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AMPLE VECTOR BUNDLES WITH SECTIONS VANISHING
ON SURFACES OF KODAIRA DIMENSION ZERO

ANTONIO LANTERI

To the memory of Umberto Gasapina

Let & be an ample vector bundle of rank » > 2 on a compact complex
manifold X of dimension n = r + 2 having a section whose zero locus
"is a smooth surface Z. Triplets (X, &, Z) as above are investigated under
the assumption that Z has Kodaira dimension zero. It turns out that either
X is a P""2-bundle over a smooth surface, & restricts to every fibre as
Op(1)®"=2 and the P-bundle projection restricted to Z is a birational
morphism contracting some exceptional curves, or, up to contracting some
(-1)-hyperplanes, X is a Fano manifold with —Kx = det &, in which case Z
is a K3 surface.

Introduction.

It is well known that imposing to a projective manifold X to contain a given
manifold Z as an ample divisor gives very strong restrictions. This philosophy,
‘which arose in the context of hyperplane sections long time ago, was made
explicit by Sommese ([16], p. 56) by saying that a projective manifold X is
as special as any of its ample hypersurfaces. Recently Maeda and the author
[4], [S], [6] started to revisit this philosophy in the setting of ample vector
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bundles discovering some analogies which deserve to be further investigated.
The appropriate set-up to do this is the following.

(0.1) & is an ample vector bundle of rank » > 2 on a complex projective
manifold X of dimension # such that there exists a section s € I'(&) whose zero
locus Z = (s) (as a scheme) is a submanifold of X of the expected dimension
n—r.

Note that (0.1) includes the case of ample and spanned (i.e. globally
generated) vector bundles, since in this case any general section satisfies the
condition above due to the Bertini theorem (e.g. see [12], Theorem 1.10 or [15],
Teorema 3.8).

Pairs (X, &) as in (0.1) with n — r > 1 have been studied in [4] for Z
a projective space or a quadric, in [5] for Z a ruled surface, and in [6] for Z
a scroll or a quadric fibration over a smooth curve with respect to a polarizing
ample line bundle on X. The aim of this paper is to investigate (X, &) when Z
is a surface of Kodaira dimension zero. The main result is the following

Theorem. Let (X, &) be as in (O.bl) and assume that Z is a surface of Kodaira
dimension k(Z) = 0. Then (X, &) is one of the following:

(1) X = Ps(&), where F is an ample vector bundle of rank n — 1 over a
smooth surface S with k(S) =0 and & = n*V Q H, where H = H(%)
is the tautological line bundle on X, V is a vector bundle of rank n — 2 on
S and w : X — § is the bundle projection; moreover 7 : Z — S isa
birational morphism, but not an isomorphism;

(2) there exist a birational morphism ¢ : X — X' expressing X as a projective
manifold X' blown-up at a finite set B and an ample vector bundle &' of
rank n — 2 on X', such that & = ¢*& @ [—¢p~'(B)], having a section
whose zero locus Z' satisfies (0.1). Moreover X' is a Fano manifold with
—Ky = det& and Z' is a K3 surface dominated by Z via the birational
morphism ¢|z.

Both cases are effective. Note that in case (2) B could contain some
infinitely near point; in this case ¢ ~'(B) has to be intended as a non reduced
divisor.

The idea of the proof is the following. Since Z is smooth and of the
expected dimension, its normal bundle can be identified with &, so that K, =
(Kx + det &)z, by adjunction. Hence if Z is not minimal Ky + det & cannot
be nef. By using [9] we thus see that there is a long but very precise list of
possibilities for (X, &); but for the most part of them it turns out that all smooth
2-dimensional zero loci of sections of & are ruled surfaces, contradicting our
assumption on Z. This easily leads to case (1) or, up to a sequence of
contractions, one gets a similar situation with Z minimal. On the other hand if
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Z is minimal, then the Lefschetz-Sommese theorem combined with elementary
properties of Fano manifolds immediately leads to (2) with X = X’.

