QUASI-ABELIAN AND QUASI-SOLVABLE REGULAR SEMIGROUPS

BRUNETTO PIOCHI

To the memory of Umberto Gasapina

A regular semigroup is said quasi-abelian if every commutator (i.e. every element of the form [a,b]=a'b'ab for $a'\in V(a),\ b'\in V(b)$) is idempotent. In this note, quasi-abelian regular semigroups are studied and it is proved that they form an e-variety of orthodox semigroups. More, quasi-abelian regular Bruck-Reilly monoids are characterized as extensions of monoids which are (reverse) semidirect products of a group and a semilattice. At last, quasi-abelian congruences are studied and a definition of quasi-solvability is given, which generalizes the notion of solvability to the class of regular semigroups: quasi-solvable semigroups of class less than or equal to a given $c \geq 0$ form an e-variety of orthodox semigroups.

The concept of quasi-abelian inverse semigroup is classical in literature (see for example [9], XII): an inverse semigroup is called *quasi-abelian* if every element of the form $a^{-1}b^{-1}ab$ is idempotent. In the present note we extend in a natural way this definition to regular semigroups; quasi-abelian regular semigroups indeed immediately reveal to be orthodox; actually they form an *e-variety* ([4]; a *bivariety* [5]) of orthodox semigroups.

By the definition of quasi-abelian regular semigroups, we can generalize to that class the notion of solvability from Group Theory; solvability was extended

in [10] to the class of inverse semigroups, by means of a chain of abelian congruences and it was proved that in groups this definition coincides with the classical one. In [1], F. Albegger proposed, by means of quasi-abelian inverse semigroups, a weaker condition which bypassed some problems that made the original definition not completely satisfactory. He considered so a new (wider) class of inverse semigroups, studying in details many properties; he proved in particular that it is a variety. In the present note, by using quasi-abelian regular semigroups and congruences, we extend to the class of regular semigroups the notion given by Albegger, introducing quasi-solvable regular semigroups, which again result to be orthodox and form an e-variety of orthodox semigroups.

In Section 1 we study quasi-abelian regular semigroups, and in 2 we characterize quasi-abelian semigroups in the class of regular Bruck-Reilly extensions: by means of this characterization, we show that there exist infinitely many non-isomorphic quasi-abelian regular BR-monoids (while do not exist abelian BR-monoids). In Section 3 we describe the least quasi-abelian congruence on a regular semigroup, and in Section 4 we introduce the notion of quasi-solvability for regular semigroups. At last in Section 5 we study the linkage between this definition and the original one in inverse semigroups: we prove that if an inverse semigroup is solvable in the sense of [10] then it is also a quasi-solvable regular semigroup and for many special classes (Groups, Clifford semigroups, E-unitary inverse semigroups, Bruck-Reilly inverse semigroups) the two definitions coincide.

The notations and terminology we use are standard and can be found in [6] or [9].

1. Quasi-abelian regular semigroups.

Definition. Let S be a regular semigroup. We define $S^{(0)} = S$ and for all $i \ge 0$:

$$[S^{(i)}, S^{(i)}] = \{[a, b] = a'b'ab; a, b \in S^{(i)} : a' \in V(a) \cap S^{(i)}, b' \in V(b) \cap S^{(i)}\}$$

$$S^{(i+1)} = \langle [S^{(i)}, S^{(i)}] \rangle.$$

The elements [a, b] are called *commutators*.

Usually we shall write S' instead of $S^{(1)}$. Note that the present definition of a commutator is slightly different from the one introduced in [10] ($[a, b] = aba^{-1}b^{-1}$) and reported in [2]: we changed it to remember more closely the classical definition from Group Theory. No confusion may raise since here we are concerned with the subsemigroups of S generated by all the commutators (in [10] we also used single commutators to describe the least commutative

congruence on S). In the present situation however the definition of [a, b] is ambiguous: it depends on the inverses $a' \in V(a)$ and $b' \in V(b)$; in the following, when speaking of a commutator [a, b] we always mean any of these.

Lemma 1.1. In a regular semigroup, E and V(E) are included in $[S^{(i)}, S^{(i)}]$ for every $i \geq 0$. If S is orthodox, then $S^{(i)}$ is an orthodox subsemigroup of S, for every $i \geq 0$.

Proof. For every $e \in E$ and every $e' \in V(e)$ we have e = eeee = [e, e]; e' = e'ee' = e'eee' = [e, e'].

Suppose that S is orthodox (whence $V(u)V(z) \subseteq V(zu)$ for every $u, z \in S$) and prove that $S^{(i)}$ is regular, whence orthodox, for every $i \geq 0$. Trivially $S^{(0)}$ is regular; suppose that $S^{(i-1)}$ is regular and let $a = a_1 a_2 \dots a_k \in S^{(i)}$, $a_j = [x, y] = x'y'xy \in [S^{(i-1)}, S^{(i-1)}]$; $x, y \in S^{(i-1)}$, $x' \in V(x) \cap S^{(i-1)} (\neq \emptyset)$, $y' \in V(y) \cap S^{(i-1)} (\neq \emptyset)$. Hence $a_j = y'x'yx \in [S^{(i-1)}, S^{(i-1)}] \cap V(a_j) \subseteq S^{(i)} \cap V(a_j)$ and $a' = a'_k \dots a'_2 a'_1 \in S^{(i)} \cap V(a)$.

Lemma 1.2. Let S and T be two regular semigroups and let $T = S\mu$ for some homomorphism μ from S onto T. Then for every integer $i \geq 0$, $S^{(i)}\mu \subseteq T^{(i)}$ and if S is orthodox, then $\forall i \geq 0$, $S^{(i+1)}\mu = T^{(i+1)}$.

