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Historical introduction.

Inverse semigroups form the most important class of semigroups besides
groups. This article is devoted to a description of those semigroups that
can be isomorphically embedded in inverse semigroups. The problem of
describing these semigroups was raised by Wagner (whose name is sometimes
transliterated as Vagner) in 1952, when he discovered inverse semigroups
(called by him “generalized groups™; see [23]) (1).

Apparently, this problem is similar to the problem of describing semi-
groups embeddadle in groups. This second problem had a dramatic history.
The so-called van der Waerden problem asks whether all rings without zero
divisors are embeddable in division rings. Obviously, the semigroups embed-
dable in groups are cancellative (on both sides). A semigroup analog of the
van der Waerden problem is whether all cancellative semigroups are embed-
dable in groups. For years it had not been known whether the cancellativity
condition was sufficient for embeddability. In 1935 Suschkewitsch published a
proof of the sufficiency of this condition (see [20]), but, in 1937, Malcev (see
[4]) found yet another necessary condition for embeddability that did not follow

(1) In 1954 inverse semigroups were rediscovered by Preston (see [7]), who gave them
their present name. G. Tallini (see [21]) suggested calling them “gruppidi”.
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from cancellativity. In 1939 Malcev found an infinite system of quasi identities
that described the embeddable semigroups (see [5]) and, in 1940, proved that
his set of quasi identities was essentially infinite (that is, not equivalent to any
of its finite subsets; see [6]). While these brilliant results were correct, proofs
of certain auxiliary lemmas raised objections, and their amplified proofs were
the subject of at least one doctoral dissertation. The best exposition of Malcev’s
results can be found in [1], where they are presented, as the authors put it, “with
considerable amplifications”. Other approaches to that problem were suggested
by Joachim Lambek, Vlastimil Ptdk and Dov Tamari.

It was only natural that when Wagner and his students tried to determine
the semigroups embeddable in inverse semigroups they turned to the method of
Malcev.

If S = (S; ) is a semigroup (S is a set of its elements and - an associative
multiplication on §), let G denote the group freely generated by S. Let the
Cayley multiplication table of S be a set of defining relations for G (that is, if
st = u for s,t,u € §, we use st = u as a defining relation). As a result, we
obtain a group G(S) freely generated by S and the injective mapping § — Gy
becomes a homomorphism 7 of S into G(S). In more modern terms, we can
say that n : § — G(S) is a solution to the universal problem of embedding S
into a group. Clearly, S is embeddable in a group if and only if 7 is such an
embedding (that is, 7 is injective). That means that if n(a) = n(d) for some
a,b €S, then a = b. Now, n(a) = n(b) means that there exists a chain
of words wg, wy, ..., w, in Gg such that wy coincides with a, w, coincides
with b, and every two consecutive words w; and w;4; are obtained by a single
application of a defining relation of G(S) (that is, a relation of the form st = u
or group relations of the form ss™! = A and s~'s = A, where s, ¢, u € S and
A is the empty word). The problem was to describe those one-lettered words s
and ¢ that were equivalent under these defining relations. Malcev showed that,
for each chain s, ..., there existed another chain s, ..., that had a certain
“normal” form. Each of his embeddability conditions had the same basic form:
“given a normal chain (desribed by certain equalities of products in S), the first
and last elements of that chain are equal in S. Thus, each of his conditions had
a form: if a certain finite system of equalities between products of elements of
§ holds, then a certain final equality holds” (that is, each of the conditions was
a quasi identity or, in another terminology, a universal Horn formula). Roughly
speaking, Malcev’s “normal form” of a chain of equivalent words corresponded
to a distribution of parentheses in a word made by elements of a groupoid (that
is, of a set endowed with a binary multiplication). People in the formal language
theory might say that Malcev used a certain connection between groups and
Dyck languages.



SUBSEMIGROUPS OF INVERSE SEMIGROUPS 207
If we try to apply that method to inverse semigroups, we can construct
an inverse semigroup /G (S) freely generated by the set S and subject to the
definiting relations of the form st = u and also the relations characterizing
inverse semigroups (given any word w, it is equivalent to the word ww'w,
and also idempotent words commute). Thus we arrive at a homomorphism
¥ : 8 — IG(S), and S is embeddable in an inverse semigroup if and only
if y is injective. The difficulty is in “normalizing” chains of transformations
beetween equivalent one-lettered words. No such normal form has been found.
It would be interesting to attempt finding such a form now, when our knowledge
of the structure of free inverse semigroups in somewhat deeper than it was in
1952-1956 and it becomes clearer that the structure of free inverse semigroups
is connected with Dyck languages too. Finding a “Malcev-like” solution for
the problem of embedding semigroups in inverse semigroups would be a good
test of our real understanding of the structure of free inverse semigroups that, in
some surprising aspects (see [16]), is very different from what we are used to in
the case of groups.

