
LE MATEMATICHE
Vol. LXIII (2008) – Fasc. I, pp. 15–30

SELF-VERIFIED EXTENSION OF AFFINE ARITHMETIC TO
ARBITRARY ORDER

GIUSEPPE BILOTTA

Affine Arithmetic (AA) is a self-verifying computational approach
that keeps track of first-order correlation between uncertainties in the data
and intermediate and final results. In this paper we propose a higher-order
extension satisfying the requirements of genericity, arbitrary-order and
self-verification, comparing the resulting method with other well-known
high-order extensions of AA.

1. Introduction

Self-verifying computing is a way to conduct mathematical operations in such
a way that the final result is guaranteed to include the exact (correct) solution of
the problem being solved, without any need for a posteriori error analysis. This
is attained by modeling data in such a way that it can both represent errors in
the initial input data and also keep track of any numerical errors introduced by
finite-precision computing and approximate numerical results.

Classical self-verifying methods are based on Interval Arithmetic (IA), ini-
tially developed by Moore in 1966 [?]. A well-know problem with these meth-
ods is the dependency problems, which leads to results wider than necessary
when the same variables appear repeatedly in the same expression.

Entrato in redazione 1 ottobre 2007

AMS 2000 Subject Classification: 15A06, 15A15, 15A29, 65G99
Keywords: interval arithmetic, affine arithmetic, dependency problem
Partly sponosered by LIMA Ltd.

16 GIUSEPPE BILOTTA

For example, a simple subtraction

x− x = 0

when applied to an interval x = [a,b] with b a leads to

[a,b]− [a,b] = [a,b]+ [−b,−a] = [a−b,b−a]) 0

unless it is known that the two occurences of the interval [a,b] represent the
same datum, an information which is often not available in advanced steps of a
long computation.

To work around this dependency problem, it is often necessary to rewrite
the computations in a way that minimizes repeated occurrences of variables and
subexpressions.

Some alternative approaches to self-verifying computing have been devised
that reduce the dependency problem, keeping result explosion under control.
These methods are often slower step-by-step, and require more memory as
they keep track of additional information, but computations often complete
in shorter overall time because less steps are needed to obtain tight results.
One such method that has been taking traction recently, devised by Stolfi and
de Figueiredo in 1997 [?] is Affine Arithmetic (AA), an approach that keeps
track of first-order dependency in the data and partial results.

AA has been extended to second-order or higher in at least two different
ways [? ? ?]. Each of these extensions has its own benefits, but also some
significant shortcomings.

The purpose of this paper is to propose a different way to extend affine
arithmetic to arbitrary order by exploiting the benefits of both Modified Affine
Arithmetic (MAA) and General Quadratic Forms (GQF) to work around their
limitations. Three objectives are met: genericity, arbitrary-order correlation,
self-verification.

2. Standard Affine Arithmetic

We will now briefly recall the main operations in standard scalar Affine Arith-
metic, as a blueprint for our analysis of its extensions.

2.1. Representation

AA in its standard model represents data as affine expressions

x = x0 + x1ε1 + x2ε2 + · · ·+ xrεr

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 17

where the xi are either real numbers (in exact arithmetic) or floating-point num-
bers (in most numerical applications) and the εi are symbolic unknowns whose
value ranges independently in U = [−1,1]. x0 is called the central value, the xi

for i > 0 are called partial deviations and the εi are called noise symbols.
The radius or total deviation rad(x) of an affine expression is the radius of

the interval of the values spanned as the noise symbols vary in U :

rad(x) =
r

∑
i=1
|xi|.

It is therefore possible to switch from AA to IA by converting an affine expres-
sion to interval form (its range)

x = x0 +
r

∑
i=1

xiεi = [x0− rad(x),x0 + rad(x)].

The purpose of the noise symbols is to keep track of correlation between
the data. The ranges of two affine expressions which don’t depend on the same
noise symbol is independent, and their joint range is a box in the plane. How-
ever, when two affine expressions have nonzero coefficients for the same noise
symbols, their joint range is constrained to a center-symmetric polytope. For
more details on the joint range of affine expressions we refer the reader to [?].

