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ON SEPARABLE ALGEBRAS
IN GROTHENDIECK GALOIS THEORY

FEDERICO G. LASTARIA

To the memory of Umberto Gasapina

We give an explicit proof of the fundamental theorem of Grothendieck
Galois theory: the category of separable algebras over a field K is anti-
equivalent to the category of continuous actions on finite sets of the profinite
fundamental group of K.

1. Introduction.

The aim of this note is to give an exposition of Grothendieck theorem
on Galois theory, emphasizing the role of continuous actions and of separable
algebras in that context. ‘

Galois theory for field extensions that are algebraic normal and separable
but of possibly infinite degree, requires regarding Galois groups as topological
groups. Galois groups are profinite groups; the converse also holds (see [3], [6],
[81). Recall that profinite groups are (projective) limits, in the category of topo-
logical groups, of diagrams whose vertices are finite discrete groups. Equiva-
lently, profinite groups are totally disconnected compact Hausdorff groups ([7]).
Then we have the following:

Theorem 1.1. (Fundamental Theorem of Infinite Galois Theory). Let K C L
be a Galois extension with Galois group G = Gal(L/K). Then there is a
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bijection between the set F of all intermediate fields between K and L and the
set & of all closed subgroups of G. More precisely, F —> Gal(L/F) is a one-
to-one mapping from F to . Its inverse is the mapping H — L* = {x ¢
L|o(x) =x Vo e€H} Furthermore, let the intermediate field F correspond
to the closed subgroup H. Then:

i) K C F is finite <= H is open. When this occurs, [F: K] = [G: H];
ii) K C F is Galois <= H is normal.

(See e.g. [3] or [6] for a proof).

The largest Galois extension of any field K is the separable closure K,
of K, that is the subfield of the algebraic closure K consisting of all elements
separable over K ; K; = K if char(K) = 0.

Now let E be any intermediate field between K and K, with [E: K] finite.
Then the subgroup H = Gal(K/E) C G is open and the set of left cosets G/ H
is finite. Furthermore, the transitive action of G on the finite discrete set G/H
is continuous, because the stabilizer H is open. This allows to see the Galois
connection E <—> K as an order reversing bijection between intermediate
fields K C E C K, of finite dimension over K and continuous transitive actions
of G on the finite discrete sets G/H with H open.

Once this point of view is adopted, one is led to extend the Galois connec-

tion by-taking into account all coproducts of such continuous transitive actions
- 1.e., up to isomorphisms, all continuous actions — on the one hand and all
products of such intermediate fields — i.e., up to isomorphisms, all separable K -
algebras - on the other. Indeed this can be done in a functorial way exhibiting
an equivalence of categories, as Grothendieck theorem shows (see Theorem 2.1
below). _
This theorem is a special instance of Grothendieck Galois theory for schemes,
which classifies the finite étale coverings of a connected scheme X in terms
of the fundamental group 7 (X) of X (see Remark 2.2). Nevertheless, a direct
approach, even if it may appear as a mere reformulation of infinite Galois the-
ory, is worthy both as a motivating example for further developments and for
its intrinsic interest. Clearly the new aspects of this paper regard some detailed
proofs which, though essentially known to the specialists, are usually difficult
to find in the literature. ‘

A very useful introduction to Galois theory for schemes, to which the
author and the present paper are indebted, is [4]. For a related approach at
least for finite Galois groups, see [1].



ON SEPARABLE ALGEBRAS. .. 129

2. A categorical version of Galois theory.

Let K be any field. By a K-algebra we mean a commutative ring A with
an identity element, along with a ring morphism f : K —> A. Equivalently,
a K -algebra is a commutative ring A with an identity element, which is also a
K -vector space and satisfies

k(ab) = (ka)b = a(kb)

for every k € K and every a, b € A.

Let K be the algebraic closure of K. A K-algebra A is separable (over K) if
A=A® K K has zero Jacobson radical, that is, if the maximal ideals of A have
intersection zero. A finite-dimensional K -algebra A is separable if and only if
A is isomorphic to a finite product of finite dimensional field extensions of K
each of which is separable in the usual sense: the irreducible polynomial over
K of any of its elements has no repeated roots in any splitting field.

Theorem 2.1. (Grothendieck). There is an equivalence of categories
Op ~ G
(SepAlg )™ =~ Setﬁn

between the dual of the category of separable K -algebras over a field K and
the category of continuous actions on finite sets of the profinite Galois group
G = Gal(K,/K) of a separable closure K of K.

Proof. We must prove that there exist two functors
. op G
(O (SepAng) —_— Se:tﬁn

I Set’ —> (SepAlg, )*

for which I'® and ®I' are naturally equivalent to the identity functors of
(SepAlg )P and Setgn respectively.