The history of the solution of an analogous problem for semigroups em-
beddable in inverse semigroups was different. I became a university freshman
in 1955. First, Wagner’s students, and a year later Wagner himself introduced
me to these problems. It was clear that a semigroup embeddable in an inverse
semigroup has commuting idempotents. It was not clear if commuting idempo-
tents would suffice for embeddability. By 1956 V.L. Izrailevich, one of Wag-
ner’s students, found another condition necessary for embeddability and proved
that this condition did not follow from the commutativity of idempotents (this
has never been published). He found that condition using the argument analo-
gous to that used in [5]. Naturally, that focused everyone’s attention on finding
a “Malcev-like” solution of the problem. I started working on this particular
embedding problem in 1956 and soon realized that a different approach might
be more promising. Here is that approach, in a nutshell. As proved by Wag-
ner and then by Preston, every inverse semigroup S is isomorphic to an inverse
semigroup of one-to-one partial transformations of a certain set A. Thus, ev-
ery semigroup embeddable in S is isomorphic to a semigroup of one-to-one
partial transformations of A. Conversely, if a semigroup S is isomorphic to a
semigroup of one-to-one partial transformations of any set A, then, since all
one-to-one partial transformations of A form an inverse semigroup Z(A), S is -
embeddable in that inverse semigroup. It follows that a semigroup is embed-
dable in an inverse semigroup if and only if that semigroup is isomorphic to a
semigroup of one-to-one partial transformations of a set. Thus, all I had to do
was to see which semigroups admitted faithful representations by one-to-one

partial transformations.
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To do that I had to develop a theory of homomorphic representations of
semigroups by partial transformations and see which of those representations
were those by one-to-one partial transformations. “Gluing together” sufficiently
many homomorphic representations, one could hope to construct an isomorphic -
representation (if it existed). I found that representations of semigroups by one-
to-one partial transformations were connected with a special type of subsets of
semigroups. These subsets were a semigroup analog of cosets of subgroups in
a group. By 1957 I had a theory of such subsets developed. To have a faithful
representation by one-to-one partial transformations, a semigroup had to have
sufficiently many subsets of this type (they had to “separate points”, using a
topological terminology.) Reading some papers of Robert Croisot and Gabriel
Thierrin available at my university library, I found there references to a previous
paper by Dubreil (see [2]). It looked as if this paper considered the same or
similar subsets, but it was not available at my University library, and I spent
three years hunting — without success — for it at all libraires of the USSR, where
I lived at the time, and discovered by accident in 1960 that the only copy of the
publication was kept . .. in my University library, catalogued as a book (and not
as a periodical or a semi-periodical) under a wrong name! Although the times
became more vegetarian than earlier, writing to Dubreil was out of question.
The role of these special subsets in semigroup theory is considered in [18] and
[19].

Anyway, I solved that problem in 1959 and submitted a paper to one of
the Soviet journals. The paper was returned to me because it was too long. I
made it much shorter omitting many results and making the remaining text more
compact (which influenced readability of the paper) and resubmitted it in the
beginning of 1960. It appeared in 1961 (see [11]). Some of the remaining parts
of this paper made separate short papers. Elementary axioms for semigroups
embeddable in inverse semigroups appeared (without proofs) in a short note [10]
(altough it was submitted after [11], it appeared earlier, in 1960). The theory
of representations of inverse semigroups by partial one-to-one transformations
appeared in 1962 (see [12]). Transitive representations of semigroups by partial
transformations appeared only in 1963 (see [13]), two years after E.J. Tully Jr.
published similar results. I did not publish at that time results on a semigroup
generalization of the Jacobson radical connected with transitive representations
of semigroups, and I gave a talk on that subject at a big conference only in 1967
(see [15]), a year after these results were published by H.-J. Hoehnke.

The axioms for semigroups embeddable in inverse semigroups appeared in
my diploma work (an analogue of a Master’s thesis) defended in 1960 (see [8])
and, two years later, in an expanded form in my Ph.D. thesis [9]. These results
have never been published, altough a part of the theory of representations of
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semigroups by partial transformations was included in Volume II of the Clifford
and Preston monograph [1]. However, neither the main results of [10] nor their
proofs were included in [1], because my proofs had not been published by that
time. I was involved in other projects and published the proofs only in 1977 in
a virtually inaccesible (even inside the USSR) semi-periodical of a provincial
University (see [17]) that appeared in Russian in 300 copies and ceased to exist
a few years after that. Due to poor photoreproduction, formulas in that paper
are all but illegibile. No proofs of these results have ever been published in an
accesible place in English. This is done for the first time in this present work
that contains improved and revised proofs.

Section 1 of this paper characterizes embeddable semigroups by a certain
topological property. Section 2 contains another characterization: embeddable
semigroups are precisely those that can be ordered in a certain way (in the
notation we have already used, the isomorphism y : § — IG(S) induces a
certain order relation on S, it is turned by y into the natural order relation on
the inverse semigroup /G(8S)). Section 3 uses these results to present a system
of elementary axioms for embeddable semigroups, while Section 4 proves that
no finite system of elementary axioms characterizes the class of embeddable
semigroups.

