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QUASI-ABELIAN AND QUASI-SOLVABLE
REGULAR SEMIGROUPS
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1o the memory of Umberto Gasapina

A regular semigroup is said quasi-abelian if every commutator (i.e.
every element of the form [a,b] = a'b'ab for a” € V(a), b’ € V(b)) is
idempotent. In this note, quasi-abelian regular semigroups are studied and
it is proved that they form an e-variety of orthodox semigroups. More,
quasi-abelian regular Bruck-Reilly monoids are characterized as extensions of
monoids which are (reverse) semidirect products of a group and a semilattice.
At last, quasi-abelian congruences are studied and a definition of guasi-
solvability is given, which generalizes the notion of solvability to the class
of regular semigroups: quasi-solvable semigroups of class less than or equal
to a given ¢ > 0 form an e-variety of orthodox semigroups.

The concept of quasi-abelian inverse semigroup is classical in literature
(see for example [9], XII): an inverse semigroup is called quasi-abelian if every
element of the form a~'b~'ab is idempotent. In the present note we extend
in a natural way this definition to regular semigroups; quasi-abelian regular
semigroups indeed immediately reveal to be orthodox; actually they form an
e-variety ([4]; a bivariety [5]) of orthodox semigroups.

By the definition of quasi-abelian regular semigroups, we can generalize to
that class the notion of solvability from Group Theory; solvability was extended
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in [10] to the class of inverse semigroups, by means of a chain of abelian
congruences and it was proved that in groups this definition- coincides with the
classical one. In [1], F. Albegger proposed, by means of quasi-abelian inverse
semigroups, a weaker condition which bypassed some problems that made the
original definition not completély satisfactory. He considered so a new (wider)
class of inverse semigroups, studying in details many properties; he proved in
particular that it is a variety. In the present note, by using quasi-abelian regular
semigroups and congruences, we extend to the class of regular semigroups the
notion given by Albegger, introducing quasi-solvable regular semigroups, which
again result to be orthodox and form an e-variety of orthodox semigroups.

In Section 1 we study quasi-abelian regular semigroups, and in 2 we char-
acterize quasi-abelian semigroups in the class of regular Bruck-Reilly exten-
sions: by means of this characterization, we show that there exist infinitely many
non-isomorphic quasi-abelian regular BR-monoids (while do not exist abelian
BR-monoids). In Section 3 we describe the least quasi-abelian congruence on a
regular semigroup, and in Section 4 we introduce the notion of quasi-solvability
for regular semigroups. At last in Section 5 we study the linkage between this
definition and the original one in inverse semigroups: we prove that if an in-
verse semigroup is solvable in the sense of [10] then it is also a quasi-solvable
regular semigroup and for many special classes (Groups, Clifford semigroups,
E-unitary inverse semigroups, Bruck-Reilly inverse semigroups) the two defini-
tions coincide.

The notations and terminology we use are standard and can be found in [6]
or [9].

1. Quasi-abelian regular semigroups.

Definition. Let S be aregular semigroup. We define $S© = § and forall i > 0:

(S, 891 = {la,b] = a'Vab;a,be SV :a' € V(a) N S, b' e V(b) N SV}
SE+D ([S(i), S(i)]).

The elements [a, b] are called commutators.

Usually we shall write S instead of SV, Note that the present definition
of a commutator is slightly different from the one introduced in [10] ([a, b] =
aba='b~') and reported in [2]: we changed it to remember more closely the
classical definition from Group Theory. No confusion may raise since here we
are concerned with the subsemigroups of S generated by all the commutators
(in [10] we also used single commutators to describe the least commutative



QUASI-ABELIAN AND QUASI-SOLVABLE. .. 169

congruence on S). In the present situation however the definition of [a, b]
is ambiguous: it depends on the inverses a’ € V(a) and b’ € V(b); in the
following, when speaking of a commutator [a, b] we always mean any of these.

