DECOMPOSIZIONE ED s-m RAPPRESENTAZIONE DI GRUPPI FINITI

FRANCO MIGLIORINI - JENÖ SZÉP

Alla memoria di Umberto Gasapina

This paper is a survey of a few previous works of the authors with other new results. We introduce a special decomposition of a finite group [semigroup] and determine its main properties. From a such decomposition $\{C_i\}, i=1,\ldots,n$ of a group $S(C_i\subset S)$, one can construct, for a special class of finite groups, a set-matrix representation. The group D_4 has a such representation. Several theorems were already obtained on groups with s-m representation.

Introduzione.

Questo lavoro è un riassunto (senza dimostrazioni, reperibili attraverso la bibliografia indicata) dei principali risultati ottenuti dagli autori in una serie di ricerche condotte negli ultimi anni ([1], [4], [5]). Compaiono qui anche alcuni nuovi risultati, corredati di dimostrazione, la trattazione in alcune parti è più lineare di quella originale e viene indicato qualche problema aperto. Alcuni errori ed imprecisioni (dovuti anche ad una stampa poco accurata) negli articoli [4] e [5] sono stati corretti.

Se S è un gruppo finito, sia $\Gamma = \{g_1, g_2, \ldots, g_m\}$ un sistema di generatori

The work is partially supported by contribution of MURST for Scientific Research (60% quota).

indipendenti di S. Restano univocamente determinati certi sottoinsiemi $C_r(r = 1, ..., n)$ ove C_r raccoglie gli elementi di S che hanno lunghezza minima r rispetto a Γ .

Tali insiemi hanno avuto un ruolo notevole in alcune ricerche riguardanti il problema di Burnside per i semigruppi (cfr. [1], [2], [3]).

I risultati principali che saranno esposti riguardano:

- proprietà della decomposizione $S = \bigcup_{i=1}^{n} C_i$;
- costruzione dei gruppi che hanno un dato numero m di generatori indipendenti ed un dato numero n di componenti C_i ;
- studio di una particolare rappresentazione, mediante matrici quadrate, con componenti dei sottoinsiemi dei C_i , rappresentazione, però, che solo alcuni gruppi finiti ammettono;
- alcune proprietà dei gruppi che ammettono particolari rappresentazioni s-matriciali.

Lo scopo principale degli autori è di trasferire, in seguito, con le opportune modifiche, molti dei risultati ottenuti ai semigruppi inversi finiti.

1. In [1] abbiamo introdotto i sottoinsiemi C_i di S, semigruppo con un numero finito di generatori periodici, allo scopo di determinare condizioni di finitezza di S (problema di Burnside per i semigruppi). In seguito ([4]) abbiamo considerato tali sottoinsiemi in un gruppo.

Sia S un gruppo finitamente generato e $\Gamma = \{g_1, g_2, \ldots, g_m\}$ un sistema di generatori indipendenti di S (cioè tali che $g_i \notin \langle g_1, \ldots, \hat{g}_i, g_{i+1}, \ldots, g_m \rangle$, $i = 1, \ldots, m$) con $g_i^{\alpha_i} = 1$ ($\alpha_i \geq 2$, ordine di g_i).

È noto ([1]) che esiste una rappresentanza di lunghezza minimale, 1(s), per ogni elemento $s \in S$, mediante i generatori in Γ . Sia $C_i = \{s \in S/l(s) = i\}$; è chiaro che $C_1 = \Gamma$. Inoltre $C_i \neq \emptyset$ implica $C_{i-1} \neq \emptyset$ ed è:

(1)
$$S = C_1 \cup \ldots \cup C_i \cup \ldots$$
, ove $C_i \cap C_j = \emptyset$ per $i \neq j$.

Se S è un gruppo finito, esiste n > 1 tale che in (1) $C_n \neq \emptyset$ e $C_j = \emptyset$ per j > n. In tal caso la decomposizione di S è $S = \bigcup_{i=1}^{n} C_i$.