1. Semigroups as strong closure spaces.

In the sequel we denote a semigroup in the same way as the set of its
elements. Thus, S denotes both a semigroup and the set of all elements of §.
As the following Proposition shows, we can consider only the semigroups that
have an identity element. - As usual, if a semigroup S has no identity element,
S' denotes S with an external 1dent1ty t adjoined. If S has an identity element,
we define S' = §. See the Remark after the proof of Theorem 5 in Section 3
for more on that subject.

Proposition 1. A semigroup S is isomorphic to a semigroup of one-to-one
partial transformations of a set if and only if S' is isomorphic to such a
Semigroup

Proof. This claim is rather obvious (1t is tautological for §! = S), its proof
is given for completeness’ sake. Suppose that S!' = S, that is, S has no
identity element. Let S have an isomorphism ¢ onto a semigroup & of one-
to-one partial transformations of a set A. Extend ¢ to a mapping ¢! of S! by
defining ¢! (1) = A4, where A, is the identity transformation of A. Then ¢! is
an isomorphism of S! onto a semigroup of one-to-one partial transformations
of A. Indeed, ! is one-to-one because, if t!(s) = (!(1) for some s € S, then
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t(s) = A4, and hence Ay € ® and d is a semigroup with identity. Since S
1s isomorphic to @, § 1s a semigroup with identity, contrary to our assumption.
To prove that ¢! is a homomorphism (and thus an isomorphism), it sufficies to
check that ¢! (1) = A, is the identity element of ® U {A4}. This is obviously
frue. )

Conversely, if S! is isomorphic to a semigroup ¢ of one-to-one partial
transformations of a set A, then the restriction of this isomorphism to S is an

isomorphism of S onto a semigroup of one-to-one partial transformations of A.
O

For the sake of simplicity we assume in the sequel that all semigroups
considered have an identity element.

A closure space is any set S with a set C of subsets of S (called closed
subsets) such that the intersection of any family of closed subsets is closed.
A closure space is called a Kolmogorov space (or a Ty-space) if, given any two
distinct elements of S, there exists a closed set that contains exactly one of these
elements.

A subset H of a semigroup S is called strong if it satisfies the following
condition:

xv, uv, uye H = xye H forall u, v, x,yeS.

It is easy to see that any semigroup with the collection of all of its strong
subsets forms a closure space. If H is a subset of S, the strong closure H of
H is defined as the smallest strong subset that contains H (that is, H is the
intersection of all strong subsets that contain H). In particular, § denotes the
strong closure of a one-element subset {s}.

The principal result of this section is the following theorem.

Theorem 1. A semigroup is isomorphically embeddable in an inverse semi-
group if and only if its strong subsets form a Kolmogorov closure space.

Proof.  Necessity. Suppose that a semigroup S is embeddable in an inverse
semigroup. By Proposition 1, S is isomorphic to a semigroup of one-to-one
partial transformations of a set A. Without loss of generality, assume that S
is a semigroup of one-to-one partial transformations of A: For any a,be A
dcfinc a subset 11, , = {s € S : s(«) = b} of §. This subset is always strong.
Indeed, let xv, uv,uy € H,,. Then xv(a) = uv(a) = uy(a) = b. Thus
u(v(a)) = u(y(a)). Since u is one-to-one, we obtain v(a) = v(a). It follows
that xy(a) = x(y(a)) = x(v(a@)) = xv(a) = b, and hence xy € H, p. Thus
H, }, is a strong subset of §.
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If s and ¢ are two distinct elements of S, then there exist a, b € A such that
either s(a) = b # t(a) or t(a) = b # s(a). In other words, exactly one of the
elements s and ¢ belongs to the strong subset H, ;. It follows that S with its
strong subsets forms a Kolmogorov closure space.

Sufficiency. We need a few definitions.
(1) For FC SandseSdefine Fos={ueS:sueFland F'.s ={uecsS:
us € F}.
(i) If H is a nonempty strong subset of a semigroup S, let H be the set of all
nonempty subsets of S of the form H *. s, where s € S. ‘
Thus H ={F : 3se€S)F =H'.s # 0}. Since H.1 = H £ §, H is
not empty because H € H. Let H = {H, : a € A}, where the elements of H are
indexed by some index set A in a one-to-one way (that is, for any two distinct
a,beA, H, # Hy).
For every s € S define a binary relation P(s) = {(a,b) € A x A : H,s C
Hp}.
To proceed with our proof we need the following Lemma.

Lemma 1. P is a (homomorphic) representation of S by one-to-one partial
transformations of A.

Proof. Let H, N Hy # @ for some a,be A. If H, = H.v, H, = H".y,
and u € H, N H, for some u,v,y € S, then uv,uy € H. If x € H,, then
xv € H, and hence xy € H because H i1s strong. It follows that x € H .y = H,.
Thus H, C H,. Interchanging a and b we obtain that A, C H,. Therefore,
H, = Hy,andsoa = b.

Let (¢,a) € P(s) and let (¢,b) € P(s) for some a,b,c € A and s € S.
Then H.s C H, and H.s C Hy. Thus, H, N H), # @, and, as we have just seen,
a = b. It follows that P(s) is a partial transformation of A for every s € S.