Lemma 1.1. In a regular semigroup, E and V(E) are included in [S?, S©]
for every i > 0. If S is orthodox, then S\ is an orthodox subsemigroup of S,
foreveryi > 0. |
Proof. For every e € E and every ¢ € V(e) we have e = eeee = e, e];
e = eee’ =éeee = e, €]

Suppose that S is orthodox (whence V(4)V (z) € V(zu) forevery u, z €
S) and prove that ¢ is regular, whence orthodox, for every i > 0.
Trivially $© is regular; suppose that SY~1 is regular and let a = aja, ... €
SO a; =[x,y] =x'y'xy e[SV, 80D x, ye SE-D, X e V(x) N SE-D(
?), y € V(y) N SED(# @). Hence a; = y'x'yx € [SC-D, 5D nV(g) C
SONV(g)anda =a,...aa;€SPNV(a). O

Lemma 1.2, Let S and T be two regular semigroups and let T = S for some
homomorphism u from S onto T. Then for every integer i > 0, SO € T®
and if S is orthodox, then ¥i > 0, S¢tDy = TU+D,

Proof. Trivially, the homomorphism « maps S® into T® for every integer
i > 0. Also S@ = § is regular and S%u = T©, Now, let S be orthodox
and suppose by induction hypotheses that S©p = T and let £ € T“*D be the
product of a finite number of commutators [x;, yx] = x,y Xk Yk With xi, yx €
T®. For any of these, choose a; and by in S® so that for some a, € V(a)
and some b, € v(by) one has a0 = x;, by = y;, arib = Xk, b = yi ([6],
Example 2.14). S is orthodox, whence S® is orthodox and E is included in
every S by Lemma 1.1; then V(a) € S® for every a € S©, by Proposition
VI.1.9 of [6]. Thus ¢ is the image under u of the product of the commutators
[ar, bl € S® and SEHDy = TE+D, O

Note that always S’u = T’ and by Lemma 1.1 if S is orthodox then we
have S = T® for every integer i > 0.

Definition. A regular semigroup S is called quasi-abelian if every commutator
in § is idempotent.

If S = E then the regular semigroup S is trivially quasi-abelian and
orthodox. But in a quasi-abelian regular semigroup S we have E C §' =
{[a, b]) C (E) = E since by Lemma 1.1 every inverse of an idempotent is a
commutator, whence idempotent and this yields that (E) = E. Thus:

Lemma 1.3. A regular semigroup is quasi-abelian if and only if ' = E. Any
quasi-abelian regular semigroup is orthodox.
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Trivially, every abelian regular semigroup is quasi-abelian, as it is an
abelian Clifford semigroup (that is a strong semilattice of abelian groups, each
of them having a commutator subgroup equal to the identity). The converse is
not true; the semigroup T(2) of partial one-one maps on a set of two elements
is not abelian but T(2)" is a band. In the class of groups these two netions
coincide; more generally:

Proposition 1.4. Any regular subsemigroup T of a quasi-abelian regular semi-
group S is quasi-abelian; if T is a subgroup of S then it is abelian. A Clifford
semigroup § = U;c; G, is quasi-abelian if and only if it is abelian.

Proof. The first part is straightforward. Let S = U;¢;G; be a Clifford
semigroup, then it is easy to prove that an element x belongs to S’ if and only if
x € G} for some j € J, whence S is quasi-abelian if and only if all groups G;
are abelian. 0

2. Quasi-abelian regular Bruck-Reilly extensions.

It is well-known that no Bruck-Reilly extension of a monoid is abelian; on
the contrary there exist infinitely many non-isomorphic quasi-abelian regular
semigroups of this type. To see that, we will characterize quasi-abelian Bruck-
Reilly regular semigroups.

For every monoid 7 with group G of units and every « € Hom(T, G), the
Bruck-Reilly semigroup S = BR(T, «) is isomorphic to the product N x T x N
(N denotes the set of natural numbers), with product (m,a,n)(p, b,q) =
(m+ p —r,ae?"ba" ", n + q — r), where r = min(n, p) and «° denotes
the identity on T'. Such a semigroup is regular if and only if T is regular.

~ In the following, for every regular monoid T, (T"), will denote the semi-
group of T generated by the elements of the form (a’a”) (b'a®) (act’) (ba*), with
r, s, t, u non negative integers, a,be T and a’ € V(a), b’ € V(b).

