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ON EQUATIONAL PROPERTIES OF SUBGROUP
LATTICES OF METABELIAN GROUPS

VLADIMIR B. REPNITSKII

To the memory of Umberto Gasapina

The subalgebra lattice of an algebra A is denoted by Sub A. Given a variety
V of algebras, SubV denotes the class of all lattices isomorphic to lattices of
the form Sub A, A € V. As was shown by the author (see [1]), for a variety V
of semigroups, Sub V satisfies a nontrivial identity if and only if V is periodic,
consists of nilpotent extensions of completely simple semigroups, and subgroup
lattices of all groups from V satisfy a nontrivial identity. Thus, the complete
description of semigroup varieties V with a nontrivial identity on SubV is
reduced to the description of the corresponding (periodic) group varieties. The
last varieties must be soluble (see [1], [2]). So the following question arises:
what varieties-V of soluble groups have a nontrivial lattice identity on Sub'V?
We prove in [3] that any nilpotent variety of groups has such a property. From
the main result of the present paper it follows that varieties of metabelian groups
have this property as well.

Now we recall some necessary definitions and notation. As usual, the com-
mutator [a, b] of elements a and b of a given group is the element a~'b~'ab.
A group is called metabelian if it satisfies the identity [[x, y], [z, u]] = 1. This
identity is evidently equivalent both to the identity [x, yl[z, u] = [z, ul[x, y]
and to the identity [x, y]** = [x, y]**. The subgroup generated by a subset H
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of a given group is denoted by (H). If s and ¢ are 1att1ce terms then we shall
write briefly s < ¢ instead of the lattice identity s v ¢ = ¢. '

Let us define lattice terms p and g over the alphabet X = {xg, X1, X2;
Y1, Y2, 21, 22, 23, 24} by the rule:

Pr=OA@ V)V A3V ),
P =xo A ((x1 Ap1)Vx);

Gr=@EVyIVnVi)AxVnVz),
=@V VR VZA@YVYV ),
B=uVq@V((x1VzVa) A Vaq)),
kg = xR VA(gaiA (o VX)) ’
Theorem. Let V'be a variety of groups. If V- is metabelian, then Sub V satisfies
the identity p < q. Conversely, if SubV satzsﬁes the identity p < q, then V

satisfies the identity [[[x, y1, [z, %]}, v] = 1;in particilar, here V is metabelian
if its free group of rank five has a trivial center.

We divide the proof of thlS theorem 1nto two lemmas
Lemma 1. The subgroup lattzce of any metabelzan group satisfies the identity
P =q.
Proof. Let G be a metabehan group and X,, X1, Xz, Yi,Y5, 274, ... Z4 arbi-
trary subgroUps of G We now deﬁne the followmg subgroups of- G

(‘1)" S ‘Pl <Y10<Zl,22> Yzﬂ(Z3,Z4)>
@ - P= Xoﬂ(XlﬂPl,Xz) o

3) . :le (Xz,Yle%ZI) (Xz,Yz, Zz)
@ ~'*-"Qz (X2, Y1, Y2, Z5) N (X, 11, Za), -
S  03=(23,05(X,75, 0N <ZI,Q1>)
© Q (Xl,szxo,Xl))

. 'We must prove that P C Q 1n Sub G Wlth that end 1n v1ew let us take an
arbitrary & € P. Then by (2) we have

and -
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From (8) it follows that, for some x;, ..., x, € X1 N P; and yy, ..., y,-€ X9,
the equality
h=Xx1y1" +XpYn

holds. Since X; N P; and X, are subgroups of G, the easy induction on n gives
us existence of elements

9) A, g EX1 n P

and

(10) | O bby o beXy

such that

(11) b= ablay, b1 [az, b2]% - [ag, by]®

where €1, €5, ..., ¢, € {—1, 1}.
Let us now consider an arbitrary commutator of the form [a;, b;], | < i<

k. From (1) and (9) it follows that there exist elements

(12) e €Y1 N2y, Z)
and

A3y dy e dn€oN{Zs, Zs),
for. which the equality B

a; = Cldl T Cmdm
is true. From here and from that any g'roup' satisfies the identity