Suppose that (a,c) € P(s) and (b,c) € P(s) for some a,b,c € A and
s€S. Then H. = H .t for some ¢ and (a,c) € P(s) = H,s C H, = H,st C
H = H, C H.st = H".st # @. Itfollows that H".st = H, for some d € A,
and hence H, N H; = H, # . As we have seen in the first paragraph of the
proof of our Lemma, this implies a = d. Analogously, (b, ¢) € P(s) implies
b = d. Thus a = b and P(s) 1s a one-to-one partial transformation for every
sEA.

If (a,b) € P(s) and (b,c) € P(¢t), then H,s C H, and H,t ¢ H,,
and hence H,st C H,t C H,., so that (a,c) € P(st). It follows that
P(t) o P(s) C P(st).

Conversely, if (a,c) € P(st), then H,st C H.. It follows that H,s C
H.'.t, so that H.".t = H, for some b € A. Therefore, H,s C H, and
Hyt C H., whence (a, b) € P(s) and (b, c) € P(t). Thus, (a,c) € P(t) o P(s).
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It follews that P(st) C P(t) o P(s), and hence P(st) = P(t) o P(s) for all
s, t, €8§. O

Remark. We assume that P is a homomorphism if P(st) = P(t) o P(s)
because we read the. factors P(s) and P(¢) in the product P(¢) o P(s) from
the right to the left, while factors in the product st are read from the left to the
right.. A reader who prefers the equality P(st) = P(s) o P(¢) can obtain it
changmg the definition of P(s) to (a, b) € P(s) <& sH, C H, and considering
‘H as the set of all nonempty subsets of the form H .- z.

For every nonempty strong subset H of S we constructed a representation
P by one-to-one partial transformations of aset A. Denote P by Py and A by
Ap. Without loss of generality, we - may assume that, if H and F are different
‘strong subsets, then Ay and Ap are disjoint. Let A be the union of all sets
Apg, and P(s) the union of all binary relations' Py (s) for all nonempty strong
,'subsets H. Itis easy to see that P is a representation of S by one-to-one partial
,transformatlons of A. Now we prove that P is injective. :
o f Let P(s) = P(¢) for distinct s,¢ € S. Since S.is a Kolmogorov closure
space, there is a strong subset H that contains precisely one of the eleinents
s and ¢t. Without loss of generality, let s € H and ¢ ¢ H. Then PH_(s') =
P(s) N (Ag x Ag) = P({) N (Ay x Ay) = Py(¢t) for all H. Clearly,
ls =seH,andsole H.s. Thus H'.s = H, and H = H, for some
a,be Ay. Also, H,s C H = Hy, thatis, (a, b) € Py(s) = Py (). It follows
that ¢t = 1t € H,t C H, = H, contrary to our assumption about H. Thus
*s = ¢t and P is an isomorphism of § onto a semigroup of one- to -one partial
transformatlons of A. 0

2. Strong quasi order relation on semigroups.

Let S be a semigroup. Define the following binary relation < on it:
s'<t<&tes. Sincese§,weobtains <s. If s <tandf < u,thentes
and u € £. Since 7 is the least strong subset of S that contains ¢, it follows that
t C §,and hence u € § and s < u. Thus < is both reflexive and transitive, so it
is a quasi order relatlon on §. We call it the strong quasi order of S. Sometimes
instead of < we write { thus s <t & (s,1) E{

Strong quasi order has various remarkable properties. Here are four of
them. . . _

(1) 2 is stable (that is, compatible with multiplication): s < t and u < v imply
 su<tvforalls,t,u,veS. ,

(2) If e€ S is an idempotent element, then es < s and se < s forall s € §.
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(3) If S has a zero element 0, then 0 < s for all s € §.

(4) If S is an inverse semigroup, then < coincides with the natural order
relation of S. ‘

Proof. (1) If H is a strong subset, then H.'s and H -.s are strong for every

s € S. Indeed, if xv,uv,uy € H.'s, then (sx)v, (su)v, (su)y € H, which

implies (sx)y € H; and hence xy € H.'s and H ."s is strong Analogously,

H ‘.5 is strong. :

- Thus su € §u implies s € Su-.u for any s,u € §. The subset §it-.u is
strong, and § is the least strong subset that contains s. Therefore, § C §u ‘. u,
and hence su C §u. If s < ¢, thent €5, and hence tu € 5u C §u. It follows that
su < tu.-Analogously, tu < tv. Thus su < tv.

kd

(2) Indeed, 1 -es =e-es = e-scés,and hence s = 1s €és. It follows that
es < 5. The inequality se < s is proved analogously.

(3) Since 0% = 0 and Os = 0, the inequality 0 < s follows from (2).

(4) Let < be the natural order relation on S. If s < ¢, then, by (2),
s ='ss~'t <t because ss~! is an idempotent. o
Conversely, let s < t. Thent.€§5. Let H = {ue S : s < u}.,
If xv,uv,uy € H, then s < xv, s < -uv, and s < wuy. It follows that
s = ss~ls < (xv)@v) uy) = x(wvlu"u)y < xy because vv~lu"lu is
an idempotent of S. Therefore, H is a strong subset of S. Also, s € H and

hencethC_Hsothats<t ]

Theorem 2. A semigroup is embeddable in-an inverse semigroup if and only if
its strong quasi order relation ¢ is an order relation (that is, ; is antisymmetric).