Lemma 2.1.
i) T' C (T),.

ii) ForeveryaeT, a € V(a), r,s €N, the product a’a”ac® belongs to (T')4.

iii) [(m,a,n)(p,b, )] = (n+q —k,d'a?*b'a"*aaP~*ba"* n+q —k),
k = min(m, n, p,q), a’ € V(a), b’ € V(b).
Proof. Part 1) is immediate with r = s =t = u = 0; part ii) with b = 1. The
proof of part iii) can be obtained by an easy direct calculation, similar to the one
of the first part of Theorem 3.4 of [2]. ]

Lemma 2.2. Let S = BR(T, «) be regular. For x € T, x € (T"), if and only if
for some non-negative integer m, (m,x, m) € §'.
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Proof. Lemma 2.1, part iii), proves the “if”” part.

Now, let x € (T"),; x is equal to the product of a finite number of elements
of the form w = (d’a")(b'a®)(aa’)(ba*), with r, s, t, u nonnegative integers,
a,beT anda’€V(a),b €V (b).

If 0 e{r,s,t,u}, then (k = O in Lemma 2.1. iii)) (r + u, w,r + u) =
[(s,a,u), (¢t br)]eS Ifrs,t,u>0butle{r—1,s—1,¢t—1,u -1},
then (r + u — 2, (@™ H(@'* H(aa Y (ba* 1), r +u—2)e S and at last:
r+u—lLwr+u—1)=0+u=-2 @ O Haa")Ba",

: r+u—-Dr+u—-1,1,r+u+Des.
If all the integers r — 1, s — 1, ¢ — 1, u — 1 are greater than O, then consider:
r—1, (@ H@'e aa"NB),r = 1) and (1, B'a)(ba), 7).
They surely belong to S’ as proved above and:
row,r) = ¢ = 1, @ HE@ )@ HG),r - D, Ba)ka®), nes'.
To top the proof, we note that if (m, w, m) € S’ for some nonnegative integer
m, then, for all h > m, (h, w, h) € §’, in fact, if & > m, then
(h, w, h) = (h, L, m)(m, w, m)(m, 1, h)(m, w', m)(m, w, m)
= [(m, 1, k), (m,w',m)}(m,w,m)e S’. O
Theorem 2.3. Let S = BR(T, «) be a Bruck-Reilly semigroup. The following
are equivalent:
1) S is regular and (T')y = E7;
2) S is (orthodox) quasi-abelian;
3) the following hold:
i) the group of units G of the monoid T is abelian,
ii) T is unique factorizable as a complex product GE of G and of the
band E = Ev,
iii) al, =idg;
4) T is isomorphic to the (reverse) semidirect product of E by G, that is to
the set G x E, endowed with the following operation:

(g, &), f) = (gh, h(h,e)[),

where G is an abelian group with unity lg, E is a band with unity 15 and
H : G x E — E is a map which fulfils the following conditions:

~H(g,e)=e¢,H(g,1g) =1

~H(g, ef) =h(g,e)H(g, f)

— H(gh,e) = H(h, H(g, €)).
Also, a(g, 1g) = (g, 1g).
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Proof. 1) = 2) as an immediate consequence of Lemmas 2.2 and 1.3.

2) = 3) Let S = BR(T, ) be an orthodox quasi-abelian semigroup. The
group of units G of T is abelian by Proposition 1.4. Also, fora € T and k a
nonnegative integer, by Lemmas 2.1 and 2.2, (a’a*)a € (T"), and (a’a¥)a =
ec€ Er. Choose k = 1togeta =aaVaeGand T C GE, thatis T = GE;
this factorization is unique, since g, h € G, e, f € E, ge = hf together imply:

g=ga=(ge)a=fla=ha=hand e=g 'ge=g""gf = f.