Proof. Trivially, the homomorphism μ maps $S^{(i)}$ into $T^{(i)}$ for every integer $i \geq 0$. Also $S^{(0)} = S$ is regular and $S^0\mu = T^{(0)}$. Now, let S be orthodox and suppose by induction hypotheses that $S^{(i)}\mu = T^{(i)}$ and let $t \in T^{(i+1)}$ be the product of a finite number of commutators $[x_k, y_k] = x'_k y'_k x_k y_k$ with $x_k, y_k \in T^{(i)}$. For any of these, choose a_k and b_k in $S^{(i)}$ so that for some $a'_k \in V(a_k)$ and some $b'_k \in v(b_k)$ one has $a'_k \mu = x'_k, b'_k \mu = y'_k, a_k \mu = x_k, b_k \mu = y_k$ ([6], Example 2.14). S is orthodox, whence $S^{(i)}$ is orthodox and E is included in every $S^{(i)}$ by Lemma 1.1; then $V(a) \subseteq S^{(i)}$ for every $a \in S^{(i)}$, by Proposition VI.1.9 of [6]. Thus t is the image under μ of the product of the commutators $[a_k, b_k] \in S^{(i)}$ and $S^{(i+1)}\mu = T^{(i+1)}$. \square

Note that always $S'\mu=T'$ and by Lemma 1.1 if S is orthodox then we have $S^{(i)}\mu=T^{(i)}$ for every integer $i\geq 0$.

Definition. A regular semigroup S is called *quasi-abelian* if every commutator in S is idempotent.

If S'=E then the regular semigroup S is trivially quasi-abelian and orthodox. But in a quasi-abelian regular semigroup S we have $E\subset S'=\langle [a,b]\rangle\subset \langle E\rangle=E$ since by Lemma 1.1 every inverse of an idempotent is a commutator, whence idempotent and this yields that $\langle E\rangle=E$. Thus:

Lemma 1.3. A regular semigroup is quasi-abelian if and only if S' = E. Any quasi-abelian regular semigroup is orthodox.

Trivially, every abelian regular semigroup is quasi-abelian, as it is an abelian Clifford semigroup (that is a strong semilattice of abelian groups, each of them having a commutator subgroup equal to the identity). The converse is not true; the semigroup T(2) of partial one-one maps on a set of two elements is not abelian but T(2)' is a band. In the class of groups these two notions coincide; more generally:

Proposition 1.4. Any regular subsemigroup T of a quasi-abelian regular semigroup S is quasi-abelian; if T is a subgroup of S then it is abelian. A Clifford semigroup $S = \bigcup_{i \in J} G_i$ is quasi-abelian if and only if it is abelian.

Proof. The first part is straightforward. Let $S = \bigcup_{i \in J} G_i$ be a Clifford semigroup, then it is easy to prove that an element x belongs to S' if and only if $x \in G'_i$ for some $j \in J$, whence S is quasi-abelian if and only if all groups G_i are abelian.

2. Quasi-abelian regular Bruck-Reilly extensions.

It is well-known that no Bruck-Reilly extension of a monoid is abelian; on the contrary there exist infinitely many non-isomorphic quasi-abelian regular semigroups of this type. To see that, we will characterize quasi-abelian Bruck-Reilly regular semigroups.

For every monoid T with group G of units and every $\alpha \in \text{Hom}(T, G)$, the Bruck-Reilly semigroup $S = BR(T, \alpha)$ is isomorphic to the product $\mathbb{N} \times T \times \mathbb{N}$ (N denotes the set of natural numbers), with product (m, a, n)(p, b, q) = $(m+p-r,a\alpha^{p-r}b\alpha^{n-r},n+q-r)$, where $r=\min(n,p)$ and α^0 denotes the identity on T. Such a semigroup is regular if and only if T is regular.

In the following, for every regular monoid T, $(T')_{\alpha}$ will denote the semigroup of T generated by the elements of the form $(a'\alpha^r)(b'\alpha^s)(a\alpha^t)(b\alpha^u)$, with r, s, t, u non negative integers, $a, b \in T$ and $a' \in V(a), b' \in V(b)$.

Lemma 2.1.

- i) $T' \subset (T')_{\alpha}$.
- ii) For every $a \in T$, $a' \in V(a)$, $r, s \in \mathbb{N}$, the product $a'\alpha^r a\alpha^s$ belongs to $(T')_{\alpha}$. iii) $[(m, a, n)(p, b, q)] = (n + q k, a'\alpha^{q-k}b'\alpha^{m-k}a\alpha^{p-k}b\alpha^{n-k}, n + q k),$ $k = \min(m, n, p, q), a' \in V(a), b' \in V(b).$

Proof. Part i) is immediate with r = s = t = u = 0; part ii) with b = 1. The proof of part iii) can be obtained by an easy direct calculation, similar to the one of the first part of Theorem 3.4 of [2].

Lemma 2.2. Let $S = BR(T, \alpha)$ be regular. For $x \in T$, $x \in (T')_{\alpha}$ if and only if for some non-negative integer $m, (m, x, m) \in S'$.

Proof. Lemma 2.1, part iii), proves the "if" part.

Now, let $x \in (T')_{\alpha}$; x is equal to the product of a finite number of elements of the form $w = (a'\alpha^r)(b'\alpha^s)(a\alpha^t)(b\alpha^u)$, with r, s, t, u nonnegative integers, $a, b \in T$ and $a' \in V(a), b' \in V(b)$.