Proof. Let a semigroup S be embeddable in an inverse semlgroup Suppose
that s < t and ¢ < § for some s, € S. Thentes and s € f. If H i$ a strong
subset of S-such that s € H, then'§ C H, and hence t € H. Analogously,
t € H = s € H for every strong subset’H. Thus, s and ¢ belong to the same
strong subsets of .S. By Theorem 1, s = ¢ and < is antlsymmetrlc e T
Conversely, let < be antlsymmetrlc If s, € § and s and ¢ belong- to the
same strong subsets of S, then ¢ € §'and s € f. Therefore, s < t and t < s,
which implies s = ¢. Thus, strong subsets of § form a Kolmogorov closure
space and, by Theorem 1, S is embeddable in an inverse semigruop. [

For every nonnegatlve ‘integer n we define a binary relatlon ¢ On S by
induction on n: :
(1) ¢o = Ag, the equality relation on § :

(2) If ¢, has been defined, then (s,?) € {,41 precigely W‘hen there exist
u, v, x,y €S such that (s, xv), (s, uv), (s, uy) € ¢, and t = xy. \



214 BORIS M. SCHEIN

Theorem 3. 7 =U{¢, :n=0,1,2,...).
The proof consists of a sequence of lemmas. Let ¢, = U¢,.

| Lemma 2. ¢, C g:

Proof. (Induction on n). Since ¢ is reflexive, L = Ag C . Suppose that
&n C C for some n > 0. If (s, ) € £,41, then (s, xv), (s, uv), (s, uy) € L and
t = xy for suitable u, v, x, y € S, and hence (s, xv), (s, uv), (s, uy) e{ so that
XV, UV, Uy € §, whence t = xy € § and (s, 1) € {. Thus Cny1 C ¢. It follows
that ¢, C ¢ for all n, and hence {w C C. U

Lemma 3. ¢, is reflexive for alln > 0.

Proof. (Induction on n). The claim holds for ¢y = Ag. Suppose that it holds for
$n-Ifx =u=1andv=y=sy,then (s, xv) = (s, uv) = (5, uy) = (s, s) €Ly,
and hence (s, ) = (s, xy) € £yt O '

Lemmad. Ifn < m, then ¢, C &,,.

Proof.  Suppose that (s,¢) € ¢,. If x = u = 1, v = s and y = ¢, then,
by Lemma 3, (s, xv) = (s,uv) = (s,5) € &, and (s,¢) = (5, uy) € &, SO
that (s, 7) = (s, xy) € {u41. Thus &, C &,y1. The claim ¢, C ¢, follows by
induction on m — n. U

Lemma 5. g: C &w.

Proof. Let (s) = {t : (s,1) € ¢,}. If xv,uv,uy € (s), then (s, xv) € &,
(s, uv) € &, and (s, uy) € ¢, for some k, m,n > 0. Let p = max{k, m, n}. By
Lemma 4, ¢; C ¢, for i =k, m, n. It follows that (s, xv), (s, uv), (s, uy) € ¢p,
and hence (s,xy) € {,41 C ¢,. Therefore, xy € (s), that is, (s) is a strong
subset of S. Since s € (s) and s 1s the smallest strong subset that contains s, we
obtain § C (s). If (s,7) €, thent €5 C (s), and hence (s, 1) €¢,. a

Theorem 3 follows from Lemmas 2 and 5. J

Remark. A quasi order relation ¢ on a semigroup S is called steady if (z, xy) €
¢ follows from (z, xv), (z, uv), (z,uy)e¢ forany u,v.x,v,z€S. It follows
from our proof of Lemma 5 that ¢ C ¢ for any steady quasi order ¢. Thus ¢ is
the least steady quasi order relation on any semigroup.

Theorem 4. Let S be a semigroup with identity and s, t € S. Then (s, t) € ¢, if
and only if there exist U, Vi, X 1Y €S, where i and j are indices (i is not an

exponent) such that 1 <i < n, 1 < j <31

[ _ l+1 1+l

[ :+1 i+1 ™
/\/\ Uity = Xzj_1Ysjo1 N |
] PP P+l il
uyp = X3; )3
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s=x!,y! |, and t = x]y|. Here we assume that A is the conjunction sign and

n

N means “for all i from I ton”. Also, x| = x!*" and y! | = y'*! forall .
i=1

Proof. Define (s,t) € a, if s and ¢ satisfy the condition of Theorem 3. First
we prove by induction on n that o, = ¢,. Indeed, ap = Ag = {o. Suppose that
Q) = t,_1 for some n > 1. Let (s, t) € a,. Then the equalities of Theorem 3

hold. Let ®(u, v, x, y, i, j) denote the formula
i+1 i+l A

i l -
YV = X3j-2)352
i, — i+1 L i+1
quJ = X3j_1Y3j-1 N
. i+1.0+1
u; Y = X3j Y3j

3[—-1
For i = 1 the formula A ®(u, v, x, y, i, j) becomes
j=l1

xjvp = xyp
ulvl = x3y3 .
uiyp = X3
n 3i—l :
Also, the formula A/ ®(u, v, x,y,i, j) can be written as
i=2 j=1
n 372 no 2.3
/\/\Cb(u v, X, ¥, 1, ])/\/\ /\ O, v, x,y,i, H)n
i=2 j=1 i=2 j=3i-241
n 3i-!
/\ /\ S, v, x,y,i,J).
i=2 j=2.3"241