The paper is organized as follows. In Section 1 the case when Z is a
minimal surface with x(Z) = 0 is discussed from a slightly more general
point of view and some examples are given. The case of non-minimal surfaces
occurring as zero loci is settled in Section 2. The Theorem is proved in
Section 3. In Section 4 I discuss some more details on case (1) and improve
a result of [5] as an application of the Theorem.

I would like to thank Hidetoshi Maeda for many helpful discussions and
his valuable criticism.

1. Zero loci with numerically trivial canonical bundle.

Throughout all the paper varieties are defined over the complex number
field C. We use the standard notation from algebraic geometry. Projective
manifold means smooth projective variety. We make no distinction between
vector bundles and locally free sheaves. The tensor products of line bundles
are denoted additively, while we use multiplicative notation for intersection
products in Chow rings. Let X be a projective manifold. The pull-back of
a vector bundle & on X by an embedding i : ¥ < X is denoted by &y.
The canonical bundle of X is denoted by Kx and «(X) stands for the Kodaira
dimension of X. X is called a Fano manifold if its anticanonical bundle — Ky is
ample. A projective manifold X is said to be regular if k' (0x) = 0. Let (X, &)
be a pair as in (0.1) and assume that n —r > 1. We point out the following fact
mentioned in the Introduction. Since Z is smooth of the expected dimension
n — r, the normal bundle Nz,x of Z in X is

NZ/X = éoz
(e.g. [2], Example 6.3.4 or [12], p. 266). Hence, by adjunction, we get
(1.0.1) Kz =(Kx)z +detNz/;x = (Kx +det&)z.

Lemma 1.1. Let (X, &) be a pair as in (0.1) with n — r > 2 and assume that
K7 is torsion. Then Z is regular, Ky is trivial and X is a Fano manifold with
—Kyx = det &. In particular all extremal rays of X have length > r.

Proof. By the Lefschetz-Sommese theorem ([6], Theorem 1.1) the restriction
homomorphism Pic(X) — Pic(Z) is injective (with torsion free cokernel).
Thus, since Kz is torsion, in view of (1.0.1) there exists a positive integer
m such that m(Kx + det&) = &x. This implies that —Ky is ample, i.e.
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X is Fano. But then Pic(X) has no torsion (e.g see [7], Lemma 1.3), hence
Ky + det & itself is trivial. Thus K, is trivial by (1.0.1). Moreover since
Fano manifolds are regular, by the Lefschetz-Sommese theorem again we get
h'(Oz) = h'(Ox) = (. Finally, for every rational curve C C X, looking at the
normalization v : P! — C we have

~KxC = (det&)C = deg (v*é¢) > r,

due to the ampleness of &. So the last assertion follows from the definition of
the length [(R) of an extremal ray R of X

I(R) :==min{—KxC | C C X rational curve with [C] € R}. O

1.2. For n — r = 3, 1.1 says that Z is a Calabi-Yau threefold. To give an
example of this situation consider the Cayley bundle € on the 5-dimensional
smooth hyperquadric Q> [14]. %(1) is a rank-2 vector bundle with cp = 1.
Moreover €'(2) is spanned ([14], Theorem 3.7); hence the rank-2 vector bundle
& = €(3) is ample and spanned. Thus, by combining the Lefschetz-Sommese
theorem with (1.0.1), we conclude that the zero locus of the general section of
& is a Calabi-Yau threefold.

For n —r = 2 we get the situation described in case (2) of the Theorem for
X', &, 7.

Corollary 1.3. Let (X, &) and Z be as in (0.1). If Z is a minimal surface of
Kodaira dimension «(Z) = 0, then X is a Fano manifold with —Ky = det &
and Z is a K3 surface.