If $0 \in \{r, s, t, u\}$, then (k = 0 in Lemma 2.1. iii) $(r + u, w, r + u) = [(s, a, u), (t, b, r)] \in S'$. If r, s, t, u > 0, but $0 \in \{r - 1, s - 1, t - 1, u - 1\}$, then $(r + u - 2, (a'\alpha^{r-1})(b'\alpha^{s-1})(a\alpha^{t-1})(b\alpha^{u-1}), r + u - 2) \in S'$ and at last:

$$(r+u-1, w, r+u-1) = (r+u-2, (a'\alpha^{r-1})(b'\alpha^{s-1})(a\alpha^{t-1})(b\alpha^{u-1}),$$

$$r+u-2)(r+u-1, 1, r+u+1) \in S'.$$

If all the integers r-1, s-1, t-1, u-1 are greater than 0, then consider:

$$(r-1, (a'\alpha^{r-1})(b'\alpha^{s-1})(a\alpha^{t-1})(b), r-1)$$
 and $(r, (b'\alpha)(b\alpha^u), r)$.

They surely belong to S' as proved above and:

$$(r, w, r) = (r - 1, (a'\alpha^{r-1})(b'\alpha^{s-1})(a\alpha^{t-1})(b), r - 1)(r, (b'\alpha)(b\alpha^{u}), r) \in S'.$$

To top the proof, we note that if $(m, w, m) \in S'$ for some nonnegative integer m, then, for all $h \ge m$, $(h, w, h) \in S'$, in fact, if h > m, then

$$(h, w, h) = (h, 1, m)(m, w, m)(m, 1, h)(m, w', m)(m, w, m)$$
$$= [(m, 1, h), (m, w', m)](m, w, m) \in S'. \qquad \Box$$

Theorem 2.3. Let $S = BR(T, \alpha)$ be a Bruck-Reilly semigroup. The following are equivalent:

- 1) S is regular and $(T')_{\alpha} = E_T$;
- 2) S is (orthodox) quasi-abelian;
- 3) the following hold:
 - i) the group of units G of the monoid T is abelian,
 - ii) T is unique factorizable as a complex product GE of G and of the band $E = E_T$,
 - $iii) \alpha|_{g} = id_{G};$
- 4) T is isomorphic to the (reverse) semidirect product of E by G, that is to the set $G \times E$, endowed with the following operation:

$$(g,e)(h,f) = (gh, h(h,e)f),$$

where G is an abelian group with unity 1_G , E is a band with unity 1_E and $H: G \times E \to E$ is a map which fulfils the following conditions:

$$-H(1_G, e) = e, H(g, 1_E) = 1_E$$

- $H(g, ef) = h(g, e)H(g, f)$

$$-H(gh,e)=H(h,H(g,e)).$$

Also, $\alpha(g, 1_E) = (g, 1_E)$.

Proof. 1) \Rightarrow 2) as an immediate consequence of Lemmas 2.2 and 1.3.

2) \Rightarrow 3) Let $S = BR(T, \alpha)$ be an orthodox quasi-abelian semigroup. The group of units G of T is abelian by Proposition 1.4. Also, for $a \in T$ and k a nonnegative integer, by Lemmas 2.1 and 2.2, $(a'\alpha^k)a \in (T')_\alpha$ and $(a'\alpha^k)a = e \in E_T$. Choose k = 1 to get $a = a\alpha \forall a \in G$ and $T \subseteq GE$, that is T = GE; this factorization is unique, since $g, h \in G$, $e, f \in E_T$, ge = hf together imply:

$$g = g\alpha = (ge)\alpha = (hf)\alpha = h\alpha = h$$
 and $e = g^{-1}ge = g^{-1}gf = f$.

3) \Rightarrow 4) Condition ii) yields, by Theorem 5 of [3], that T is isomorphic to the set $G \times E$ where G is the abelian group of units of T and $E = E_T$, endowed with product:

$$(g, e)(h, f) = (gh, H(h, e)f),$$

where $H(h, e) = h^{-1}eh$ (which immediately fulfils the conditions we asked for). The map $F: G \times E \to g$ of Theorem 5 of [3] is in our case simply the projection onto G.

Also, $\alpha(g, 1_E) = (g, 1_E)$ because of iii).

4) \Rightarrow 1) T is a monoid, since the element $(1_G, 1_E)$ is the unity for T. Also, T is regular: in fact, for every $(g, e) \in T$ the element $(g^{-1}, H(g^{-1}e))$ is an inverse of (g, e), as can be proved with an easy computation.

By Theorem 5 of [3] there exists an isomorphism from G onto $\{(g, 1_E), g \in G\}$ and one from E onto $\{(1_G, e), e \in E\}$. Thus, we may denote for short $(g, 1_E)$ by g and $(1_G, e)$ by e and the element $(g, e) = (1_G, e)(g, 1_E)$ will be denoted as ge; similarly, 1 denotes the unity of T. In this notation:

$$H(g,e)=g^{-1}eg\,,$$

since

$$(g^{-1}, 1_E)(1_G, e)(g, 1_E) = (g^{-1}, e)(g, 1_E) = (1_G, H(g, e)).$$

Also, note that we can write $eg = g(g^{-1}eg) = gH(g, e)$ and $ge = (geg^{-1})g = H(g^{-1}, e)g$.

Thus G is (isomorphic to) the group of units of T and the homomorphism $\alpha: T \to G$ is given by $\alpha(ge) = g$, since trivially $\alpha(e) = 1$ and α must be the identity when restricted to G.