By the induction hypothesis, the formula

n 3i—2
11 2.2 .o IS
X[ Uy = X7 /\/\ /\CD(u,v,x,y,l,])/\X_ly_l =S5
i=2 j=1 =

means (s, X v;) € {,—1, the formula

no 2372
11 2,2 . .
Uy =x1y1/\/\ /\ P, v, x, 9, L, J)ANX_ Y =S
l=21=3"—2+]
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means (s, ujv!) €¢,_;, and the formula

n 3 : ‘
1.1 2.2 . 1 1
ulyl =x3y3/\/\ /\ d)(u,v»x,y,l,J)Ax_xy_]:S
A .
i=2 j=2.3i-241

means (s, u} v}) € ¢»—1. Here we used Theorem 4 for {n—1 making some chan'g;
in the sets of values of the indices. For example, i runs not from 1 to n — 1, as
in Theorem 4, but for 2 to n. Respectively, j runs not from 1 to 3'~!, as in the
theorem, but from 1 to 3'~2, or from 32 +1 to 2 - 3'~2, or from 2- 3~2 +1 to
3;_;1,. , . _ : ‘ ' .

~~ Thus the formula in Theorem 4 is equivalent to

11y - 1,15 1,1
(8,2 0) €t A (s, uj0]) €ELpet A (s, vl Y] €80,

which, by our definition of ¢,, is equivalent to (s, )cl1 yll) € ¢{,. Since x} yll‘ = t,
we see that (s, 7)) €, & (5,1) €4y, ie. o, = & O '

3. Elementary axioms for semigroups embeddable in inverse semigroups.

Lemma 6. A semigroup S is embeddable in an inverse semigroup if and only if
$n is antisymmetric on S for every n.

Proof. By Theorem 2, the embeddability of S means that E is antisymmetric,
which, by Theorem 4, means that (s, t) € ¢, and (¢, 5) € {n imply s = ¢ for all
m and n. In particular, this is true for m = n, and so each ¢, 1s antisymmetric.
Conversely, if each ¢, is antisymmetric, (s,¢) € ¢, and (¢, s) € &y, let p be
the larger of the numbers m and n. Then (s,1),(t,5) € ¢, and, since $p 1s
antisymmetric, s = ¢. O :

Let A, denote the formula
R O B =S B S N Y EN B A |
noat (KT X303 AN UL =X 05,1575

P il it P il it B R T B
/\ /\ Ujlj = X3j1Y3joy NU_jU_; =X 03,1 23,8 | =X,y = x1y;,

i=1 j=1 Pyl il i1 [ Y I B A |
HiYi = Xajo V3 AUV =X Yy,
where, as in Theorem 4, we assume that x! | = xj'-’“L1 and y! | = yj’-’“ forall j.

Also, we assume that A, is a universal formula (that is, all variables occuring
in it are bounded by universal quantifiers). Thus, A, is a quasi identity (from
a certain finite set of equalities there follows a final equality). If we look at
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the hypothesrs in A, drsregardrng 1ts seCond column we obtam, by Theorem 4,
that (x! 1y_l, Xy yl) € &y, whlle the second: column of .the hypothes1s also by
Theorem 4, means that (x!yl, x 1y_,) ELn Therefore A, means merely
that ¢, is antisymmetric. The followmg theorem is nOW an -easy corollary to
Theorem 2 S e C

Theorem 5. A sengroup is. embeddable in.an inverse sengroup zf and only if
it satisfies quasz zdentttzes Ap for all posztzve zntegers T .

A semrgroup S is called rectangular (see [22]) i xv "= uy = uy imp_ly.
xy.= xv forall u,v,x,y- 8. Itis easﬂy 'seen that Co l= ; = +Ag.in a
rectangular semigroup. It follows by 1nduot10n onn that ;n = AS for all n.

By Theorem 4 ¢ = As. In fact, rectangular semrgroups are:characterized by
the equality ; AS Thus, every. rectangular semigroup, is embeddable in an
inverse semigroup. Obviously, every seémigroup with one-srded (left or right)
cancellative law is rectangular Thus, right. cancellatzve and left cancellatzve
semigroups are embeddable in inverse sengroups - :

A semigroup § with zero 0 is called 0- rectangular if xv = uv = uy # 0
always imply xy = xv. It is not difficult.to see that &= AgU ({O} x S)ina0-
rectangular semrgroup forall n > 1, and hence’ ;‘ = AgU ({0} x $) (that is, 0 is
the least element of § and no two distinct nonzero elements of S are comparable
with respect to {) Thus, 0- rectangular semigroups are embeddable in inverse
semigroups. A semigroup S is called right O- cancellatzve if'xv = uv # 0
imply x = u. Left O-cancellative" semigroups are defined dually. Obviously,
both right and left O-cancellative semigroups are 0- rectangular and so right O-
cancellative semigroups and left 0- cancellatzve semigroups are embeddable in
inverse semigroups.