It also possible to convert an interval x = [a,b] into an affine expression by
considering

mid(x) =
a+b

2
, rad(x) =

b−a
2

,

x = mid(x)+ rad(x)εk

where mid(x) and rad(x) are the center and radius of the interval x. The index
k for the noise symbol should be chosen among the free indices, so that εk is
either a noise symbol for which all other expressions have a zero coefficient, or
a new noise symbol altogether.

If a given affine expression is converted to its interval form and then con-
verted back to affine form, the correlation information tracked by noise symbols
is lost. Such a conversion should only be used when the range of the datum is
needed independently from other results.

2.2. Linear operations

Linear operations act componentwise, so that given two affine expressions

x = x0 +
r

∑
i=1

xiεi, y = y0 +
r

∑
i=1

yiεi

18 GIUSEPPE BILOTTA

and two sharp scalar values α,β , we have

αx+βy = αx0 +βy0 +
r

∑
i=1

(αxi +βyi)εi.

First-order correlation tracked by noise symbols ensures that, in exact arith-
metic, AA linear operations automatically obey cancelation laws, a considerable
benefit over linear operations in IA. In floating-point arithmetics, roundoff ef-
fects may negate complete cancelation, but the results are still much closer to
exact zero than in IA.

2.3. Multiplication

As multiplication and inversions are nonlinear functions, the result of their ap-
plication to affine expressions needs to be approximated by an affine expression:
the result will still retain first-order correlation with the input data, but new noise
symbols must be introduced to represent higher-order terms.

For the product, consider

x = x0 +
r

∑
i=1

xiεi, y = y0 +
r

∑
i=1

yiεi;

by evaluating their product algebraically we obtain

xy = x0y0 +
r

∑
i=1

(x0yi + xiy0)εi +R(ε1, . . . ,εr)

where

R(ε1, . . . ,εr) =
r

∑
i, j=1

xiy jεiε j

is of second order in the noise symbols.
If a,b are respectively the minimum and maximum value of R in U r, the

approximation of R with the least error is obviously a+b
2 + b−a

2 εk (where εk is
the new noise symbol). However, computation of a and b is expensive, so a
quicker approximation using rad(x) rad(y)εk is usually preferred.

2.4. On the number of noise symbol

The biggest issue with long standard AA computations with many nonlinear
operations is the increasing number of noise symbols: each nonlinear operation
needs a new noise symbol, and the same nonlinear subexpression computed at
different times will generate a different noise symbol.

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 19

Moreover, a new noise symbol needs to be introduced also for each linear
operation which cannot be computed exactly in floating-point, to keep track of
the roundoff errors.

A strategy to reduce the number of noise symbols is to compact some of the
noise terms and replace them with a single noise term whose partial deviation
is the sum of the reduced partial deviations. This simplifies the expressions and
reduces computational time and memory requirements, at the expense of some
loss of correlation.

Commonly, this is done by introducing three noise symbols ε+,ε−,εe to col-
lect the positive, negative and sign-undefined error terms introduced by roundoff
and nonlinear operations (ε+ ∈ [0,1],ε− ∈ [−1,0],εe ∈U) ([? ?]).

Since the dependency loss of this implementation can lead to significant
overestimation of the results, two ways to preserve high-order correlation in
nonlinear operation have been devised.

3. General Quatratic Form

General Quadratic Forms (GQF) are an extension of AA that keeps track of
second-order noise symbols dependency. If ε = (ε1, . . . ,εn) is the vector of the
noise symbols of the original data, then a GQF has the form

x = ε
T Axε +bxε + cx + e−x ε−+ e+

x ε+ + exεe

where Ax is an n× n matrix, bx an n-dimensional vector, cx is a real number
and e−x ,e+

x ,ex are nonnegative real numbers. Detailed expressions for affine
operations and multiplication between GQF are presented in [?].