[xy, z] =[x, z2]' [y, z]

we obtain

[a;, b;] = [c1dicady = Cpdy, bi]
— [Cls bi]dlczdzi..C,,,C‘im [dl’. bl]czdzc,ndm .. ':[Cm, bi]dm [dm’ bl]

Since G is metabelian, this implies that
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where

(15) wy = [e1, b 199 -+ [y, b;]mm
and

(16) wy = [dy, b 15 - [d,,, b;]mCn

for suitable elements

(17) Cly vy Crpy €1y ey Cr €Y1 N (24, Z5)
and
(18) d{,...,d,/n,d{/,...,d,/;lEYzﬂ(Z3,Z4).

Let us now check that

(19) w1 € (Z3, 0>)
and
(20) - wy € (Z1, Q1).

Indeed, by (18) every element a’Jf, 1 < j < m, can be represent as a product of
some elements of the subgroups Z3; and Z4. From here and again from that G
is metabelian we deduce that, for each j, there exist f; € Z3 and ¢; € Z, with
the property

(¢}, b1%% = l¢j, b5 75 .

This is equivalent to that
[ej, b5 = [¢j, 159,
In addition, using (10), (12), (17) and (18), we have
(e, 19407 € (Xa, Y1, Y, Z3)

and
[cj, b:i19% € (Xo, Y1, Z4).
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Now, taking (4) into account, we obtain
s g =1 /.
[¢;, b 1540 = [cj, bi199 € (Xq, Y1, Yo, Z3) N (Xa, Y1, Z4) = O.

Therefore,
! ogt 1 gt p—1
[c;, bi15% = ([¢j, b 1597 )i € (23, 05).

The last inclusion holds for all j € {1, 2, ..., m}. This and (15) imply (19). The
inclusion (20) can be checked similarly with the use of (3), (10), (13), (16), (17)
and (18). ‘
Further, as follows from (4), X, € Q. This inclusion with (9), (10) and
(19) implies
wi ' a;, bil € (X1, Z3, Q).

Now, taking (14) and (20) into account, we deduce
w2 = wy [, il € (X1, Z3, Q2) N (Zy, Q1).
Hence
(21) [a:, bi] = wiwy €(Z3, 02, (X1, Z3, 02) N (Z1, 01)) = Q3
(see (5)).
Now let us note that b€ X, € Q> C Q3 (see (4),(5) and (10)). From here
and from that (21) holds for all i € {1, 2, ..., k} we obtain
blay, bi]'[az, b2]? - - - [ax, b 1™ € Q5.

This with (7),(9) and (11) has as a consequence

a”'h = blay, bi1[az, b]? -+ [ax, Bi]% € Q3 N (X, X)).
Therefore, granting (6), we conclude that

h=a@™'h)e(X1, 03N (Xo, X1)) = Q.

The lemma is proved.

Lemma 2. If the subgroup lattice of a relatively free group G of rank five
satisfies the identity p < q, then G satisfies the identity [[[x, y], [z, ul], v] = 1.
In this case G is metabelian whenever G has a trivial center.
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Proof. Let us fix an arbitrary group variety and take in it a free group G of
rank five. Let x, y, z, u, v be its free generators and the identity p < g hold in
Sub G. Consider in G the following subgroups:

Xo = ([llx, y1, [z, u]], v]), X1 = ([[x, y], [z, ull), X2 = (v),
Yy = ([x, y1); Y2 = [z, ul),
Zy=(x), Za=\y), Zs =(2), Zs = (u).

Using them, we construct subgroups P, P and Q1, Q», O3, Q of G by the
above rules (1) — (6). By assumption, the inclusion P € Q must be hold. We
need to prove that then the equality [[[x, y], [z, #]], v] = 1 is true in G. In fact,
by construction we have

[x, YI€EYI N (Z1, Z,), [z, ul€YyN(Z3, Zy)

and hence
[[x, y1, [z, ull € (Y1 N (Z1, Z2), (Y2 N (Z3, Z4)) = Py .