È chiaro che
$$S = Sg_i = \bigcup_{j=1}^n C_j g_i, \forall g_i \in \Gamma$$
, ove $C_j g_i \subseteq \bigcup_{k=1}^{j+1} C_k$.
Sia $C_k^{ij} = C_k \cap C_i g_j$.

Teorema 1. Valgono le seguenti affermazioni:

1.
$$|S| = \sum_{i=1}^{n} |C_i g_j| \ (j = 1, ..., m)$$

$$2. \quad C_i g_j = \bigcup_{k=1}^{i+1} C_k^{ij}$$

2.
$$C_i g_j = \bigcup_{k=1}^{i+1} C_k^{ij}$$
3.
$$C_i = \bigcup_{k=i-1}^{n} C_i^{kj}, \forall j$$

- $g_{i_1}g_{i_2}\dots g_{i_t}g_j=g_{j_1}\dots g_{j_u}\Rightarrow u-1\leq t\leq u+a_j-1$
- 5. $1 \in C_k \Rightarrow k \leq \min_i \alpha_i$
- 6. $m \leq n$
- Se $g_{i_1} \dots g_{i_k} = 1$, allora la molteplicità di ogni generatore nel prodotto è almeno 2.

Dimostrazione. Cfr. Theorem 1 di [4].

Dato il numero n delle componenti $C_i (\neq \emptyset)$ nella decomposizione di S ed il numero m dei generatori in Γ , si può risalire (almeno per n ed m piccoli) ai gruppi S che ammettono una tale decomposizione $S = \bigcup_{i=1}^{n} C_i$.

In questa direzione di ricerca, abbiamo ottenuto ([4], Theorem 3 e 4 (corretto)), attraverso ragionamenti basati sulle proprietà delle componenti C_i , con l'ausilio del Teorema 1, il seguente risultato.

Teorema 2.

- i) Per m = 2, n = 2, esistono i gruppi K_4 (di Klein) ed S_3 ;
- ii) Per m = 2, n = 3, esistono i gruppi S_3 , $Z_2 \times Z_3$, D_4 (diedrale).

Si trovano condizioni su C_1 e su C_2 affinchè S sia abeliano.

Teorema 3. S è abeliano se e solo se $g_i C_1 g_i^{-1} = C_1$ (i = 1, ..., m).

Dimostrazione. Cfr. Theorem 9 di [4].

Teorema 4. Se $C_2 = \{g_1^2, g_1g_2, \dots, g_1g_m\}$, allora $S \in un$ gruppo abeliano.

Dimostrazione. Non è una perdita di generalità, evidentemente, aver supposto primo fattore fisso g_1 , anzichè g_h qualsiasi. Innanzitutto, un qualsiasi prodotto $g_i g_i$ sta in C_2 . Infatti si vede facilmente che $g_i g_i$ non può appartenere a C_1 . Allora per ipotesi esiste k tale che $g_i g_i = g_1 g_k$. Sia $i \neq 1$, $j \neq k$ (casi banali) e $i \neq j$. Se j = 1 si ha $g_i g_1 = g_1 g_k \Rightarrow i = k$ (altrimenti i generatori non sono indipendenti), quindi $g_i g_1 = g_1 g_i$. Se $j \neq 1$, sia $g_i g_j = g_1 g_k$: ne segue j = k, i = 1, quindi $g_i g_i = g_1 g_k = g_k g_1 = g_i g_i$. Pertanto S è abeliano.

Problema 1. Determinare una condizione sufficiente su C_3 affinchè S sia abeliano.

Teorema 5. Se, per qualche $s \in S$, $sC_1s^{-1} = C_1$, allora $sC_is^{-1} = C_i(i = 1, ..., n)$.

Dimostrazione. Cfr. Theorem 10 di [4].

Il Teorema 5 gioca un ruolo importante per lo sviluppo della ricerca. Sia G_i il sottogruppo di S generato da $\Gamma - \{g_i\}$, cioè $G_i = \langle g_1, \ldots, \hat{g}_i, \ldots, g_m \rangle$. Poichè Γ è indipendente, $G_i \neq S$, $\forall i$.