Also, it is easy to check that « every monogenlc ‘(that is, generated by a single
element) semigroup is embeddable in an inverse. semigroup. :

“In particular, free semigroups are cancellatrve and hence embeddable in
inverse semigroups. It follows that the class C of semigroups embeddable
in Inverse semigroups is not a varrety Indeed a variety is closed under
homomorphisms, and every sémigroup .isa homornorphrc image of a free
semigroup. Yet not every semigroup is embeddable in an inverse semigroup.
However, C is a quasi variety,. because thlS class is deﬁned by a system of quasi
identities. o ‘-

Here is the axiom A; written out explicity:
xlvl=x! lyl1 AxLvl, *-x'l]yll

11 o _
”1”1 x! 1)’  Aul V- 1--x,y1/\ _—.*;x iyl 1_x1y1

upy; = x! ol 1/\“ iyt 1=x1y]
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or, equivalently,

11 11 11 L1 o1 .1
X1V = Upvy —”1)’1/\x (Vg =u_jv_ 1—” 1)’ | 7 XV =X 0.

Every semigroup that satisfies A; has commuting idempotents. Indeed, let
S be a semigroup with identity 1 and let e and f be idempotent elements of S.
Substituting x| = v{ =x1, =yl =ef, ul =efe,ul | =e,vl, -—y1 = fin
A1 we see that the hypothesis of A; holds. Thus, (ef)* = ef -ef =x! -y!, =
xi- y1 =ef - f = ef. Thus, S is a semigroup with weak involutive property (see
[14]), and the 1dempotents of § form a subsemlgroup Usmg that and applymg
A1 oncemoreforxl =ul, = ef v1 == e u% = x1, = efe, vl = f,
yi =yl ; =1, we obtain efe = x! - y!, = x| y{ =ef - f =ef. Applying A,
again we obtain analogously efe = fe. Therefore, ef = fe and idempotents
of § commute.

Now we write A, in explicit form:

x%“lzlexylt/\xztv21:x11yll
uivf = x! 1)’ 1/\“ 1”21—x1y1
xjvp = x{y; Axloly =292 Audyt = ! 1y  AuZyy? 1=x1y1
X3y = x_ 13’ A 2v22=x1y1
u%v%:x 1y 1/\u 2v22=x1y1/\ =
“%011_: 2V Au 1”11—" 22 Auzy; = xl 13’ 1 Auy2y = xyiA
o | x32v32=x 1)’ 1/\x 3v23:x1y1
2,2 2

u3v3-x ! 1/\“ 3” 3=x1y1

Il 2.2 A1 1 .2 2 = _
UiV = X3Y3 ANU_ | Y| = X3V 5 A ”33’3 =xL vl A u?,y%; = xiyi

= xll)’il = xllyl1 ‘
Loking at it we get a pretty good idea of the structure of A, for any n.

Remark. We have considered semigroups with identity for simplicity only. By
Proposition 1, a semigroup S that possesses no identity is embeddable in an
inverse semigroup if and only if S! satisfies the axioms A,. This amounts to
S satisfying axioms A,, in which some of the variables may be replaced by
“empty symbols” (using Lyapin’s term from [3]), that is, certain variables are
merely erased.
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4. Semigroups embeddable in inverse semigroups are not finitely axioma-
tizable.

We have obtained an infinite set of quasi identities that describe the class of
semigroups embeddable in inverse semigroups. A natural question is whether
this class of semigroups can be described by a finite set of elementary condi-
tions. (A formula is called elementary if it consists of equalities of semigroup
products connected by prepositional connectives — conjuction, disjunction, im-
plication, equivalence, and negation — with quantifiers bounding individual vari-
ables, that is, variables that take values in the set of the elements of the semi-
group).

It is easy to see that if m < n, then every semigroup that satisfies A, has to
satisfy A,, too. Indeed, ¢, C ¢,, and hence, if A, holds, which means that &, is
antisymmetric, then ¢, is antisymmetric too, and so A,, holds. In particular, it
follows that every finite set of our axioms {4;,, A;,, ..., A; } is equivalent to a
single axiom Ap,, where p = max{i, is, ..., i,}. In a sense, our set of axioms
is equivalent to a single infinitely long axiom A,, where w is the first infinite
ordinal number. Unfortunately, A, is not an elementary formula.

Theorem 6. The class of semigroups embeddable in inverse semigroups cannot
be characterized by any finite system of elementary axioms.

Proof. Suppose that the set A of our axioms A; is not equivalent to any of
its finite subsets. Here is a standard argument showing that the class C of
all embeddable semigroups is not finitely axiomatizable. If B is any finite
set of elementary axioms characterizing C, then each of the axioms B; € B
expresses an elementary property shared by all semigroups from C. By Godel’s
Completeness Theorem for the First Order Predicate Calculus (see any texbook
in mathematical logic), B; can be formally derived from the formulas A. The
derivation has finite length, so it uses only finitely many formulas from A. Since
B is finite, all formulas in B can be derived from a finite subset A’ of A.