3)=> 4) Condition ii) yields, by Theorem 5 of [3], that T is isomorphic to the
set G x E where G is the abelian group of units of 7 and E = E, endowed
with product:

(8,e)(h, f) = (gh, H(h, e) f),

where H(h,e) = h~leh (which immediately fulfils the conditions we asked
for). Themap F : G x E — g of Theorem 5 of [3] is in our case simply the
projection onto G. )
Also, a(g, 1g) = (g, 1g) because of iii).
4) = 1) T is a monoid, since the element (Ig, 1g) is the unity for T. Also, T
is regular: in fact, for every (g, €) € T the element (g~!, H(g~!e)) is an inverse
of (g, e), as can be proved with an easy computation.
By Theorem 5 of [3] there exists an isomorphism from G onto {(g,1E),
8 € G} and one from E onto {(1¢, €), e € E}. Thus, we may denote for short
(g, 1g) by g and (1, e) by e and the element (g, ¢) = (1, e)(g, 1g) will be
denoted as ge; similarly, 1 denotes the unity of 7. In this notation:

H(g,e) = g“leg,
since
(¢ 1p) g, o) (g, 1g) = (g7 v e)(g. 1) = (1g, H(g, e)).

Also, note that we can write eg = g(g~'eg) = gH (g, e) and ge = (geg g =
H(g ' e)g.

Thus G is (isomorphic to) the group of units of 7 and the homomorphism
a : T — G is given by a(ge) = g, since trivially a(e) = 1 and o must be the
identity when restricted to G.

As every element ge has an inverse and E7 is a band, then T is orthodox.
Every inverse of the element ge has the form e¢’g~! for ¢/ € V(e). In fact if
fheV(ge) with f € E, h € G, then we have fh = (fh)(ge)(fh) whence (by
applying a) h = hghand h = g~!. Atlast, from fg~! = (fg~D(ge)(fg™!) =
fefg™! and ge = (ge)(fg~")(ge) = gefe it follows that f € V (e).
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Now, let w be a generator of (7”),; then for some g,/ € G, e, feE,
r,s,t,u > 0, we have:

w = (ge)'e’ (hf) o’ (ge)a' (hf)ar*
= (¢'a") (g7 ") (f'a’) (h™'’) (ga") (ear’) (har*) (f o)
= (aNH (g7 ') (fle’) e e (7 ) (ga') (hatt)
H((ha"), (ea"))(fa*)

(since G is abelian every commutator equals the identity)
= (€aNH(g'aN ™, (f' N H((ha"), (ed"))(f&*) € Er. O

3. The least quasi-abelian congruence on a regular semigroup.

If & is a class of semigroups, a congruence I' on a semigroup S is said to
be a & congruence if §/T" is a &7 semigroup. The kernel of a congruence I'
on a regular semigroup S is the subset ker I' of those elements of S which are
I"-congruent to an idempotent element; it is trivially full, that is it contains all
idempotents of S.

Lemma 3.1. Let S be a regular semigroup. A congruence T on S is quasi-
abelian iff S’ is included in ker . In that case ker ' = (ST is a full regular
subsemigroup of S.

Proof. Denote by u the natural homomorphism from S onto S/TI'. First note
that if x € ker [, then xu € Es;r C S'u, that is xI'a for some a € §’. By
Lemma 1.2, §'u = (§/T) = Eg,r; by Lallements’s Lemma, ' is included in
kerI".
Conversely, if ker I" is the I'-closure of §’, then (S/ ) = $’u is included in
Es/r and S/ T is quasi-abelian.

The other part follows from Lemma 1.3. O

If U is a subsemigroup of the semigroup S and A is a congruence on
U, recall that the least congruence on S generated by X on U is the least
congruence generated by the relation A such that Ay |y = A and A4 |s_y = id.

Proposition 3.2. For any regular semigroup S, there exists the minimal quasi-
abelian congruence t on S: it is the least congruence T" on S such that S’ in
included in ker I' and is generated by the least band congruence on S'.
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Proof.  As the universal congruence on S is trivially quasi-abelian, it will be
enough to prove that for any family {I';, j € J} of quasi-abelian congruences,
the congruence t = NI} is quasi-abelian. This follows immediately from the
existence of a monomorphism which maps (S/7)’ onto a subsemigroup of the
direct product of the quotient semigroups (S/T';)’, all of which are bands.