The most significant advantage of GQF over standard AA is that second-
order dependecy on the noise symbols is preserved across multiplications, al-
though higher-order terms are still collected in the error terms e−x (for the neg-
ative terms), e+

x (for the positive terms), and ex (for the sign-undefined terms).
In floating-point (non-exact) arithmetic, self-verification of the results can be
guaranteed by allowing Ax,bx,cx to be interval-valued, thereby accounting for
roundoff errors.

Although this extension to standard AA is quite generic and can be satisfac-
torily used in many cases, it has some significant drawbacks when long chains
of multiplications, or high powers of the variables, are involved, since much of
the correlation would then be absorbed by the error terms.

Therefore, while it reaches the genericity and self-verification objectives, it
doesn’t fullly meet the arbitrary-order correlation requirement.

20 GIUSEPPE BILOTTA

4. Modified AA in tensor form

A radically different extension of affine arithmetic specifically tuned for arbi-
trary order polynomials is Modified AA in tensor form [? ?].

The fundamental idea of MAA in tensor form is that polynomials can be
written as a tensor product. Given for example a polynomial in three variables

f (x,y,z) =
n

∑
i=0

m

∑
j=0

l

∑
k=0

Ai jkxiy jzk

we can write it as X⊗x (Z⊗z A)⊗y Y where X = (1,x, . . . ,xn),Y = (1,y, . . .ym)T

and Z = (1,z, . . . ,zl).
Let us assume that the variables are independent and that their affine form

is
x = x0 + x1εx,y = y0 + y1εy,z = z0 + z1εz.

We can then define the power vectors

X̂ = (1,εx, . . . ,ε
n
x),

Ŷ = (1,εy, . . . ,ε
n
y),

Ẑ = (1,εz, . . . ,ε
n
z)

and the tensors C(x),C(y),C(z) with components

C(x)
i j =

{(j
i

)
x j−i

0 xi
1 i≤ j,

0 i > j
i = 0, . . . ,n; j = 0, . . .n,

C(y)
i j =

{
0 i < j,(j

i

)
y j−i

0 yi
1 i≥ j,

i = 0, . . . ,m; j = 0, . . .m,

C(z)
i j =

{(j
i

)
z j−i

0 zi
1 i≤ j,

0 i > j,
i = 0, . . . , l; j = 0, . . . l,

and use these to write our polynomial in centered form

f (εz,εy,εz) = X̂⊗x (Ẑ⊗x G)⊗y Ŷ =
n

∑
i=0

m

∑
j=0

l

∑
k=0

Gi jkε
i
xε

j
y ε

k
z

where G = C(x)⊗x (C(z)⊗z A)⊗y C(y).
The total range [F ,F] of the polynomial is then calculated as

F = G000 + ∑
i, j,k

{
min(0,Gi jk) if i, j,k are all even,

−|Gi jk| otherwise

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 21

and similarly

F = G000 + ∑
i, j,k

{
max(0,Gi jk) if i, j,k are all even,

|Gi jk| otherwise
.

The resulting bounds are much tighter than those obtain by standard AA, and
slightly better than those obtained by using interval center form computations.

This benefit however comes at the cost of a high specialization: the al-
gorithm cannot indeed be applied in more general situation, when complete
a priori knowledge of the polynomial expressions involved cannot be obtained.
Moreover, the tensor decomposition of a polynomial is only practical when a
small number of variables are involved. Finally, possible roundoff errors in the
computation of the tensor G are not taken into account.

This extension meets therefore the arbitrary-order correlation requirements,
but fails the genericity and self-verification objectives.

5. Extended Polynomial Arithmetic

We will now introduce our arbitrary-order correlation-preserving, generic, self-
verified extension to AA, starting from its fundamental building blocks.

5.1. Polynomial terms

For any given symbol x we use X r
l as a shorthand for

∑xi1...il εi1 . . .εil

where the summation is for i1 = 1 . . .r and i j = 1 . . . i j−1 for j > 1. The super-
script r will be omitted where possible. We have thus for example

X0 = x0, Y1 = Y r
1 =

r

∑
i=1

yiεi,

Z2 = Zr
2 =

r

∑
i=1

i

∑
j=1

zi jεiε j, W3 = W r
3 =

r

∑
i=1

i

∑
j=1

j

∑
k=1

wi jkεiε jεk.