1) Definition of the functor ®.
If A is any separable K -algebra, let

®(A) = Alg, (A, K,)

be the set of all K-algebra morphisms from A to K. The Galois group
G = Gal(K,/K) acts on ®(A) by composition on the left. Fix a K -algebra

isomorphism
h
A~T]k:.
i=I
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where K C K; € K, foreachi = 1,...,h and every K C K; is a finite
separable extension of the field K. By the fundamental theorem of infinite

Galois theory,
K; = K&,

where G; C G is the open subgroup:
={oceG|lox)=x Vxek;).
Since
Alg, (K7, K,) ~ G/ G,
(Lemma 2.4) and

h h
Alg, ([ 1k &) ~ ] JAlg, ki, k)
i i=1

i=l

as G-sets (Lemma 2.5), we have the following G-set isomorphisms:
h
Alg (A, Ky) ~ Alg (T]k
, h i=1
~ [ [ Alg, (k;, k)

h
~ [ JAlg, (k% k)

Each index [G:G;] is finite, because the subgroups G, are open: thus
Alg (A, Ky) is a finite set. Furthermore the action of G on each finite dis-
crete set G/G; is continuous, because the stabilizer G; is open; therefore the
action of G on Ang (A, K;) ~ ]_L G/ G, is continuous too. At last, ® is de-
fined on arrows in the obvious way: for any K -algebra morphism f: A — B,
D(f): P(B) — P(A) maps g € P(B) to gf € P(A).

2) Definition of the functor T".
For any § in SetG let

I'(S) = Setgn (S, K,)
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be the K -algebra of all G-set morphisms from S to K. Here K, is seen as a G-
set via evaluation and operations on the K -algebra I'(S) are defined pointwise.
We still have to prove that I"(S) is separable as a K -algebra.

Let S be any finite continuous G-set and S =~ ]_[fl=1 S; its decomposition as
coproduct of orbits. For each S; there is an isomorphism S; ~ G/G; for some
open subgroup G; € G (choose any point in S; and let G; be its stabilizer).
Then S ~ [[/_, G/G; and

h
Set? (S, K;) ~ Set’ ([ [ G/ G, k)

i=1

~]—[3et (G/Gi, K)

where each K5 is a finite separable field extension of K (see Lemma 2.3). This
proves Set (S K;) 1s a separable K -algebra.

For each G “set morphism ¥ : § — T, I'(¢) : [(T) —> T'(S) maps g to the
composite gv. This completes the definition of the functor I".

3) The natural isomorphism 1 —> " ®.
We define a natural isomorphism 7 : 1 == I'® as follows. For all separable
K -algebras A define

n,:A— I'd(A) = Setgn(Ang(A, K, K,)
by:
n,(a)(g) = g(a)
forallace Aand g € Ang (A, K;). Commutativity of the square

A B
[l
F®(A) — Fo — ['®(B)

S —

follows easily from the definitions of 7, I' and . In fact, for every a € A and
g€ Ang(B, K),
[T P)(fIn, (@) (@) = [T (Pf)(n,(@)](g)
= M, (@) Pf)(g)
=n,(@)(gf) =¢(f(a))
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and

(, f)(@)(8) = n,(f(a))(g)
= g(f(a).
It remains to prove that 7, is an isomorphism for every K -algebra A. Since all

K -algebras are isomorphic to some product B = H;;l KSi and 7 is a natural
transformation, it is enough to show that n, is an isomorphism for every such
product B. Now we have the following isomorphisms:

h
B=]]kS
i=1

h
~ [ set (G/Gi, k)

i=]

h
~Set? (] [ G/Gi, k)
=1

h :
~ Set? (] [Alg, (K%, K))

i=1

~ Setl (Alg, HKG, 5), Ky)
i=l

o([]x)

=["d(B).
The first isomorphism is defined in Lemma 2.3; the second is categorial; the
other two are defined in Lemmas 2.4 and 2.5 respectively. Keeping into account
how the above isomorphisms are defined, one sees that their composition is
exactly the evaluation n,. Indeed, let w be the composition of the above
isomorphisms. For any x = (x1,...,x,) € B, w(x) € [®(B) is described as
follows. Let f be in Alg, (]—[ff:l KS,K;);by Lemma 2.5 f = fjm; where ;.
is the j-th projection and f; : KSG’ —> K. AsinLemma 2.4, write f; = U|ch ‘
as the restriction of a suitable o € G. Then '

() = O] (0)
= (fjm;)(x)
= f(x)
=T, (f)
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It follows @ = n, as claimed.