Let t be the least quasi-abelian congruence. The restriction of t to S’ is a
band congruence and must contain the least band congruence on §’. Consider
the congruence on § which is generated by the least band congruence on §’. Its
restriction to S’ must be a band congruence; since S is regular then §’ C ker 7,
whence it is a quasi-abelian congruence. U

As an example, we want to characterize the least quasi-abelian congruence
on a regular Bruck-Reilly semigroup; the following argument will be useful

Lemma 3.3. Let T be a monoid, G its group of units, % any congruence on T .
If g € G, then g% g? ifand only if g% 1. In particular, if ¥ is a band congruence
then g1 Vged. |

Theorem 3.4. Let S = BR(T, a) be a regular Bruck-Reilly semigroup; denote
by G the group of units of T and by n the least band congruence on the
subsemigroup (T).,

The least quasi-abelian congruence t on S can be so defined:

(m,a,n)t(p,b,q) ifandonlyif m=p, n=gq and aAb,

where A denotes the congruence on T generated by the least band congruence
non (T),.

The greatest quasi-abelian quotient of S is a quasi-abelian orthodox
Bruck-Reilly monoid U = BR(V,B), where V is isomorphic to the set
G/(G")o x (T")o/n, endowed with the following operation:

(&(GNa, 1) (R(G")ay un) = (gh(G"), (A~ " thu)n)

and
B(E(G o, tn) = (8(G)y, 1n).

Proof. Let A be the least congruence on T generated by n on (T")4. To prove
that the relation t defined as

(m,a,n)t(p,b,q) ifandonly if m = p, n =g and aAb

i1s a congruence on S, by [11] Lemma 1.3, we have to show that A is «-
admissible on T, that is for every x,y € T, xAy yields xe Aya. We have
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x Ay if and only if there exists a sequence zg, 21, ..., 2, € T such that x = z,
y = z,, and for every pair z;, z;+1, 2; = upv and z;.; = uqv for u, ve T! and
pnyq (ie. png if p,q € (T")y and p = g otherwise). Consider the sequence
200, 210, ..., 2, € T: we have xa = zoa, ya = z,a and, for every pair
iy Ziv1, 2i0 = uapave and z;410 = uagava for ua, va € T! and pan, ga:
in fact, if p = ¢ then also pa = go; if p and g belong to (T"),, then again
panga, since pa, go € (G')y, which consists of a single n-class by Lemma 3.3.

Let IT be any quasi-abelian congruence on S and let x € (T'),; by
Lemma 2.2, for some non-negative integer m, we have (m, x, m) € S’, that
is [1(m, x, m) = e idempotent in (S/IT)’.
Thus IT1(0, x, 0) = IT[(0, 1, m)(m, x, m)(m, 1,0)] = H(O 1, m)ell(m, 1, 0) is
an idemipotent element of §/I1, whence (0, x, 0)TI(0, x%,0) and IT induces a
band congruence on (T"'), which contains 7. Thus IT contains 7.

Consider U = BR(W, B), where W is isomorphic to the set G/(G"), x
(T),,/n, with the product

(&(G e, 1M (M(G)ars un) = (8h(G')a, (W' thu)n)

and
B(EG )a, tn) = (8(Ga, 1n).

By Theorem 2.3 U is a regular (orthodox) quasi-abelian semigroup since the
above product on W can be defined by means of an appropriate map H :
G/(G"g X (T"y/n — (T")y/n which fulfils the required conditions.

Define H(g(G')q, tn) = (g~ 'tg)n, which immediately fulfils all the con-
ditions; we have only to prove that it is a map. If (g(G')qy, tn) = (h(G")y, un),
then tnu and g~ 'hAnh~'gnl by Lemma 3.3, since they all belong to (G'), and
n is a band congruence. Whence at last:

g 'tgng Lk Ot (hhYg = (g7 WA th(h T g)nh T thnh ™ uh.

To top the proof of the theorem we will show that the following map ® is an
isomorphism of S/t onto U : ®((m, a, n)t) = (m, (aa(G')e, (ax)"tan), n).