Sia $N(C_1) = \{s \in S \mid sC_1s^{-1} = C_1\}$ il normalizzante di C_1 in S. $N(C_1)$ è un sottogruppo si S.

Proposizione 6. Se nessun sottogruppo $G_i(i = 1, ..., m)$ è fattore diretto di S, allora $g_j \notin N(C_1)$, $\forall j$.

Dimostrazione. Nel caso contrario, se g_j appartiene a NC_1 , si ha $g_j g_i g_j^{-1} = g_i$, $\forall i$, quindi $S = G_j \times \langle g_j \rangle$, contro l'ipotesi.

2. Sia $s \in S$, si ha

$$S = sSs^{-1} = s\left(\bigcup_{i=1}^{n} C_i\right)s^{-1} = \bigcup_{i=1}^{n} (sC_is^{-1}):$$

compaiono così, in modo naturale, i sottoinsiemi sC_is^{-1} . Se $i \neq j$, $sC_is^{-1} \cap sC_js^{-1} = \emptyset$. Si rivelano importanti, per la nostra ricerca, anche i sottoinsiemi

$$sC_is^{-1} \cap C_j = C_{ij}(s) \ (i, j = 1, ..., n; s \in S).$$

Ad ogni elemento $s \in S$ possiamo associare una matrice, o set-matrice (s-matrice), quadrata, M(s), le cui componenti sono sottoinsiemi di S:

$$M(s) = \begin{bmatrix} C_{11}(s) & C_{12}(s) & \cdots & C_{1n}(s) \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1}(s) & C_{n2}(s) & \cdots & C_{nn}(s) \end{bmatrix}.$$

In generale può accadere che elementi diversi $s \neq s'$ di S diano luogo a matrici uguali, M(s) = M(s') (cioè $C_{ij}(s) = C_{ij}(s')$, $\forall i, j$). Sia $\rho \subseteq S \times S$ l'equivalenza su S tale che $(a, b) \in \rho \Leftrightarrow M(a) = M(b)$, $(a, b \in S)$.

Proposizione 7. ρ è una congruenza sinistra in S.

Dimostrazione. Sia $(a, b) \in \rho$ e $s \in S$. Allora $C_{ij}(a) = C_{ij}(b)$, $\forall i, j$, quindi $aC_ia^{-1} \cap C_j = bC_ib^{-1} \cap C_j$, $\forall i, j$. Ne segue $aC_ia^{-1} = bC_ib^{-1}$, $\forall i$, quindi anche $C_{ij}(sa) = C_{ij}(sb)$, $\forall i, j$. Pertanto $(sa, sb) \in \rho$ e ρ è una congruenza sinistra.

Ma la stessa ρ non è una congruenza destra in S in generale. Sia $\mathcal{M}(S) = \{M(s) \mid s \in S\}$. È chiaro che, se $s \in N(C_1)$,

$$M(s) = \begin{bmatrix} C_1 & \emptyset & \cdots & \emptyset \\ \emptyset & C_2 & \cdots & \emptyset \\ \vdots & \vdots & \ddots & \ddots \\ \emptyset & \emptyset & \cdots & C_n \end{bmatrix}.$$

E viceversa.

Sia $\varphi: S \to \mathcal{M}(S)$ l'applicazione suriettiva tale che $\varphi(s) = M(s), \forall s \in S$. Definiamo una moltiplicazione in $\mathcal{M}(S)$.

Definizione 8. M(s)M(s') = M(ss') $(s, s' \in S)$.

È chiaro che, affinchè la definizione sia valida, il prodotto M(ss') deve essere indipendente dai rappresentatnti di M(s) ed M(s'). Questa indipendenza si ha se e solo se ρ risulta una congruenza in S, e tale noi la supponiamo. In tal caso la moltiplicazione in $\mathcal{M}(S)$ è associativa. Inoltre φ risulta un epimorfismo ed S/ρ risulta isomorfo ad $\mathcal{M}(S)$, quindi $\mathcal{M}(S)$ è un gruppo, con unità M(1). Un teorema di grande utilità è il seguente:

Teorema 9. ρ è una congruenza in S se e solo se $N(C_1)$ è un sottogruppo normale di S.