1.4. Note that this situation is effective as shown by the following examples.

1) Let X be a Mukai manifold of dimension n, i.e. —Ky = (n — 2).5# with
2 € Pic (X) ample. Recently Mella [10] proved that the general element of the
fundamental system |.5#| is smooth; it thus follows (e.g. see [11], Proposition 1)
that, when by(X) = 1, |##] is base point free. Then & := 9"~ js ample
and spanned and its general section vanishes along a K3 surface. This is true
“a fortiori” when by(X) > 2 and 47 is very ample; see [11], Example 2, for
concrete examples.

i) A less obvious example is the following. On (@6 let & := ¥(2), where
& is one of the two spinor bundles. Recall that .#(1) is spanned as a quotient
of ﬁgg ([13], Theorem (2.8), (ii)); hence .#(2) is ample and spanned and by
adjunction it is easy to see that its general section vanishes along a K3 surface.

iii) For more examples see ([8], (2.5) and the list in Theorem 3.1).
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Another obvious consequence of 1.1, extending a well known result in the
setting of ample divisors ([16], Corollary I-A), is the following

Corollary 1.5. For n —r > 2 no abelian variety can occur as the zero locus
of a section of an ample vector bundle of rank r on a projective manifold of
dimension n.

2. Non-minimal surfaces as zero loci.
As a first thing we have the following

Lemma 2.1. Let (X, &) and Z be as in (0.1) with n — r = 2 and assume that
Z is not ruled. If Z is not minimal, then either

a) X = Pg(F), F denoting an ample vector bundle of rank n — 1 over
a smooth surface S and & = n*¥ @ H, where H = H(%) is the
tautological line bundle on X, V' is a vector bundle of rank n — 2 on S
and v © X — S is the bundle projection, or

b) there exists an effective divisor E on X such that

(E, O(E), &) = P, 6p(—1), 6p(1)2¢2),

Proof. Since Z contains some exceptional curve Kz is not nef, hence Ky +
det & is not nef in view of (1.0.1). Therefore (X, &) fits into one the 13 cases
listed in [9], Theorem. However in cases (1) —~ (7) and (9) — (12) any smooth 2-
dimensional zero locus S of a section of & is a ruled surface. Actually, S is P? in
case (1), and a quadric in cases (2), (5) and (6); in cases (3), (4) S is a Del Pezzo
surface of degree 3, 4 respectively; in cases (7), (9) § is again a Del Pezzo
surface. This is obvious in case (9). In case (7) we have & = .(2), % being a
spinor bundle on @*. Since & is ample and spanned, its general section vanishes
along a smooth surface S and since ¢1(&) = ¢; (%) + 4 = 3, by (1.0.1) we get
Ks = (Ogp(—4) + c1(£))s = (Og(—1))s, so that § is Del Pezzo. Finally §
is a scroll in case (10) and a conic fibration in cases (11) and (12). As to the
surviving cases in the list, (8) gives rise to b), while in case (13) we have that
X = Py (%) for some vector bundle .# of rank n — 1 on a smooth surface S and

&r = Op(1)%0 2

for every fibre F of the bundle projection = : X — . Hence there exists
a vector bundle ¥ of rank n — 2 on S such that & ® [-H] = n*7¥, where
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H = H(%) denotes the tautological line bundle of .# on X. In particular this
gives

(2.1.1) det& = (n —2)H + n*det 7.

We also have

(2.1.2) : Ky =—(n—-1DH + n*(Ks + det %).

Now recall that the line bundle defined by the Wisniewski relation
(2.1.3) L:=n-3)Kx+ (n —2)det>£’,

is ample and gives (X, L) the structure of a scroll over S (see [9], (2.2.8) and
(2.10)). We thus get from (2.1.3), (2.1.2), (2.1.1)

L=—-n-1)(n-3)H+n-3)n*(Ks+det F)+n—-2)(n*det ¥ +(n—2)H),

ie.
L —H=n%((n-3)(Ks+detZ) + (n — 2)det ¥).