Let (m,a,n)t(p,b,q) : m = p,n = q and aAb; consider the sequence.
20, 21,++-,2n € T such that a = zg9, b = gz, and for every pair z;, z;4
(0 <i<n-1)z = upvand z;4, = uqv for u,v in T' and pn,.q. This
easily yields for every z;, z;41 (0 <i <n —1):

2i(Gg = 7i110(G")g and (z;0) " z;m(zi10) 2141,
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Also

O((m,a,n)(p,b,q)) =Om+p —r,ax?"ba" ", n+q —r)
(r = min(n, p))
=(m+ p—r, (axa’ "baa" " (G),,

(aca? " baa” ") laa? T ba" ), n + q — 1)
and

O(m,a,n)O(p,b,q) = (m, (aa(G)y, (acx) 'an), n)
(p, b (G)y, (ba)~'bn), q)

are equal. In fact
aa(G/)a = aap-—r+1 (G/)a )

b (G = ba" " (G),
B(&(Go, tn) = (8(G)q, 1n);

if n = p then
((ax)'an)((ba)~'bn) = (ba) ™ (ac)'aby = abn
by Lemma 3.3; otherwise (suppose n > p = r):
((ae) 'a((ba) " 'b)a" ") = an = (aabaa""P) " aba"Pn

again by Lemma 3.3.
The homomorphism is onto, since for any element (m, (g(G')qy, tn), n) €
U we have:

O(m, gat, n) = (m, (ga*ta(G')y, (ga’ta) ' gatn), n)
= (m, (g(G')a, tn), n),

as ta € (G, whence
8(Ga = ga*(G')y = ga’ta(G),,
and (ga’ta) 'ganl.
At last, ® is injective. In fact, if ®(m,a,n) = O(p, b, q), thenm = p, n = q,

aca(ba)™! € (G"), and (ax) 'an(ba)~'b.
Hence a = aa(aa) 'aAaa(ba) " 'bAb and thus (m, a, n)t(p, b, q). O
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The study of regular Bruck-Reilly extensions shows that quasi-abelian
congruences are far more general than abelian ones. An abelian congruence on
such a semigroup must be a group congruence, since a simple abelian semigroup
is a group, but quasi-abelian congruences can be of each type studied in [11].
Consider the semigroup § = BR(T, «), where T = {0,a = 4%, 1;0 < a < 1},
a : T — 1; § is quasi-abelian, since T is a band. In [11] it was shown that S
admits all three possible types of congruences and all of them are quasi-abelian
as their quotients are bands.

4. Quasi-solvable regular semigroups.

Definition. Let § be a regular semigroup, we call S quasi-solvable of class ¢
if ¢ is the least integer (greater than 0) such that S© = E: ¢ is also called the
class of quasi-solvability of S. § is called quasi-solvable if it is quasi-solvable
of class ¢ for some integer ¢ > 0. In particular a band will be considered
quasi-solvable of class 1.

It is well known the linkage between the definition of solvability in Group
Theory and commutativity: a group G is solvable if and only if some of
its commutator subgroups G equals the identity. From the quasi-abelian
property, the above definition arises naturally for regular semigroups. When
specialized to inverse semigroups, this property is weaker than solvability as
defined in [10], even if these two definitions coincide on special classes, in
particular for groups. '

Lemma 4.1. Let S be a regular semigroup. For every ¢ > 1, we have S© = E
if and only if [V, €~V = E. If a regular semigroup S is quasi-solvable,
then it is orthodox. ‘ |

Proof. Half of the proof is trivial. Now, let [a, b] € E for every a, b € S,
By Lemma 1.1, this implies that all inverse elements of an idempotent are idem-
potent; thus § is orthodox and the product of two idempotents is idempotent,
whence all the elements in the subsemigroup S© = ([S€~=D §€=D]y are idem-
potents. U

Denote by t; the least quasi-abelian congruence on S®.

Theorem 4.2. Let S be a regular semigroup. The following are equivalent:

i) S is quasi-solvable of class c;
ii) c is the least index such that t._, is the identity relation on S V;
iii) there exists a chain of congruence I1; on S,0 <i < ¢ — 1, such that:

My CI0;, SYTD C ker IT;
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Joreveryi =0,...,c~1and I, ; is the identity relation on S.