3) The natural isomorphism 1 == @I,
The existence of a natural isomorphism 7 : 1 == T is proved similarly. For

every G-set S, define
7y 1§ — OI(S) = Alg, (Set? (S, K,), K,)

by: 7,(s)(¢) = ¢(s) forall s € S and ¢ € SetﬁGn (S, K5). Naturality, that is
commutativity of

s T

4k

PI'(S) rer OI'(T)
for every o : S — T, is easily checked.
It is enough to prove t, is an isomorphism for any coproduct T = ]__[?____1 G/ G,
because any object in Seth is isomorphic to such a 7" and 7 is natural. Indeed,
we have the following isomorphisms:

h
| JAlg, (kS Ky

12

h
Alg ([TKE. K,
[==1

h
~ Alg ([ [Set€ (G/Gi. k), K.)

i=1

h
~ Alg, (Setgn(]_[ G/Gi, K;), Ks)

=1

= ®I(T)

where the first three isomorphisms are defined respectively in Lemmas 2.4,
2.5, 2.3, while the fourth one 1s categorial. Unravelling the definitions of the
isomorphisms above, we see that their composition is exactly ..

Then v : 1 == &I is a natural isomorphism. This ends the proof of the
theorem.
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Remark 2.2. The equivalence (SepAlg, )* ~ Set is a special instance of
Grothendieck Galois theorem for schemes

Let X be any connected scheme. Then there exists a profinite group G, unique
up to isomorphisms, for which the category FinEt y Of finite étale coverings of X

is equivalent to the category Setgn of finite sets on which G acts continuously.
(See [4], [S5]). The group G is the fundamental group of X. If X = SpecK
is the spectrum of an arbitrary field K, then FinEt, ~ (SepAlg, )® and
G = Gal(K,/K). Hence Theorem 2.1 is the spemal case X = SpecK of
the theorem above, up to the claim about uniqueness of the group G.

Notice that the category (SepAlg )7 1s a Galois category in the sense of
Grothendieck (see [2], Exposé 5). Here the fundamental functor is F
(SepAIg )°P —> Set, defined by F(A) = Alg (A, K;) for every K -algebra
A. The functor F is pro representable and a fundamental pro-object is any
separable closure K of K. ~

2.1. Some lemmas.
We collect in this section some facts used in the proof of Theorem 2.1.
Lemma 2.3. Let G; C G be any subgroup. Then
Set? (G/Gi, K,) ~ K

as K -algebras.

Proof. Let¢ : G/G; —> K, be any G-set morphism and let a = ¢([G;]).
Then for every o € G;,

o(a) = o (@(Gi]) = ¢(o[Gi]) = ¢((Gi]) = a.
Thusa e K SG" . Then it is easily seen that evaluation in [G;]:
Set? (G/Gy, K;) — K
¢ — ¢(G;])
gives the claimed isomorphism.

Lemma 2.4. Let H be any closed subgroup of the Galois group
G = Gal(K;/K). Then

G/H ~ Alg, (K[, K,)

as G-sets.



ON SEPARABLE ALGEBRAS. .. 135

Proof. Define
p:G/H — Alg, (KH, Ky)

as restriction to K SH : p(gH)(x) = g(x) for every left coset gH and every
x € K¥ . It is easy to see that p is well defined and that it is an injective G-set
morphism. It is also surjective, because every f € Alg X (KF, K;) extends to
an automorphism of the algebraic closure of K and the restriction f|g, to the
separable closure belongs to G = Gal(K/K) because K is normal over X .

Lemma 2.5. Let K C K;, i = 1,...,h, and K C L be any field extensions.
Then there is a bijection of sets:

h h
[ [Alg, (ki, L) ~ Alg, (] | . L)
i=1

i=1
Proof. We prove the map

h h
A ] JAlg, (Ki, L) — Alg, ([ [ ki, L)
i=1 i=1

(g:K; — L) —> gm;
is a bijection. Let f be in Alg, ( [T, ki, L). , |
The elements ¢; = (0,...,1,...,0) (all zeroes except 1 at the i-th position),
i =1,...,h, are idempotents (ei2 = ¢;). Therefore the elements f(e;) € L are
idempotents as well. Since L is a field, this means f(e¢;) = 0 or 1. Since f
preserves units, that is

l=f0,....0)=fler+--+ep) = fler)+ -+ fen),
there is at least one index, say j, for which f(e;) = 1. If i # j,
0= fQ0) = fleie;)) = f(e;) fej) = fe;).
Thus for every (x1,...,Xx,) € H?:] K;
SO, xn) = f((xr, .., 0er 4+ + (0,00, xp)ep)
= f(x1,...,00 fle)+---+ fO,...,xp) f(en)
= f0,...,x,...,0) f(e)
:_—f(o,...,Xj,...,O).

Then we see that there is a unique g € ]__[?z1 Ang(Ki, L) such that A(g) =
gm; = f,namely g : K; —> L defined by g(x;) = f(0,...,x;,...,0) for all
Xj € Kj.
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