Dimostrazione. Se ρ è una congruenza, esiste un sottogruppo normale N di S tale che $S/\rho \equiv S/N$ ed $(a,b) \in \rho \Leftrightarrow ab^{-1} \in N$. Ma $(a,b) \in \rho \Leftrightarrow M(a) = M(b) \Leftrightarrow M(ab^{-1}) = M(1) \Leftrightarrow ab^{-1} \in N(C_1)$, quindi $N(C_1) = N$, onde $N(C_1) \triangleleft S$ ed $S/\rho = S/N(C_1)$.

Viceversa, se $N(C_1) \triangleleft S$, $N(C_1)$ determina una congruenza σ in S, tale che:

$$(a, b) \in \sigma \Leftrightarrow ab^{-1} \in N(C_1) \Leftrightarrow aN(C_1) = bN(C_1).$$

Ma è chiaro che, se b = ac con $c \in N(C_1)$, si ha, per il Teorema 5, $C_{ij}(b) = C_{ij}(a)$, $\forall i, j = 1, ..., n$.

Pertanto $aN(C_1) = bN(C_1) \Leftrightarrow M(a) = M(b)$, onde $(a, b) \in \sigma \Leftrightarrow (a, b) \in \rho$, così $\sigma = \rho$ e ρ è una congruenza.

In conclusione, se ρ è una congruenza in S, $\mathcal{M}(S)$ è un gruppo isomorfo a $S/N(C_1)$. In questo caso si ha una rappresentazione matriciale, con set-matrici (s-matrici) di S su $\mathcal{M}(S)$. In altri termini, il Teorema 9 vale anche:

Teorema 10. Un gruppo finito S ammette una rappresentazione set-matriciale (s-m rappresentazione) se e solo se, rispetto ad un opportuno sistema Γ di generatori indipendenti, $N(C_1)$ è normale in S.

Se $N(C_1) = \langle 1 \rangle$, la s-m rappresentazione è un isomorfismo.

Esempio 1. Sia D_4 il gruppo diedrale, con generatori indipendenti $\Gamma = \{g, h\} = C_1, g^4 = h^2 = 1.$

Vale l'uguaglianza $g^r h = hg^{4-r}$, da cui $g^3 h = hg$. La tabella di Cayley di D_4 è la seguente:

	1	g	g^2	g^3	h	gh	$\int g^2h$	hg
1	1	g	g^2	g^3	h	gh	g^2h	hg
g	g	g^2	g^3	1	gh	g^2h	hg	h
g^2	g^2	g^3	1	g	g^2h	hg	h	gh
g^3	g ³	1	g	g ² ,	hg	h	gh	g^2h
h	h	hg	g^2h	gh	1	<i>g</i> ³	g^2	g
gh	gh	h	hg	g^2h	g	1	g^3	g^2
g^2h	g^2h	gh	h	hg	g^2	g	1	g^3
hg	hg	g^2h	gh	h	g^3 .	g^2	g	1

$$C_2 = \{1, g^2, gh, hg\}, C_3 = \{g^3, g^2h\}.$$

Si nota facilmente che C_2 è un sottogruppo normale di D_4 . Determiniamo la rappresentazione $\varphi: D_4 \to \mathcal{M}(D_4)$. Si ha, con facili calcoli:

$$M(1) = \begin{bmatrix} C_1 & \emptyset & \emptyset \\ \emptyset & C_2 & \emptyset \\ \emptyset & \emptyset & C_3 \end{bmatrix}, \quad M(g) = \begin{bmatrix} \{g\} & \emptyset & \{g^2h\} \\ \emptyset & C_2 & \emptyset \\ \{h\} & \emptyset & \{g^3\} \end{bmatrix},$$