This shows that up to twisting .% by a suitable line bundle on S we can assume
that # is ample. This gives case a). U

Let (X, &) and Z be as in 2.1, case b). Since
(E, Op(E) = (P}, Op(-1))

there exists a birational morphism ¢ : X — X’ onto a projective manifold X’
of dimension n contracting E. More information on this case are provided by
the following

Lemma 2.2. Let (X, &) and Z be as in (2.1), case b) and let ¢ : X — X' be
the contraction of E. Then there exist an ample vector bundle &' of rank n — 2
on X' and a section s’ € T'(&") such that (X', &) and Z' := (s')o satisfy (0.1)
and ¢z : Z — Z' is a birational morphism. Moreover (X', &) cannot be as in
case a).

Proof. By [5], Lemma 5.1, we know that there exists an ample vector bundle
& of rank n — 2 on X’ such that

(2.2.1) & = ¢*& @ Ox(—E).
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Now look at the section s € I'(€) vanishing on Z. Due to our assumption, its
restriction to E is an element sg € I'(Op(1)®"=2), Hence (sg)g = ZN E
is a linear subspace of E of dimension > 1. Of course it cannot be a 2-
dimensional linear subspace of E; otherwise we would get Z = (sg) = P?,
contradicting the assumption that Z is not ruled. Hence (sg)g is a line inside E.
Set e := (sg)o. Then e is a smooth rational curve inside Z; moreover

e? = Eze=0z(E)e = Og(—1)e = —1.

Therefore e is a (—1)-curve inside Z, which is contracted by ¢;z. Hence
Z' .= @(Z) is a smooth surface inside X', birational to Z. Moreover let
s’ € T'(&”) be the section corresponding to s via the isomorphism induced by
(2.2.1); then (s")o = Z’, so that (X', &) and Z’ satisfy (0.1). To conclude
the proof assume, by contradiction, that (X', &) is as in case a) of 2.1 and let
. X' — S be the bundle projection. Let x = ¢(E), let F be the fibre of &
containing x and let F be its proper transform. Note that F = P(N, /F) 1S a
P!-bundle over P*~3 whose fibres are the proper transforms of the lines in F
passing through x; moreover E N F is a section of this P!-bundle. So, if f is a
fibre of F we have Ox (E) f = Oz(E) f = 1. Recalling that & = &p(1)®*~2
we thus get by (2.2.1)

& = (p"€' ® Ox(—E); = 67772,

contradicting the ampleness of &. tl

3. Proof of the Theorem.

The theorem will follow by combining 2.1 and 2.2 with 1.3.
Proof. If Z is a minimal surface then the assertion follows from 1.3. So assume

that Z is not minimal. Then 2.1 applies. If we are in case a) then for every fibre
Fofm:X — S,since sp € [(Op(1)®"2), we see that (sp)g = ZN F # 0.
This shows that mjz : Z — § is a surjective morphism. Note that, due to the
irreducibility of Z, it can be dim(Z N F) > 0 only for a finite number of fibres,
and for any such a fibre Fy, dm(Z N Fy) = 1. So, fo := Z N Fy is a a line
inside Fy, hence a smooth rational curve inside Z; moreover fy is a (-1)-curve
since mjz contracts it to a smooth point, due to the smoothness of S. This shows
that 7z is a birational morphism. Note that Pic(X) = n*Pic(S) & Z, X being
a P-bundle over S. Since the restriction homomorphism Pic(X) — Pic(Z) is
injective by the Lefschetz-Sommese theorem [6], Theorem 1.1, this gives an
injective homomorphism

77 Pic(S) ® Z — Pic(Z),
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which shows that 7z cannot be an isomorphism. So this gives case (1) of the
Theorem. Now suppose we are in case b). By applying inductively 2.2 we thus
see that there exists a birational morphism ¢ : X — X’ leading to a triple
(X', &, Z') satisfying (0.1), where Z’ is a minimal surface with k(Z’) = 0.
Thus by applying 1.3 to (X', &, Z') we get the situation described in case (2)
of the Theorem. 0

4. Final remarks.

As a first thing let us give some more details on the situation described in
case (1) of the Theorem, without assuming that «(S) = 0. So,

4.0. let S be a smooth surface and let % and ¥ be an ample vector bundle of
rank n — 1 and a vector bundle of rank n —2 on S respectively. Let X := Ps(&)
and )

(4.0.1) &= H(F) Qm*Y,

where w : X — § stands for the bundle projection and H (%) is the tautological
line bundle on X. Assume furthermore that & is ample and that (0.1) is satisfied.