As every element ge has an inverse and E_T is a band, then T is orthodox. Every inverse of the element ge has the form $e'g^{-1}$ for $e' \in V(e)$. In fact if $fh \in V(ge)$ with $f \in E$, $h \in G$, then we have fh = (fh)(ge)(fh) whence (by applying α) h = hgh and $h = g^{-1}$. At last, from $fg^{-1} = (fg^{-1})(ge)(fg^{-1}) = fefg^{-1}$ and $ge = (ge)(fg^{-1})(ge) = gefe$ it follows that $f \in V(e)$.

Now, let w be a generator of $(T')_{\alpha}$; then for some $g,h\in G,\ e,f\in E,$ $r,s,t,u\geq 0$, we have:

$$w = (ge)'\alpha^{r}(hf)'\alpha^{s}(ge)\alpha^{t}(hf)\alpha^{u}$$

$$= (e'\alpha^{r})(g^{-1}\alpha^{r})(f'\alpha^{s})(h^{-1}\alpha^{s})(g\alpha^{t})(e\alpha^{t})(h\alpha^{u})(f\alpha^{u})$$

$$= (e'\alpha^{r})H((g^{-1}\alpha^{r})^{-1}, (f'\alpha^{s}))(g^{-1}\alpha^{r})(h^{-1}\alpha^{s})(g\alpha^{t})(h\alpha^{u})$$

$$= (e'\alpha^{r})H((g^{-1}\alpha^{r})^{-1}, (f'\alpha^{s}))(f\alpha^{u})$$
(since G is abelian every commutator equals the identity)
$$= (e'\alpha^{r})H((g^{-1}\alpha^{r})^{-1}, (f'\alpha^{s}))H((h\alpha^{u}), (e\alpha^{t}))(f\alpha^{u}) \in E_{T}.$$

3. The least quasi-abelian congruence on a regular semigroup.

If $\mathscr P$ is a class of semigroups, a congruence Γ on a semigroup S is said to be a $\mathscr P$ congruence if S/Γ is a $\mathscr P$ semigroup. The kernel of a congruence Γ on a regular semigroup S is the subset ker Γ of those elements of S which are Γ -congruent to an idempotent element; it is trivially *full*, that is it contains all idempotents of S.

Lemma 3.1. Let S be a regular semigroup. A congruence Γ on S is quasiabelian iff S' is included in ker Γ . In that case ker $\Gamma = (S')\Gamma$ is a full regular subsemigroup of S.

Proof. Denote by μ the natural homomorphism from S onto S/Γ . First note that if $x \in \ker \Gamma$, then $x\mu \in E_{S/\Gamma} \subset S'\mu$, that is $x\Gamma a$ for some $a \in S'$. By Lemma 1.2, $S'\mu = (S/\Gamma)' = E_{S/\Gamma}$; by Lallements's Lemma, S' is included in $\ker \Gamma$.

Conversely, if ker Γ is the Γ -closure of S', then $(S/\Gamma)' = S'\mu$ is included in $E_{S/\Gamma}$ and S/Γ is quasi-abelian.

The other part follows from Lemma 1.3. \Box

If U is a subsemigroup of the semigroup S and λ is a congruence on U, recall that the least congruence on S generated by λ on U is the least congruence generated by the relation λ_+ such that $\lambda_+|_U=\lambda$ and $\lambda_+|_{S-U}=\mathrm{id}$.

Proposition 3.2. For any regular semigroup S, there exists the minimal quasiabelian congruence τ on S: it is the least congruence Γ on S such that S' in included in ker Γ and is generated by the least band congruence on S'.

Proof. As the universal congruence on S is trivially quasi-abelian, it will be enough to prove that for any family $\{\Gamma_j, j \in J\}$ of quasi-abelian congruences, the congruence $\tau = \cap \Gamma_j$ is quasi-abelian. This follows immediately from the existence of a monomorphism which maps $(S/\tau)'$ onto a subsemigroup of the direct product of the quotient semigroups $(S/\Gamma_j)'$, all of which are bands.

Let τ be the least quasi-abelian congruence. The restriction of τ to S' is a band congruence and must contain the least band congruence on S'. Consider the congruence on S which is generated by the least band congruence on S'. Its restriction to S' must be a band congruence; since S is regular then $S' \subseteq \ker \tau$, whence it is a quasi-abelian congruence. \square

As an example, we want to characterize the least quasi-abelian congruence on a regular Bruck-Reilly semigroup; the following argument will be useful

Lemma 3.3. Let T be a monoid, G its group of units, Σ any congruence on T. If $g \in G$, then $g \Sigma g^2$ if and only if $g \Sigma 1$. In particular, if Σ is a band congruence then $g \Sigma 1 \ \forall g \in G$. \square

Theorem 3.4. Let $S = BR(T, \alpha)$ be a regular Bruck-Reilly semigroup; denote by G the group of units of T and by η the least band congruence on the subsemigroup $(T)'_{\alpha}$

The least quasi-abelian congruence τ on S can be so defined:

$$(m, a, n)\tau(p, b, q)$$
 if and only if $m = p$, $n = q$ and $a\Delta b$,

where Δ denotes the congruence on T generated by the least band congruence η on $(T')_{\alpha}$.