$$M(h) = \begin{bmatrix} \{h\} & \emptyset & \{g^3\} \\ \emptyset & C_2 & \emptyset \\ \{g\} & \emptyset & \{g^2h\} \end{bmatrix}, \quad M(g^2) = \begin{bmatrix} C_1 & \emptyset & \emptyset \\ \emptyset & C_2 & \emptyset \\ \emptyset & \emptyset & C_3 \end{bmatrix},$$

$$M(g^3) = \begin{bmatrix} \{g\} & \emptyset & \{g^2h\} \\ \emptyset & C_2 & \emptyset \\ \{h\} & \emptyset & \{g^3\} \end{bmatrix}, \quad M(gh) = \begin{bmatrix} \emptyset & \emptyset & C_3 \\ \emptyset & C_2 & \emptyset \\ C_1 & \emptyset & \emptyset \end{bmatrix},$$

$$M(g^{2}h) = \begin{bmatrix} \{h\} & \emptyset & \{g^{3}\} \\ \emptyset & C_{2} & \emptyset \\ \{g\} & \emptyset & \{g^{2}h\} \end{bmatrix} , M(hg) = \begin{bmatrix} \emptyset & \emptyset & C_{3} \\ \emptyset & C_{2} & \emptyset \\ C_{1} & \emptyset & \emptyset \end{bmatrix}.$$

Pertanto si ha:

$$M(1) = M(g^2)$$
, $M(g) = M(g^3)$, $M(h) = M(g^2h)$, $M(hg) = M(gh)$.

Inoltre $N(C_1) = \{1, g^2\}$ è un sottogruppo normale di D_4 . Allora ρ è una congruenza in D_4 e φ è un omomorfismo. Infine il gruppo

$$\frac{D_4}{N(C_1)} = \left\{ N(C_1) , gN(C_1) , hN(C_1) , ghN(C_1) \right\}$$

è isomorfo al gruppo $\mathcal{M}(D_4) = \{M(1), M(g), M(h), M(gh)\}.$

Esempio 2. Nel lavoro [5] si considerano (Esempi 1 e 2) due diverse decomposizioni di S_3 , rispetto a due diversi sistemi di generatori indipendenti. La prima di queste decomposizioni non dà luogo ad una s-m rappresentazione di S₃ (poichè $N(C_1)$ non è normale in S_3), mentre la seconda decomposizione di S_3 dà luogo ad un isomorfismo tra S_3 ed $\mathcal{M}(S_3)$.

Il teorema che segue è utile per successivi sviluppi.

Teorema 11. $N(C_1) \triangleleft S$ se e solo se $C_{ii}(cs) = C_{ii}(s), \forall i, j \in S$ $c \in N(C_1)$.

Dimostrazione. Sia $N(C_1) \triangleleft S$; allora $cs = sc_1 \text{ con } c_1 \in N(C_1)$, quindi per il Teorema 5 si ha:

$$C_{ij}(cs) = sc_1C_i(sc_1)^{-1} \cap C_j = sC_is^{-1} \cap C_j = C_{ij}(s).$$

Viceversa, sia $C_{ij}(cs) = C_{ij}(s)$, $\forall i, j, \forall s \in S, c \in N(C_1)$. Allora: $csC_i(cs)^{-1} \cap C_j = sC_is^{-1} \cap C_j$, $\forall j$, implies $csC_i(cs)^{-1} = sC_is^{-1}$, $\forall i$. In particolare: $csC_1(cs)^{-1} = sC_1s^{-1}$, quindi $s^{-1}csC_1(s^{-1}cs)^{-1} = C_1$, cioè $s^{-1}cs \in N(C_1), \forall s \in S, c \in N(C_1), \text{ onde } N(C_1) \text{ è normale in } S.$

Diamo ora una condizione sufficiente affinchè ρ sia una congruenza in S.

Teorema 12. *Sia S un gruppo finito e sia:*

$$sC_{ij}(s)s^{-1} = C_{ji}(s) , \forall i, j \ e \ \forall s \in s.$$

Allora si ha che $N(C_1) \triangleleft S$ e $[N(C_1)s]^2 = N(C_1)$. Viceversa, se $N(C_1) \triangleleft S$ e $[N(C_1)s]^2 = N(C_1), \forall s \in S, allora \ vale \ (\alpha) \ in \ S.$

Dimostrazione. Cfr. Theorem 9 di [5].