Note that the situation described in 4.0 gives rise to a pair (X, &) as in case
(1) of the Theorem, apart from the assumption on «(Z). The same argument as
in Section 3 shows that for any section of & vanishing on a smooth surface Z,
7z : Z — § is a birational morphism. Here we want to compute the number of
the exceptional curves it contracts. We have

Proposition 4.1. Let things be as in 4.0 and let t be the number of the
exceptional curves contracted by m(z; then

t =co(F) + 1 (P)er () + c1 (M2 — ().

Proof. Set H = H(%#). Recalling (2.1.1) and (2.1.2) we have
Ky +det& =—~H + 7*(Kg + det & + det ¥).

So, recalling also (1.0.1), we get

4.1.1) K; = (—H + n"(Ks + det F + det ¥))z.

On the other hand since (0.1) is satisfied, Z represents the top Chern class
cn—2(&). Hence by (4.0.1) the class of Z in the Chow ring of X is given by

(4.1.2) Z =H"224 H"3g%c(¥) + H'" *n*cy (V).
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Taking into account the Leray-Hirsch relation for %
H" ' — H'2g%c | (F) + H"37%cy(F) = 0,
we thus get from (4.1.1); (4.1.2), after some computations,
K2 = —ex(#) - (D1 () + aa(F) =i (9P + KL

Then the assertion follows recalling that t = K §' - K % 0O

Note that for ¥ = 62" 4.1 gives t = ¢,(F), a fact which is well
known at least in the setting of hyperplane sections or, more generally, when %
is ample and spanned.

4.2. Looking at (4.0.1) the ampleness of & seems to suggest that ¥ cannot be
too much negative. Though I could not state this in a precise form, there is an
obvious inequality involving the Chern classes of # and #. Actually the same
argument as in Section 3 shows that ‘

(4.2.1) t>1
regardless any assumption on « (S). So 4.1 gives the following inequality:
(4.2.2) c1(¥)? — (V) +ei(Ner(F) = 1 — o (F).

Note that (4.2.2) is certainly satisflied when 7 is nef, since in this case the
Schur polynomial c% — ¢, (is non-negative ([1], Theorem 2.5) and of course
c1(P)ec1(F) = 0 due to the ampleness of #. On the other hand, in view of
several results on ample vector bundles with low top Chern class on surfaces, it
seems reasonable to wonder whether (4.2.1) could be sharpened for «(S) > 0.

We conclude this Section by improving a result obtained in [5]. Referring
to what we said at the beginning of the Introduction, a natural way to rephrase
the speciality of a'submanifold of X is to suppose that it is not of general type.
If & is an ample line bundle on X having a section which vanishes on a smooth
hypersurface Z, then the condition that ¥ (Z) < dim Z implies «(X) = —o0
(see [7], Proposition 1.1 and [3], Proposition 5). It is a natural question to ask.
whether this implication continues. to hold in the setting of ample vector bundles
satisfying (0.1). A partial affirmative answer was provided in [5], Section 5,
discussing the case r = n — 2 with Z a ruled surface. As a consequence of our
Theorem we have the following improvement
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Corollary 4.3. Let (X, &) and Z be as in O.1) withn —r =2. Ifk(Z) <0
then k(X) = —o0.

Proof. In view of [5], Corollary 5.2, we can assume that k(Z) = 0, hence
(X, &) is as in the Theorem. In case (1) having (Kx)r = Kr = Op(1 — n) for
every fibre F of 7, we see that A(mKy) = O forall m > 0. In case (2) we
have «(X) = «(X’) and of course WOmKy)=0forallm > 0, since —Ky is
ample. L
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