When the coefficients xi1...il are real numbers and the symbols εi1 , . . . ,εil are
unknowns, the expressions represented in this notation will be called polynomial
terms of order l.

In what follows we will always assume that εi are noise symbols, i.e. inde-
pent unknowns with range U .

22 GIUSEPPE BILOTTA

Affine operations on polynomial terms of the same order return a polyno-
mial term of the same order: given two polynomial terms of order l Xl,Yl and
two real numbers α,β we have

αXl +βYl = ∑(αxi1...il +βyi1...il)εi1 . . .εil .

The products of two polynomial terms Xl,Ym of order l,m is a polynomial
term Zl+m of order l +m. The expression of zi1,...il+m is given by

zi1,...il+m = ∑x j1,... jl yk1,...km

where the summation is extended to all indices (j1, . . . , jl),(k1, . . . ,km) such that
(j1, . . . , jl,k1, . . . ,km) is a permutation of (i1, . . . , il+m).

It should be noted that the strict ordering condition on index values limits
the number of such combinations: for example, for l = 2,m = 3 we have

z11111 = x11y111,

z21111 = x21y111 + x11y211,

z31111 = x31y111 + x11y311,

z32111 = x32y111 + x31y211 + x21y311 + x11y321

and so on. However, the number of coefficients in a polynomial term X r
l is given

by the number of unordered l-tuples of r elements, i.e.
(r+l−1

l

)
, and products of

high-order polynomial terms can become rather expensive.
The parity of a coefficient xi1...il of a polynomial term Xl is the parity of the

occurences of each unique index value in (i1, . . . , il): if all unique index values
occur an even number of times, then the coefficient has even parity, otherwise it
has odd parity.

For example x332111 has odd parity, because the unique index values 2 and
1 occur an odd number of times. The coefficient x332211 has even parity since
all of its unique index values 3,2,1 occur an even number of times. All the
coefficients of odd-order terms will have odd parity.

The range of a polynomial term Xl is the (real-valued) interval [X l,X l] it
spans as its noise symbols vary in U . As the order l and the number r of noise
symbols grow, however, it becomes computationally very expensive to calculate
the actual range, so a faster overestimation is often preferred.

We define the quick range qr(Xl) of a polynomial term Xl in the following
way:

• for l = 0 we set qr(Xl) = qr(Xl) = x0;

• for l odd we set qr(Xl) = ∑|xi1...il |=−qr(Xl);

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 23

• for l > 0 even, we set

qr(Xl) = ∑
even

min(0,xi1...il)−∑
odd
|xi1...il |,

qr(Xl) = ∑
even

max(0,xi1...il)+∑
odd
|xi1...il |

where the summations run separately over even- and odd-parity indices,
as indicated. We remark that the overestimation of the quick range over
the actual range grows as the order of the polynomial term increases.

5.2. Purely polynomial forms

A (purely) polynomial form of degree h with noise symbols ε1,ε2, . . . ,εr is an
expression in the form

x =
h

∑
m=0

Xm = x0 +
r

∑
i=1

xiεi +
r

∑
i=1

i

∑
j=1

xi jεiε j +
r

∑
i=1

i

∑
j=1

j

∑
k=1

xi jkεiε jεk + . . .

To simplify notation in the following formulas, we will introduce the fol-
lowing convention: given a polynomial form of order h x = ∑

h
i=0 Xi, we will

define Xi for i > h as being identically 0.
Affine operations on polynomial forms follow the usual algebraic rules.