Proof i = u) If S is qua31 solvable of class c, then S (C) = (S(C‘I))’ = E
hence S¢1 i is quasi-abelian, the least quasi-abelian congruence on S is the
identity and ¢ must be the least 1ndex whrch fulfils this condrtlon v

i) = 1ii) Foralli: 0 <i <c— 1, let I1; be the congruence on S generated by
7 on S¢ ® . Thus for everyi (0 <i <c—1), SV s included in ker IT; since it
is inciuded in ker 7; by Lemma 3.1. Also since S¢+D Cc 5 ® then T4 < I
At last, as 7, is the identity on S©V then IT,_;, is the 1dent1ty on S.

iii) = 1) As T, is the identity on S and §© C kerIT._; then $© must
coincide with the set E of idempotents of S. [0 :

Lemma 4.3. Let S be a regular quasi-solvable sengraup and let ¢ be:its class
of solvabzlzzy Then.:-, :

1) If T is:a regular subsengroup of S, then T is quasz solvable of class k
for somek <c.. . - : . : ,
ii) If T isa quotzent of S, tlzen T is quasi- solvable of class k, for some k < c.

Proof. - i) We will prove by induction-on i'that 7 ' S@, which is trivial if
7 =0. If this is true for.; = I, then for every ae S V(a) N T(’) la V(a) nS®;
thiis. [T(t) T(’)] fa [S(‘) S(’)] oo ,

i) Svis orthodox, whence (Lemrnas 1.t and 1. 2) S 1) is orthodox Vz > O and
TW =85Oy, Srmllarly, the followmg can be proved ' CLel

Lemma 4 4 Let {S], ] cJ } be a famzly of quasz solvable regular sengroups
(with solvability class equal to ¢j for each ] € J ) ana’ suppose that there exists
c_-max{cj,]eJ} Then: TR : R
i) the direct product S = I'ISJ, is quasi- solvable of class c,

ii) a subdirect proaluct of the sengroups S is quasz solvable' of class k for
some k < ¢: :

From Lemmas 4 3 and 4 4 we get (see [4])

Theorem 4.5. The class of quasi-solvable regular semigroups of class <c zs
an e-variety of orthodox semigroups.

Proposntlon 4.6. Let I be a congruence on a regular semigroup S such that
S/ T is quasi- -solvable of class ¢ and ker T is quasi- -solvable of class k. Then S
is quasi-solvable of class h, for min(c, k) < h < k +c.

Proof. S/T is quasr-solvable of class C, thus c 1s the least mteger such that
(/T = ES/T, whence by Lemma 3.2, §© C ker I and $©+0) = (SEH® ¢
(kerI')® = E. Thus S is quasi-solvable and. its class of quasi-solvability / in
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less than or equal to ¢ + k; by Lemma 4.3 it is impossible that # < min(c, k).

When a regular semigroup S is naturally linked to a group G, we expect,a
precise connection between the quasi-solvability of S and the solvability of G.
This is true in most interesting cases. For example (by Lemmas 4.3 and 4.4)
any rectangular group /xMxG is quasi-solvability of class ¢ if and only‘if G
is quasi-solvable of class c¢. Also, by Corollary 7 of [8] it follows immediately
that:

Corollary 4.7. An E- unztary regular sengroup S is quasz solvable of class c

zf and only if its greatest group homomorphzc image is solvable of class c or
A ‘sir’riiléir result holds for bl‘siﬁiple w-semigroups; r(r’iore}:geherélly'

Corollary 4.8. A regular Bruck- Rezlly semigroup S = BR(T, a) is quasz-

‘solvable of class ¢ zf and only zf T is quasz solvable of class c or c— l

Proof. Since S is regular Tisa regular monord The set of those elements
x such that for some non-negative-integer m, (m,x,m) €S, is. included. in
T© = T. Suppose by induction that {x :-3m > 0, (n, x,m) € S(‘)} c T
and consider the commutator of two elements in, S@ o S

/_ m—k

[(m, %, m), (P, y, P)) = (m + p =k, x'a?™y'a"Fxa? " Eya"*, m + p — k)
(m+p k, [xotp K ya™ k]m-{-p k)
‘  (with k = min(m; p)):

Since x, y € T implies that xa”~*, ya™* € TC=D, then we have:
(x:3Im >0, (m x,meSHH) cTd
Thus, if T is quasi-solvable of class ¢, then T'© is a band whence also -S©+1

is. Conversely, by Lemma 4.3, if § is quasi-solvable of class ¢, then 7" is quasi-
solvable of class at mostc. [

S. Quasi-:solvability and solvability in inverse semilgroups. -

In ’[10] we proposed a definition of solvability for inverse semigroups, by
generalizing the corresponding property from Group Theory, that is by means
of a chain of commutative quotients. S :
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Definition. ([10]). Let S be an inverse semigroup. Consider the transitive
closure yg s of the following relation on Es : e ~ f iff e = abb~la”!,
f = baa 'b7! for some a,b € S; consider also the following chain of
subsemigroups of S

0(8) =S,

8;(S) ={aeb;_i(S): for some ec Es, aa™! VE.ssye and ae € 8;_1(S)"}

S is called solvable of solvability class c if c is the least index i such that §; _{(S)
is commutative.