The greatest quasi-abelian quotient of S is a quasi-abelian orthodox Bruck-Reilly monoid $U = BR(V, \beta)$, where V is isomorphic to the set $G/(G')_{\alpha} \times (T')_{\alpha}/\eta$, endowed with the following operation:

$$(g(G')_{\alpha}, t\eta)(h(G')_{\alpha}, u\eta) = (gh(G')_{\alpha}, (h^{-1}thu)\eta)$$

and

$$\beta(g(G')_{\alpha}, t\eta) = (g(G')_{\alpha}, 1\eta).$$

Proof. Let Δ be the least congruence on T generated by η on $(T')_{\alpha}$. To prove that the relation τ defined as

$$(m, a, n)\tau(p, b, q)$$
 if and only if $m = p$, $n = q$ and $a\Delta b$

is a congruence on S, by [11] Lemma 1.3, we have to show that Δ is α -admissible on T, that is for every $x, y \in T$, $x\Delta y$ yields $x\alpha\Delta y\alpha$. We have

 $x \Delta y$ if and only if there exists a sequence $z_0, z_1, \ldots, z_n \in T$ such that $x = z_0$, $y = z_n$ and for every pair $z_i, z_{i+1}, z_i = upv$ and $z_{i+1} = uqv$ for $u, v \in T^1$ and $p\eta_+q$ (i.e. $p\eta q$ if $p, q \in (T')_{\alpha}$ and p = q otherwise). Consider the sequence $z_0\alpha, z_1\alpha, \ldots, z_n\alpha \in T$: we have $x\alpha = z_0\alpha, y\alpha = z_n\alpha$ and, for every pair $z_i, z_{i+1}, z_i\alpha = u\alpha p\alpha v\alpha$ and $z_{i+1}\alpha = u\alpha q\alpha v\alpha$ for $u\alpha, v\alpha \in T^1$ and $p\alpha \eta_+q\alpha$: in fact, if p = q then also $p\alpha = q\alpha$; if p and q belong to $(T')_{\alpha}$, then again $p\alpha \eta q\alpha$, since $p\alpha, q\alpha \in (G')_{\alpha}$, which consists of a single η -class by Lemma 3.3.

Let Π be any quasi-abelian congruence on S and let $x \in (T')_{\alpha}$; by Lemma 2.2, for some non-negative integer m, we have $(m, x, m) \in S'$, that is $\Pi(m, x, m) = e$ idempotent in $(S/\Pi)'$.

Thus $\Pi(0, x, 0) = \Pi[(0, 1, m)(m, x, m)(m, 1, 0)] = \Pi(0, 1, m)e\Pi(m, 1, 0)$ is an idempotent element of S/Π , whence $(0, x, 0)\Pi(0, x^2, 0)$ and Π induces a band congruence on $(T')_{\alpha}$ which contains η . Thus Π contains τ .

Consider $U = BR(W, \beta)$, where W is isomorphic to the set $G/(G')_{\alpha} \times (T)'_{\alpha}/\eta$, with the product

$$(g(G')_{\alpha}, t\eta)(h(G')_{\alpha}, u\eta) = (gh(G')_{\alpha}, (h^{-1}thu)\eta)$$

and

$$\beta(gG')_{\alpha}, t\eta) = (g(G')_{\alpha}, 1\eta).$$

By Theorem 2.3 U is a regular (orthodox) quasi-abelian semigroup since the above product on W can be defined by means of an appropriate map H: $G/(G')_{\alpha} \times (T')_{\alpha}/\eta \to (T')_{\alpha}/\eta$ which fulfils the required conditions.

Define $H(g(G')_{\alpha}, t\eta) = (g^{-1}tg)\eta$, which immediately fulfils all the conditions; we have only to prove that it is a map. If $(g(G')_{\alpha}, t\eta) = (h(G')_{\alpha}, u\eta)$, then $t\eta u$ and $g^{-1}h\eta h^{-1}g\eta 1$ by Lemma 3.3, since they all belong to $(G')_{\alpha}$ and η is a band congruence. Whence at last:

$$g^{-1}tg\eta g^{-1}(hh^{-1})t(hh^{-1})g = (g^{-1}h)h^{-1}th(h^{-1}g)\eta h^{-1}th\eta h^{-1}uh.$$

To top the proof of the theorem we will show that the following map Θ is an isomorphism of S/τ onto $U: \Theta((m, a, n)\tau) = (m, (a\alpha(G')_{\alpha}, (a\alpha)^{-1}a\eta), n)$.

Let $(m, a, n)\tau(p, b, q): m = p, n = q$ and $a\Delta b$; consider the sequence $z_0, z_1, \ldots, z_n \in T$ such that $a = z_0, b = z_n$ and for every pair z_i, z_{i+1} $(0 \le i \le n-1)$ $z_i = upv$ and $z_{i+1} = uqv$ for u, v in T^1 and $p\eta_+q$. This easily yields for every z_i, z_{i+1} $(0 \le i \le n-1)$:

$$z_i \alpha(G')_{\alpha} = z_{i+1} \alpha(G')_{\alpha}$$
 and $(z_i \alpha)^{-1} z_i \eta(z_{i+1} \alpha)^{-1} z_{i+1}$.