Given two polynomial forms x = ∑
h
i=0 Xi,y = ∑

k
j=0Yj and two real numbers

α,β we have

αx+βy =
max(h,k)

∑
i=0

(αXi +βYi)

The product of two polynomial forms x = ∑
h
i=0 Xi,y = ∑

k
j=0Yj can be ob-

tained by formally multiplying their expression, obtaining a new polynomial
form z = ∑

hk
i=0 Zi with Zi = ∑

i
j=0 X jYi− j

The range of a polynomial form x is the (real-valued) interval [x,x] it spans
as the noise symbols it depends on vary in U . This is however extremely com-
plex to calculate as the order of the polynomial form grows, so it’s again nec-
essary to be able to calculate a quicker overstimation. The quick range of the
polynomial form x = ∑

h
i=0 Xi will be

qr(x) =
h

∑
i=0

qr(Xi).

24 GIUSEPPE BILOTTA

5.2.1. Order reduction

The computational compexity of multiplying two polynomial forms of degree
h,k respectively can be estimated with the following considerations.

The number of products of polynomial terms in such an operation is l + 1
for the l-th addendum (see above), and thus

t =
hk

∑
l=0

(l +1) = 1+2+ · · ·+(hk +1) =
(hk +1)(hk +2)

2

in total; for each of this products we need to calculate
(r+l−1

l

)
coefficients, to-

talling to (
r + t

t

)
=

(r + t)!
r!t!

.

Since t depends quadratically on h,k, the number of operations involved
grows much faster with the order of the polynomial terms than with the number
r of noise symbols. By contrast, the benefits provided by the higher correlation
decrease as the quick range overestimation worsens.

These considerations indicate that usually the order of the expressions in-
volved in a long computation should not be made to grow past a given maxi-
mum; this maximum depends on factors such as the width of the uncertainties,
the number of uncertainties which are present, and the specific problem to which
the method is applied.

When expressions grow past the prescribed maximum order it is therefore
necessary to have a method to reduce the order of a given polynomial form; the
cost of this reduction is the introduction of a new noise symbol.

Reduction can be achieved in at least two different ways; the method to
choose depends chiefly on the absolute value of the coefficients.

Truncation: we say that a polynomial form of order h gets truncated to order
k < h if all the polynomial terms of order j > k are replaced by an ad-
ditional order 1 coefficient. Let x = ∑

h
i=0 Xi be the original polynomial

form, and let

χ =
h

∑
j=k+1

qr(Xi), cχ = mid(χ), rχ = rad(χ);

construct a new polynomial form y = ∑
h
i=0Yi by putting

Y0 = X0 + cχ , Y1 = X1 + rχεr+1, Yi = Xi ∀ i > 1, i≤ k.

It is obvious to note that qr(y) = qr(x), and that the dependency from
εs,s = 1, . . . ,r remains unaltered up to order k. Dependency for higher

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 25

orders gets truncated by replacing it with the truncation interval χ (in
affine form).

This method is to be used in preference when the truncated terms are
small in radius, so as to minimize dependency loss.

Power deflation: a more sophisticated strategy consists in the substitution of a
product of noise symbols with a first-degree affine expression spanning
the same range. Common substitutions are:

ε
2i
s ←

1
2

+
1
2

εr+1,

ε
2i−1
s ← εr+1,

ε
2i
s ε

2 j
u ←

1
2

+
1
2

εr+1,

ε
2i−1
s ε

2 j
u ← εr+1;

in general, when all the powers of the noise symbols are even, the substi-
tution uses 1

2 + 1
2 εr+1, otherwise, the new noise symbol is used directly.

It should be noted that a single power deflation does not, in general, re-
duce the order of the original polynomial form, since it acts on single
coefficients, which are shifted from higher order to lower order polyno-
mial terms.

Power deflation is thus preferrably used to shift large-radius high-order
coefficients to lower order terms, so that a subsequent truncation step can
be used without much loss in dependency.

5.3. Extended polynomial forms

The algebra of purely polynomial forms satisfies our criteria for genericity and
arbitrary-order correlation, but does not guarantee self-verification of the results
in presence of roundoff errors.

An extended polynomial form is an expression

x = xP + xI

where xP is a purely polynomial form (the pure part of the expression) and xI is
the interval part, an interval [xI,xI] used to handle the roundoff errors.

