)^m x (ab)^m (x \in S) \Rightarrow (ab)^m \mathscr{R}(ab)^m x \in E \Rightarrow (ab)^m = (ab)^m x$, since S is \mathscr{R} -trivial $\Rightarrow (ab)^m \in E \Rightarrow (ab)^m \mathscr{R}(ab)^m a$, by Lemma 2.4 i) $\Rightarrow (ab)^m = (ab)^m a$, since S is \mathscr{R} -trivial. Conversely, let us suppose that $(ab)^m = (ab)^m a$ (for every $a, b \in S$ and for some $m \in N$). Then S

is acyclic by Proposition 1.4 i), quasi completely regular by Proposition 2.2 iii) and \mathcal{R} -trivial by Theorem 1.5 i).

- ii) The proof is analogous to that given in i).
- iii) Let S be a quasi regular and \mathscr{J} -trivial semigroup. If $(ab)^m \in RegS$ $(a,b \in S \text{ and } m \in \mathbb{N})$, then $(ab)^m = (ab)^m x(ab)^m$ $(x \in S) \Rightarrow (ab)^m \mathscr{R}(ab)^m x \in E \Rightarrow (ab)^m \mathscr{J}x(ab)^m \in E$, since $\mathscr{R} \subseteq \mathscr{J} \Rightarrow (ab)^m = x(ab)^m$, since S is \mathscr{J} -trivial $\Rightarrow (ab)^m \in E \Rightarrow (ab)^m \mathscr{J}(ab)^m a \mathscr{J}b(ab)^m$, by Lemma 2.4 iii) $\Rightarrow (ab)^m = (ab)^m a = b(ab)^m$, since S is \mathscr{J} -trivial. Conversely, let us suppose that $(ab)^m = (ab)^m a = b(ab)^m$ (for every $a, b \in S$ and for some $m \in \mathbb{N}$). Then S is acyclic by Proposition 1.4, quasi completely regular by Proposition 2.2 and \mathscr{J} -trivial by Theorem 1.5 iii).
- iv) It follows immediately from i), ii), iii) in this theorem and from Proposition 1.4.
- In [3], Proposition 2.7, we proved that, in a quasi completely regular semigroup, $\mathcal{D} = \mathcal{J}$. So, we have

Proposition 2.6. Let S be a quasi completely regular semigroup. Then S is \mathcal{D} -trivial if and only if S is \mathcal{J} -trivial.

Proposition 2.7. Let S be a semigroup. Then

- i) S is quasi completely regular and \mathcal{D} -trivial if and only if $(ab)^m a = (ab)^m = b(ab)^m$, for every $a, b \in S$ and for some $m \in \mathbb{N}$.
- ii) If S is a quasi completely regular and \mathcal{D} -trivial then S is acyclic.
- *Proof.* i) If S is a quasi completely regular and \mathscr{D} -trivial semigroup then S is \mathscr{J} -trivial and $(ab)^m a = (ab)^m = b(ab)^m$ (for every $a, b \in S$ and for some $m \in \mathbb{N}$), by Proposition 2.6 and Theorem 2.5. Conversely, if $(ab)^m a = (ab)^m = b(ab)^m$ (for every $a, b \in S$ and for some $m \in \mathbb{N}$), then S is a quasi completely regular and \mathscr{J} -trivial semigroup (see Theorem 2.5 and its proof). We conclude that S is \mathscr{D} -trivial, by Proposition 2.6.
 - ii) It follows immediately from Proposition 2.6 and Theorem 2.5.

Theorem 2.8. A semigroup S is quasi completely regular and \mathcal{H} -trivial if and only if S is acyclic.

Proof. Let S be a quasi completely regular semigroup, let $a \in S$, let G be the maximal subgroup of S having $e \in E$ as its identity and let $m \in \mathbb{N}$ be such that $a^m \in G$. We have $a^m \mathcal{H} e$ (see [6], Lemma IV.1.5) and $a^m = e$ since S is \mathcal{H} -trivial. By Theorem 1 in [5], $a^n \in G$, for every positive integer n > m, and consequently $a^n = e$. If we put n = m + 1, we have $a^{m+1} = e$. We conclude that $a^m = a^{m+1}$ and S is an acyclic semigroup. Conversely if S is

an acyclic semigroup, then S is quasi completely regular, by Proposition 2.2 iii) and \mathcal{H} -trivial by Theorem 1.5 iv). \square

REFERENCES

- [1] A.H. Clifford G.B. Preston, *The Algebraic Theory of Semigroups*, vol.1, AMS, Providence, 1961.
- [2] J.L. Galbiati M.L. Veronesi, Sui semigruppi che sono un band di t-semi-gruppi, Rend. Ist. Lomb. Cl.Sc., (A) 114 (1980), pp. 217-234.
- [3] J.L. Galbiati M.L. Veronesi, *Bande di semigruppi quasi bisemplici*, Scritti in onore di G. Melzi, Vita e Pensiero (1994), pp. 157-172.
- [4] J.M. Howie, An Introduction to Semigroups Theory, Academic Press, New York, 1976.
- [5] W.D. Munn, *Pseudoinverses in semigroups*, Proc. Camb. Phil. Soc., 57 (1961), pp. 247-250.
- [6] M. Petrich, Introduction to Semigroups, Merril Publ. Comp., Columbus, 1973.
- [7] T. Saito, J-trivial Subsemigroups of Finite Full Transformation Semigroups, Preprint.

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (ITALY)