Also

$$\Theta((m, a, n)(p, b, q)) = \Theta(m + p - r, a\alpha^{p-r}b\alpha^{n-r}, n + q - r)$$

$$(r = \min(n, p))$$

$$= (m + p - r, (a\alpha\alpha^{p-r}b\alpha\alpha^{n-r}(G')_{\alpha}, (a\alpha\alpha^{p-r}b\alpha\alpha^{n-r})^{-1}a\alpha^{p-r}b\alpha^{n-r}\eta), n + q - r)$$

and

$$\Theta(m, a, n)\Theta(p, b, q) = (m, (a\alpha(G')_{\alpha}, (a\alpha)^{-1}a\eta), n)$$
$$(p, (b\alpha(G')_{\alpha}, (b\alpha)^{-1}b\eta), q)$$

are equal. In fact

$$a\alpha(G')_{\alpha} = a\alpha^{p-r+1}(G')_{\alpha},$$

$$b\alpha(G')_{\alpha} = b\alpha^{n-r+1}(G')_{\alpha},$$

$$\beta(g(G')_{\alpha}, t\eta) = (g(G')_{\alpha}, 1\eta);$$

if n = p then

$$((a\alpha)^{-1}a\eta)((b\alpha)^{-1}b\eta) = (b\alpha)^{-1}(a\alpha)^{-1}ab\eta = ab\eta$$

by Lemma 3.3; otherwise (suppose n > p = r):

$$((a\alpha)^{-1}a((b\alpha)^{-1}b)\alpha^{n-r}\eta) = a\eta = (a\alpha b\alpha \alpha^{n-p})^{-1}ab\alpha^{n-p}\eta$$

again by Lemma 3.3.

The homomorphism is onto, since for any element $(m, (g(G')_{\alpha}, t\eta), n) \in U$ we have:

$$\Theta(m, g\alpha t, n) = (m, (g\alpha^2 t\alpha(G')_{\alpha}, (g\alpha^2 t\alpha)^{-1} g\alpha t\eta), n)$$
$$= (m, (g(G')_{\alpha}, t\eta), n),$$

as $t\alpha \in (G')_{\alpha}$, whence

$$g(G')_{\alpha} = g\alpha^2(G')_{\alpha} = ga^2t\alpha(G')_{\alpha},$$

and $(g\alpha^2t\alpha)^{-1}g\alpha\eta 1$.

At last, Θ is injective. In fact, if $\Theta(m, a, n) = \Theta(p, b, q)$, then m = p, n = q, $a\alpha(b\alpha)^{-1} \in (G')_{\alpha}$ and $(a\alpha)^{-1}a\eta(b\alpha)^{-1}b$.

Hence
$$a = a\alpha(a\alpha)^{-1}a\Delta a\alpha(b\alpha)^{-1}b\Delta b$$
 and thus $(m, a, n)\tau(p, b, q)$.

The study of regular Bruck-Reilly extensions shows that quasi-abelian congruences are far more general than abelian ones. An abelian congruence on such a semigroup must be a group congruence, since a simple abelian semigroup is a group, but quasi-abelian congruences can be of each type studied in [11]. Consider the semigroup $S = BR(T, \alpha)$, where $T = \{0, a = a^2, 1; 0 < a < 1\}$, $\alpha: T \to 1$; S is quasi-abelian, since T is a band. In [11] it was shown that S admits all three possible types of congruences and all of them are quasi-abelian as their quotients are bands.

4. Quasi-solvable regular semigroups.

Definition. Let S be a regular semigroup, we call S quasi-solvable of class c if c is the least integer (greater than 0) such that $S^{(c)} = E$; c is also called the class of quasi-solvability of S. S is called quasi-solvable if it is quasi-solvable of class c for some integer c > 0. In particular a band will be considered quasi-solvable of class 1.

It is well known the linkage between the definition of solvability in Group Theory and commutativity: a group G is solvable if and only if some of its commutator subgroups $G^{(i)}$ equals the identity. From the *quasi-abelian* property, the above definition arises naturally for regular semigroups. When specialized to inverse semigroups, this property is weaker than solvability as defined in [10], even if these two definitions coincide on special classes, in particular for groups.

Lemma 4.1. Let S be a regular semigroup. For every $c \ge 1$, we have $S^{(c)} = E$ if and only if $[S^{(c-1)}, S^{(c-1)}] = E$. If a regular semigroup S is quasi-solvable, then it is orthodox.

Proof. Half of the proof is trivial. Now, let $[a, b] \in E$ for every $a, b \in S^{(c-1)}$. By Lemma 1.1, this implies that all inverse elements of an idempotent are idempotent; thus S is orthodox and the product of two idempotents is idempotent, whence all the elements in the subsemigroup $S^{(c)} = \langle [S^{(c-1)}, S^{(c-1)}] \rangle$ are idempotents. \square

Denote by τ_i the least quasi-abelian congruence on $S^{(i)}$.

Theorem 4.2. Let S be a regular semigroup. The following are equivalent:

- i) S is quasi-solvable of class c;
- ii) c is the least index such that τ_{c-1} is the identity relation on $S^{(c-1)}$;
- iii) there exists a chain of congruence Π_i on S, $0 \le i \le c-1$, such that:

$$\Pi_{i+1} \subseteq \Pi_i, S^{(i+1)} \subset \ker \Pi_i$$

for every i = 0, ..., c-1 and Π_{c-1} is the identity relation on S.

Proof. $i \Rightarrow ii$). If S is quasi-solvable of class c, then $S^{(c)} = (S^{(c-1)})' = E$; hence $S^{(c-1)}$ is quasi-abelian, the least quasi-abelian congruence on $S^{(c-1)}$ is the identity and c must be the least index which fulfils this condition.

- ii) \Rightarrow iii) For all i: $0 \le i \le c-1$, let Π_i be the congruence on S generated by τ_i on $S^{(i)}$. Thus for every i $(0 \le i \le c-1)$, $S^{(i+1)}$ is included in ker Π_i since it is included in ker τ_i by Lemma 3.1. Also, since $S^{(i+1)} \subseteq S^{(i)}$, then $\Pi_{i+1} \le \Pi_i$. At last, as τ_{c-1} is the identity on $S^{(c-1)}$, then Π_{c-1} , is the identity on S.
- iii) \Rightarrow i) As Π_{c-1} is the identity on S and $S^{(c)} \subseteq \ker \Pi_{c-1}$ then $S^{(c)}$ must coincide with the set E of idempotents of S.