Let zP = xP � yP be the result of an operation between the pure parts of two
extended polynomial forms, and assume that a coefficient zi1...il of the result
cannot be represented exactly numerically. Assume that zi1...il > 0 and let γ

be the largest representable value smaller than zi1...il ; also let r be the smallest

26 GIUSEPPE BILOTTA

representable value such that γ + r ≥ zi1...il (the relations are obviously reversed
if zi1...il < 0). γ is thefore the chopped (rounded towards zero) value of zi1...il ,
while r is the representable value of the roundoff.

If the coefficient has odd parity, the absolute value of its roundoff is added
to the sign-indefinite roundoff r±; if the coefficient has even parity its roundoff
is added to the positive r+ or negative r− roundoff, depending on whether the
coefficient itself is positive or negative. The roundoff interval rI for the given
operation can then be computed as

rI = [−r±+ r−,r±+ r+]

and is added to the interval part of z as we will show briefly. Remark that this
choices ensures that 0 ∈ rI , guaranteeing that the roundoff correction is always
outward.

Let x,y be two extended polynomial forms and let α,β be real numbers;
z = αx+βy can be computed as follows. For the pure part we have

zP = αxP +βyP

with roundoff interval rI calculated as described above.
For the interval part we have

zI = αxI +βxI + rI

where the additions are performed with outer rounding.
The product z = xy is computed as follows. For the pure part we have

zP = xPyP

with roundoff interval rI calculated as described above.
For the interval part, let qx = qr(xP),qy = qr(yP) and calculate

zI = qxyP +qyxP + xPyP + rI

where the operations are performed with outer rounding.
The range of an extended polynomial form x is the sum of the range of its

pure part xP and the interval part xI . Once again, it’s most common to use the
quick range which is defined simply as qr(x) = qr(xP)+ xI .

We remark here that the choice to round non-representable coefficients in-
wards (towards zero) serves the purpose of minimizing the range (and quick
range) overestimation; indeed, since the range correction introduced by the in-
terval part is always outwards, outer rounding of the coefficients would lead to
an unnecessary, although slight, increase in overestimation.

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 27

6. Applications

The extended affine arithmetic presented here has been successfully used to
improve the outer estimation when evaluating stress in structural analysis of
FEM problems with uncertain mechanical parameters.

In mathematical terms, the first step in such a structural analysis is the reso-
lution of a linear system

AX = B

where

• A is the stiffness matrix of the problem, and is built from the mechanical
parameters of the elements in which the structure is decomposed; there-
fore, it can contain uncertainties coming from the uncertainties of the
mechanical parameters;

• B is a vector which represents the load which the structure undergoes;

• X is a vector of unknowns representing the displacements of the nodes
(vertices of the elements).

In most physical problems, structural analysis leads to the creation of very
large linear system: real-world problems can easily have over hundreds of thou-
sands of variables.

It should be noted that in general the number of uncertainties is consider-
ably smaller than the number of variables: in worst-case scenarios where each
element is supposed to have mechanical parameters independent from those of
the neighbouring elements, for example, one would have an order of magnitude
less uncertainties than variables (for example, in a typicial three-dimensional
problem with N tethraedral elements one would have 12N variables but at most
2N uncertainties). In more realistic case, one would consider neighbouring el-
ements to have correlated mechanical parameters and would only consider a
handful of noise symbols. [?]

One of the most important results in structural analysis is the computed
stress which a particular load exherts on the elements of the structure. Stress
computation for the elements is obtained from the nodes displacement using
both linear and nonlinear operations.

It should be noted that the iterative nature of the solvers used for large sparse
linear systems such as those resulting from FEM structural analysis prevent us-
age of MAA. Therefore, the only meaningful results can be obtained by com-
paring first (standard AA), second (GQF) and higher order extended affine arith-
metic.

28 GIUSEPPE BILOTTA

The multidimensional nature of the problemi led us to usage of extended
affine arithmetic in conjunction with a multidimensional extension to affine
arithmetic developed by the author [?].