Therefore,

(22) [[[x, ¥1, [z, ull, vI€ Xo N (X, N Py, Xo) = P.

Now we intend to verify sequentially the following equalities:

(23) Q1 = (v, [z, ul),

(24) Q2 = (v, [x, ¥]),

(25) (X1, Z3, O2) N (Zy, Q1) = (v),
(26) Q3 = (z,v,[x,y]),
27 Q3 N (Xo, X1) = {1},
(28) Q = ([lx, y], [z, u]l) .

Equalities (23) and (24). It is easy to see that
(29) O = (v, [x,y], [z, ul, x) N (v, [z, u], y)
and

(30) Q2 = (v, [x, y], [z, u], 2) N (v, [x, y], u).
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Let h € Q; and consider the endomorphism ¢ of the group G such that
¢(x) = 1 and all other free generators are fixed under ¢. Then we have
¢(h) = h,since he Q) C (v, [z, u], y). On the other hand,

¢(h) € (v, [x, y], [z, ul, x) = (v, [z, u]).

Hence h = ¢ (h) € (v, [z, u]). This means that the inclusion Q; C (v, [z, u]) is
true. The reverse inclusion evidently follows from (29). Thus the equality (23)
is checked. The equality (24) can be checked similarly (here we must act on the
right part of (30) by the endomorphism ¢ of G with the property ¢ (z) = 1 and

¢px) =x,¢(y) =y, o) =u, p(v) = v),
Equaliry (25). Using (23) and (24), we obtain

GD (X1, Zs, Q2) N(Zy, Q1) = (llx, ¥], [z, ull, z, v, [x, y]) N (x, v, [z, ul).
Let an element & belong to the left part of this equality. Consider the endomor-

phism ¢; of G such that ¢;(y) = 1 and all other free generators are fixed under
¢1. Then, since h € (x, v, [z, u]), we have ¢ (k) = k. On the other hand,

¢1(h) € pi(llx, y], [z, ull, 2, v, [x, ¥]) = (z, v).
Therefore, h = ¢1(h) € (z, v), i.e. the inclusion
(X1, Z3, Q2) N (Zy, Q1) € (2, v) N {x, v, [z, u])
holds. Now let us consider an endomorphism ¢, of G, for which ¢,(x) =

¢2(u) = 1 and ¢2(2) = z, $2(v) = v. Acting by ¢, on the right part of the last
inclusion, we obtain by standard arguments that

(X1, Z3, @2) N (Zy, Q1) € (v).
Since the reverse inclusion is obviously true (see (31)), the equality (25) is

proved.
From (25) we deduce (26):

03 =(Z3, 02, (X1, Z3, 02) N{Zy, O1)) = (z, v, [x, ¥]) .

Equality (27). Taking (26) into account, we may wright

(32) Q3N (Xo, Xy) = (z, v, [x, yD) N ([llx, ¥, [z, u]], v], [[x, ¥]1, [z, u]]).
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Let ¢ be an endomorphism of G such that ¢ (u) = 1 and ¢(x) = x, ¢(y) =y,
¢(z) = z, $(v) = v. Acting by this endomorphism on (32), we obtain (27).
At last, the equality (27) implies

0 = (X1, 03N (X0, X1)) = X1 = ([[x, y], [z, ull),

1.e. (28) is true as well.
Now, since P C Q, we obtain from (22) and (28) that

[[lx, ¥1, [z, ul], v] € ([lx, y], [z, u]]) .
This means that there exists an integer k, for which
[[Lx, ). (2, w11, v] = [[x, ¥1, [z, u]T.

Setting here v = 1, we deduce [[x,y],[z,u]]* = 1 and, finally,
[[[x, ¥1, [z, u]]l, v] = 1, as was to be proved.

Now it remains to note that our theorem directly follows from Lemmas 1
and 2. :
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