Lemma 4.3. Let S be a regular quasi-solvable semigroup and let c be its class of solvability. Then:

- i) If T is a regular subsemigroup of S, then T is quasi-solvable of class k, for some $k \le c$.
 - ii) If T is a quotient of S, then T is quasi-solvable of class k, for some $k \leq c$.
- *Proof.* i) We will prove by induction on i that $T^{(i)} \subseteq S^{(i)}$, which is trivial if i = 0. If this is true for i + 1, then for every $a \in S$, $V(a) \cap T^{(i)} \subseteq V(a) \cap S^{(i)}$; thus $[T^{(i)}, T^{(i)}] \subseteq [S^{(i)}, S^{(i)}]$.
- ii) S is orthodox, whence (Lemmas 1.1 and 1.2) $S^{(i-1)}$ is orthodox $\forall i > 0$ and $T^{(i)} = S^{(i)}\mu$. Similarly, the following can be proved:

Lemma 4.4. Let $\{S_j, j \in J\}$ be a family of quasi-solvable regular semigroups (with solvability class equal to c_j for each $j \in J$) and suppose that there exists $c = \max\{c_j, j \in J\}$. Then:

- i) the direct product $S = \prod S_i$, is quasi-solvable of class c,
- ii) a subdirect product of the semigroups S_j is quasi-solvable of class k, for some $k \leq c$.

From Lemmas 4.3 and 4.4 we get (see [4]):

Theorem 4.5. The class of quasi-solvable regular semigroups of class $\leq c$ is an e-variety of orthodox semigroups.

Proposition 4.6. Let Γ be a congruence on a regular semigroup S such that S/Γ is quasi-solvable of class C and C is quasi-solvable of class C. Then C is quasi-solvable of class C, for C is C is C is C is C is C in C in C is C in C

Proof. S/Γ is quasi-solvable of class c, thus c is the least integer such that $(S/\Gamma)^{(c)} = E_{S/T}$; whence by Lemma 3.2, $S^{(c)} \subseteq \ker \Gamma$ and $S^{(c+k)} = (S^{(c)})^{(k)} \subseteq (\ker \Gamma)^{(k)} = E$. Thus S is quasi-solvable and its class of quasi-solvability h in

less than or equal to c + k; by Lemma 4.3 it is impossible that $h < \min(c, k)$.

When a regular semigroup S is naturally linked to a group G, we expect a precise connection between the quasi-solvability of S and the solvability of G. This is true in most interesting cases. For example (by Lemmas 4.3 and 4.4) any rectangular group IxMxG is quasi-solvability of class c if and only if G is quasi-solvable of class c. Also, by Corollary 7 of [8] it follows immediately that:

Corollary 4.7. An E-unitary regular semigroup S is quasi-solvable of class c if and only if its greatest group homomorphic image is solvable of class c or c-1.

A similar result holds for bisimple ω -semigroups; more generally:

Corollary 4.8. A regular Bruck-Reilly semigroup $S = BR(T, \alpha)$ is quasi-solvable of class c if and only if T is quasi-solvable of class c or c-1.

Proof. Since S is regular, T is a regular monoid. The set of those elements x such that for some non-negative integer m, $(m, x, m) \in S'$, is included in $T^{(0)} = T$. Suppose by induction that $\{x : \exists m \geq 0, (m, x, m) \in S^{(i)}\} \subseteq T^{(i-1)}$ and consider the commutator of two elements in $S^{(i)}$

$$[(m, x, m), (p, y, p)] = (m + p - k, x'\alpha^{p-k}y'\alpha^{m-k}x\alpha^{p-k}y\alpha^{m-k}, m + p - k)$$

$$= (m + p - k, [x\alpha^{p-k}, y\alpha^{m-k}], m + p - k)$$

$$(\text{with } k = \min(m, p)).$$

Since $x, y \in T^{(i-1)}$ implies that $x\alpha^{p-k}$, $y\alpha^{m-k} \in T^{(i-1)}$, then we have:

$${x: \exists m \geq 0, (m, x, m) \in S^{(i+1)}} \subseteq T^{(i)}.$$

Thus, if T is quasi-solvable of class c, then $T^{(c)}$ is a band whence also $S^{(c+1)}$ is. Conversely, by Lemma 4.3, if S is quasi-solvable of class c, then T is quasi-solvable of class at most c.

5. Quasi-solvability and solvability in inverse semigroups.

In [10] we proposed a definition of solvability for inverse semigroups, by generalizing the corresponding property from Group Theory, that is by means of a chain of commutative quotients.

Definition. ([10]). Let S be an inverse semigroup. Consider the transitive closure $\gamma_{E,S}$ of the following relation on $E_S: e \approx f$ iff $e = abb^{-1}a^{-1}$, $f = baa^{-1}b^{-1}$ for some $a, b \in S$; consider also the following chain of subsemigroups of S:

$$\delta_0(S) = S$$
,
 $\delta_i(S) = \{a \in \delta_{i-1}(S) : \text{ for some } e \in E_S, aa^{-1}\gamma_{E,\delta(S)}e \text{ and } ae \in \delta_{i-1}(S)'\}$

S is called solvable of solvability class c if c is the least index i such that $\delta_{i-1}(S)$ is commutative.