1

2

3

4

5

I

II

III

Figure 1: Structural analysis example: initial position

We show the benefits of higher-order affine arithmetic by showing the results
for a simple 2D example, depicted in Figure 1. A steel beam (Young’s modulus
200N/m2, Poisson ratio 0.29) is bound on the leftmost side and can move freely
on the horizontal axis. With the prescribed load of 100N on the two indicated
vertex, the displacement would be as indicated in Figure 2

1

2

3

4

5

I

II

III

Figure 2: Structural analysis example: result

However, the Young’s modulus of steel is not known exactly. We assume

SELF-VERIFIED EXTENSION OF AFFINE ARITHEMTIC . . . 29

therefore that it’s known with a 10% accuracy, and is therefore in the range 180–
220 N/m2. If we assume no correlation between the uncertainty in the elements,
we can describe the Young’s modulus for each element as

Ei = 200+20εi ∀i ∈ {1,2,3}.

We can then calculate the stress for each element using purely interval com-
putations, or first, second, third, fourth order affine arithmetic. For purely in-
terval computation, we use the state-of-the-art interval FEM method devised by
Muhanna and Mullen [?], which gives very good bounds despite the high cor-
relation between uncertainties in the matrix A. We consider this the “0th” order
affine arithmetic result, in the sense that no correlation is tracked.

element 0-th 1st 2nd 3rd 4th
I [7.46,25.99] [12.01,20.23] [12.58,19.53] [12.71,19.38] [12.72,19.37]

II [0,19.15] [1.24,4.21] [1.85,3.32] [1.98,3.16] [1.98,3.15]
III [6.71,28.07] [11.83,20.45] [12.55,19.57] [12.71,19.38] [12.71,19.37]

Table 1: Stress range for each element

The total range of the stress for each element is show in Table 1 (only two
decimal digits are displayed because of space constraints). In Table 2 we show
the radius of the stress for each element, and for higher orders we also show the
relative gain for the radius: (rlower− rhigher)/rlower.

The first thing that can be noticed is that although higher orders provide
tighter ranges, the relative gain in radius decreases exponentially. By contrast,
the computational complexity grows as described in section 5.1: the number of
additional terms tracked at order k is

(r+k−1
k

)
, where r is the number of original

noise symbols (r = 3 in our case). The relative cost for first, second, third, fourth
order is therefore 3,3+6 = 9,9+10 = 19,19+15 = 34.

Finally, we remark an expected result: the benefits of using higher orders
are more significant for the second finite element than for the other two. Indeed,
the middle element’s stress depends on all three uncertainties, resulting in more
sophisticated correlation for high-order mixed terms (such as ε2

1 ε2).

7. Conclusions

Standard AA provides an excellent tool for self-verified computing, with signif-
icant benefits over traditional interval analysis. When a large number of nonlin-
ear operations are involved, however, the loss in correlation tracking caused by
the appearance of higher order terms can significantly limit the benefit of AA,
requiring the use of a higher-order extension.

30 GIUSEPPE BILOTTA

element radius gain
0th order

I 9.26538 —
II 9.5765 —

III 10.6804 —
1st order

I 4.11364 55.6%
II 1.48374 84.5%

III 4.31171 59.6%
2nd order

I 3.47473 15.5%
II 0.734874 50.4%

III 3.51251 18.5%
3rd order

I 3.33385 4.0%
II 0.591323 19.5%

III 3.33588 5.0%
4th order

I 3.32721 0.2%
II 0.584707 1.1%

III 3.32759 0.2%

Table 2: Stress radius gain for each element

The extended AA described in this paper works around the limitations of
two other extensions (MAA in tensor form and GQF) offering a mathematical
structure that can be used to reliably track arbitrary-order correlation on uncer-
tanties withour special algorithmical requirements.

The benefits obtained by using this extension are most significant when
MAA in tensor forms becomes unwieldy to manipulate, but quadratic corre-
lation as tracked by GQF is not sufficient to provide optimal bounds.

GIUSEPPE BILOTTA
Dipartimento di Matematica

Università di Catania
e-mail: bilotta@dmi.unict.it