La condizione (α) è anche sufficiente affinchè S ammetta una s-m rappresentazione.

Problema 2. Trovare una condizione, sui $C_{ji}(s)$, più generale della (α) , affinchè S sia rappresentabile con s-matrici.

Proposizione 13. Per $s \in S$. si ha:

i)
$$C_{ij}(s) = C_{kl}(s) (\neq \emptyset) \Rightarrow i = k, j = l.$$

i)
$$C_{ij}(s) = C_{kl}(s) (\neq \emptyset) \Rightarrow i = k, j = l.$$

ii) $\bigcup_{j=1}^{n} C_{ij}(s) = sC_i s^{-1}, \bigcup_{i=1}^{n} C_{ij}(s) = C_j.$

Consideriamo, infine, un caso particolare.

Teorema 14. Sia $\mathcal{M}(S)$ immagine omomorfa di S. Se esiste in $\mathcal{M}(S)$ una matrice diagonale, nxn, $(n \ge 2)$, della forma:

$$M(s) = \begin{bmatrix} \emptyset & \emptyset & \cdots & \emptyset & * \\ \emptyset & \emptyset & \cdots & \cdots & \emptyset \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \emptyset & * & \cdots & \emptyset & \emptyset \\ * & \emptyset & \cdots & \emptyset & \emptyset \end{bmatrix},$$

ove * indica una componente non vuota, allora si ha:

- 1) n è dispari
- 2) |S| é pari
- 3) Esiste un sottogruppo S' di S tale che S' = $N(C_1) \cup N(C_1)s$.

Dimostrazione. Nel caso considerato, per la Proposizione 13, deve essere:

(*)
$$sC_i s^{-1} \cap C_{n-i+1} = C_{n-i+1}, \forall i.$$

Dalla (*) si ha anche:

$$sC_{n-i+1}s^{-1}\cap C_i=C_i.$$

Sempre da (*) segue:

$$sC_is^{-1} \supseteq C_{n-i+1},$$

quindi

$$s^2C_is^{-2} \supseteq sC_{n-i+1}s^{-1} \supseteq C_i.$$

Ma poichè $|s^2C_is^{-2}|=|C_i|$, deve essere $s^2C_is^{-2}=C_i$, quindi $s^2\in N(C_1)$. Allora $S' = N(C_1) \cup N(C_1)s$ è un sottogruppo di S ed è $[S': N(C_1)] = 2$,

quindi |S| è pari. Inoltre sia $1 \in C_i$, per qualche i. Allora anche C_{n-i+1} contiene 1, pertanto deve essere i = n-i+1, quindi i = (n+1)/2, ed n risulta dispari. Osserviamo che nel precedente Esempio 1 troviamo una verifica del Teorema 14.

BIBLIOGRAFIA

- [1] F. Migliorini J. Szép, A New Approach to the Burnside Problem for Semi-groups, Pu. M.A., Ser. A, 1 (1990), pp. 169-172.
- [2] F. Migliorini J. Szép, Chains and Cycles in the Subsets C_n of Finitely Generated and Periodic Semigroups, I, Pu. M.A., Ser. A, 3 (1992), pp. 117-125.
- [3] F. Migliorini J. Szép, Chains and Cycles in the Subsets C_n of Finitely Generated and Periodic Semigroups, II, Pu. M.A., Ser. A, 3 (1992), pp. 233-242.
- [4] F. Migliorini J. Szép, The Subsets C_n in Finite Groups, I, Pu. M.A., 5 (1994), pp. 205-216.
- [5] F. Migliorini J. Szép, The Subsets C_n in Finite Groups and Inverse Semigroups, II, Pu. M.A., 6 (1995), pp. 57-67.

Franco Migliorini, Dipartimento di Matematica, Università di Siena, 53100 Siena (ITALY)

Jenö Szép, Institute of Mathematics and Computer Science, University of Economic Sciences, H1828 Budapest (HUNGARY)