This definition was motivated by the following results, which show a strict linkage between the classical notion of solvability in groups and this generalized one:

Proposition 5.1. ([10]). The following relation is the least commutative congruence on the inverse semigroup $S: \gamma_S = \{(a,b) \in SxS : aa^{-1}\gamma_{E,S}bb^{-1} \text{ and } ab^{-1} \in \delta_1(S)\}.$

The semigroup $\delta_1(S)$ is the kernel of γ_S and the relation $\gamma_{E,S}$ is the trace of γ_S . S is solvable of solvability class c if and only if c is the least index i such that $\gamma_{\delta_i(S)}$ is the identity on $\delta_{i-1}(S)$.

Proposition 5.2. ([10], see also [7]). Let S be a Clifford semigroup. S is solvable of solvability class c if and only if it is a strong semilattice of solvable groups of class $c_i (i \in I)$, such that c is exactly the maximum of the $c_i (i \in I)$.

In particular, if S is group, our definition exactly coincides with the classical notion of solvability; indeed, for Clifford semigroups, whence also for groups, these also coincide with quasi-solvability. In general we have:

Proposition 5.3. A solvable inverse semigroup of solvability class c is quasi-solvable of class $k \le c$. A Clifford semigroup is quasi-solvable of solvability class c if and only if it is solvable of solvability class c.

Proof. Let S be a solvable inverse semigroup of solvability class c. Then $\delta_{c-1}(S)$ is commutative, hence $\delta_c(S) = E_S$. But we can easily prove by induction that, for every $i \geq 0$, $S^{(i)} \subseteq \delta_i(S)$; in fact, for every $i \geq 0$, $\delta_i(S)' \subseteq \delta_{i+1}(S)$.

By [10] 2.8, in a Clifford semigroup $S = \bigcup G_j$, the semigroup $\delta_1(S) = S'$ is exactly the strong semilattice of the commutator subgroups G'_j and, again by induction, we can prove that, for every $i \ge 0$, $S^{(i)} = \delta_i(S)$.

These two notions coincide also in the class of E-unitary inverse semigroups (by [10] 3.12 and Corollary 4.7); a similar result can easily be given for orthogroups.

In general, however, solvability and quasi-solvability are not equivalent properties for inverse semigroups: for example, solvable inverse semigroups do not form a variety (solvability is not inherited by quotients: see [10] for a counterexample). Also they do not coincide in some interesting classes of inverse semigroups:

Proposition 5.4. ([1] 2.2). Let S = B(G, 1) be a Brandt semigroup. S is quasi-solvable if and only if the group G is solvable. But if |I| > 1 then S is not solvable, whatever G is.

In [10] all symmetric inverse semigroups of injective partial transformations on a set X of elements were proved to be not solvable. On the other hand we have:

Theorem 5.5. Let n be an integer greater than 1 and let \mathcal{I}_n be the symmetric inverse semigroup on a set X of order n. If $n \leq 4$ then \mathcal{I}_n is quasi-solvable of class n-1; if n>4 then \mathcal{I}_n is not quasi-solvable.

Proof. Consider the permutation group $S_n \subset \mathcal{I}_n$. It is well known that a similar result holds for the solvability of S_n ; thus by Lemma 4.3 and Proposition 5.2, \mathcal{I}_n is not quasi-solvable for n > 4 and, for $n \le 4$, the class of quasi-solvability of \mathcal{I}_n is not less than n - 1.

Suppose $n \le 4$ and "complete" every element $x \in \mathscr{I}_n$ to an element $y \in S_n$. It will be enough for any $a \in \mathrm{Dom}(x)$, to define y(a) = x(a); if |Dom(a)| = n we have finished, if not then for any $b \notin \mathrm{Dom}(a)$ put y(b) = c with c any element not in $\mathrm{Im}(x)$ (this is certainly possible since $|\mathrm{Dom}(x)| = |\mathrm{Im}(x)| \le 4$). Note that an element of \mathscr{I}_n is idempotent only if it can be completed to the identity of S_n . This procedure do not uniquely determine y, but is compatible with inverses and with products, so that any commutator of \mathscr{I}_n can be completed to a commutator of S_n ; more precisely every element in $(\mathscr{I}_n)^{(c)}$ can completed to an element of $(S_n)^{(c)}$. Whence the result.

REFERENCES

- [1] F. Albegger, Auflösbare inverse halbgruppen, Universität Wien, 1991.
- [2] C. Bonzini A. Cherubini B. Piochi, *The least commutative congruence on simple regular ω-semigroups*, Glasgow Math. J., 32 (1990), pp. 13-23.

- [3] F. Catino, Factorizable semigroups, Semigroup Forum, 36 (1987), pp. 167-174.
- [4] T.E. Hall, Regular semigroups; amalgamation and the lattice of existence varieties, Algebra Universalis, 28 (1991), pp. 79-102.
- [5] J. Kadourek M.B. Szendrei, A new approach in the theory of orthodox semi-groups, Semigroup Forum, 40 (1990), pp. 257-296.
- [6] J.M. Howie, An Introduction to Semigroups theory, Academic Press, London, 1976.
- [7] J.D.P. Meldrum, Group theoretical results in Clifford semigroups, Acta Sci. Math., 52 (1988), pp. 3-19.
- [8] H. Mitsch, Subdirect products of E-inversive semigroups, J. Austral. Math. Soc., 48 (1990), pp. 68-78.
- [9] M. Petrich, Inverse semigroups, Wiley, New York, 1984.
- [10] B. Piochi, Solvability in inverse semigroups, Semigroup Forum, 34 (1987), pp. 287-303.
- [11] B. Piochi, Congruences on Bruck-Reilly extension of monoids, Semigroup Forum, 59 (1995), pp. 179-191.

Dipartimento di Matematica, Università di Siena, Via del Capitano 15, 53100 Siena (ITALY)