This definition was motivated by the following results, which show a strict
linkage between the classical notion of solvability in groups and this generalized
one:

Proposition 5.1. ([10]). The following relation is the least commutative con-
gruence on the inverse sengroup S:ys=1{(ab)eSxS:aalyg sbb™! and
ab~1 €5,(5)}.

The semigroup 8,(S) is the kernel of ys and the relation yg s is the trace of ys.
§ is solvable of solvability class c if and only if c is the least index i such that
Vs (S) is the identity on 6;_1(S).

Proposition 5.2. ([10], see also [7]). Let S be a Clifford semigroup. S is
solvable of solvability class c if and only if it is a strong semilattice of solvable
groups of class ¢;(i € I), such that c is exactly the maximum of the c;(i € I).

In particular, if S is group, our definition exactly coincides with the
classical notion of solvability; indeed, for Clifford semigroups, whence also
for groups, these also coincide with quasi-solvability. In general we have:

Proposition 5.3. A solvable inverse semigroup of solvability class c is quasi-
solvable of class k < c. A Clifford semigroup is quasi-solvable of solvability
class c if and only if it is solvable of solvability class c.

Proof. Let § be a solvable inverse semigroup of solvability class ¢. Then
8c-1(S) is commutative, hence 8.(S) = Eg. But we can easily prove by
induction that, for every i > 0, S© C §;(S); in fact, for every i > 0,
8;(S) € 8i11(5). |

By [10] 2.8, in a Clifford semigroup S = UG;, the semigroup §;(S) =
is exactly the strong semilattice of the commutator subgroups G]’. and, again by
induction, we can prove that, for every i > 0, %) = §;(S). O
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These two notions coincide also in the class of E-unitary inverse semi-
groups (by [10] 3.12 and Corollary 4.7); a similar result can easﬂy be given for
orthogroups.

In general, however, solvablhty and quasi-solvability are not equivalent
properties for inverse semigroups: for example, solvable inverse semigroups
do not form a variety (solvability is not inherited by quotients: see [10] for
a counterexample). Also they do not coincide in some interesting classes of
inverse semigroups:

Proposition 5.4. ([1] 2.2). Let § = B(G, 1) be a Brandt semigroup. S is quasi-
solvable if and only if the group G is solvable But if |I| > 1 then S is not
solvable, whatever G is.

In [10] all symmetric inverse semigroups of injective partial transforma-
tions on a set X of elements were proved to be not solvable. On the other hand

we have:

Theorem 5.3. Let n be an integer greater than 1 and let %, be the symmetric
inverse semigroup on a set X of order n. If n < 4 then %, is quasi-solvable of
class n — 1; if n > 4 then .Z, is not quasi-solvable.

Proof. Consider the permutation group S,, C .#,. It is well known that a similar
result holds for the solvability of S,; thus by Lemma 4.3 and Proposition 5.2,
#, is not quasi-solvable for n > 4 and, for n < 4, the class of quasi-solvability
of ., isnotless thann — 1.

Suppose n < 4 and “complete” every element x € .%, to an element y € S,,.
It will be enough for any a € Dom(x), to define y(a) = x(a); if |Dom(a)| = n
we have finished, if not then for any b ¢ Dom(a) put y(b) = ¢ with ¢ any
element not in Im(x) (this is certainly possible since |Dom(x)| = |Im(x)| < 4).
Note that an element of ., is idempotent only if it can be completed to the
identity of §,. This procedure do not uniquely determine y, but is compatible
with inverses and with products, so that any commutator of .#, can be completed
to a commutator of S, ; more precisely every element in (.%,)© can completed
to an element of (S,)©. Whence the result. O
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