On the other hand, each of the formulas in- A can be derived from the
formulas B. It follows that each of the formulas in A follows fromthe formulas
in A’. Thus A is equlvalent to its ﬁmte subset A’, which contradicts our
assumption about A.

Therefore, what we really have to prove is that A is not equlvalent to any
of its finite subsets Thus, Theorem 6 follows from Proposmon 2, which forms
the main content of this section.

Proposition 2. For every positive integer n axiom A, does not imply axiom

An+1 .
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Proof. (B'y cons'tructing a semigroup S, that satisfies A, but does not satisfy
A For a fixed posmve integer n, consider the. alphabet <I>,,+1 consisting of
letters u!, ,xj,yifori =1,2,...,n+1land j = £1,£2,..., £3~!. For

convemence sake we also con51der the’ symbols x”+2 = x! Zsign; and y"+2 =

y_Slgn j» Where sign jis 1 or —1 for j > 0 and j < 0, respectively. Individual
variables running over @, are denoted by lower case letters (possibly ‘with
indices) from the first half of the roman alphabet. Words in the alphabet ®,,
~are denoted by.upper case.roman letters, words consisting of a single letter are
denoted in the.same ‘way as. that letter. A Is the empty word and |A| denotes
the length of a word A. :

. Let 5,41 be the semigroup with 1dent1ty generated by the elements of <D,,+1
subject to the deﬁmng relations that appear as eqalities in the hypothesis of the
axiom Ani1. Words that appear in the left-(rlght-)hand sides of the defining
relations are called left (right) transformed pairs. A left and a right transformed
pairs are called correspondmg if they form one of the defining realtions. We
need a few properties of the system of defining relations.

Property 1. No transformed patr except right transformed pazrs x1 y1 and
1y y (these two pairs will be called special) appears twice in the defining
relatzons : :

Corollary 1. No right transformed pair is a left transformed pair.

Corollary 2 For every left transformed pair there corresponds preczsely one
right transformed pair. : :

Property 2. If ab = cd and ef = cg are two distinct defining relations, then
cd is a special transformed pair. If ab ='cd.and ef = gd are two distinct
deﬁning relations then cd is a special transformed pair.

Property 3, No transformed pair begins (ends) with a letter that is the final
(initial) letter of any transformed pair. :

Al these properties follow in an obvious way from the external form of the
defining relations.

Let A be a word in ®,;. Replaeing all left transformed pairs that are
segments of A by the corresponding right transformed pairs, we obtain a word
A. It follows from Property 1 that A contains no occurrences of left transformed
pairs. Corollary 2 to Property 1 together with Properties 2 and 3 imply that the
word A does not depend on the order in which left transformed pairs appearing
in A are changed. We call A the canonical form of A. Clearly, two words, A
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and B, represent the same element of S, precisely when A = B. Therefore
without loss of generality, we may assume that the elements of S n+1 are all
words A in canonical form (that is, A = A) with the followmg multlphcatlon
A-B AB. Obviously, special transformed pairs have canonical form,
and hence they represent different elements of S,;;. Comparing the defining
relations of S, with the axiom A, ., we see that A, failsin S,

Next we look into a problem that is by far more difficult: proving that A,
holds in S, ;.

In the sequel A = B means that A and B represent the same element of
Sn+1, while A = B means that A and B are two coinciding words. Also, we
write S instead of S,.; (and hence A € S means A = A). We need further
properties of S. | S
Property 4. Let AabB = CcdD, where Aa, bB, CcdD € S, and |A| = |C|.
Then |
(1) A=Cand B =D, and
(2) ab = cd or ab = cd is a defining relation. _

Proof. If ab is not a left transformed pair, then AabB = AaBB = CcdD,
“which implies (1) and (2). If ab is a left transformed pair and ab = ef is the -
corresponding defining relation, then AabB = AefB = Ccd D, which 1mp11es
(1) and ef = cd, that is, ab = cd is a defining relation. O

Property 5. Let the followmg assumptions be true:

(1) XV = A1aBy, UV = A2aB;, UY = AyaB;;

(2) 1Ayl = 1Az = |As] and 1Bl = |Ba| = |By;

(3) ifone of the words A;a (1 <i < 3) ends witha transformed pair, then this
transformed pair is not special and all three words A;a end with it;

(4)- tfbne of the words a; B (1 < i < 3) begins with a transformed pait," then
this transformed pair is not special and all three words a B, begin with it.

Under these assumptions there exzst words A and B such that
(5) |Al = |A| and |B| = |By|;
(6) XY = AaB;

‘( 7) if A;a end with a transformed pair, then Aa ends wzth the same trans-
formed pair; :

(8) if aB; begin with a transformed pair, then aB begins with the same
transformed pair.
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Proof. Proof of Property 5 is split into two cases.

Case 1. Let |A;| > |X|. Then it is easy to calculate that |Y| > |aBs]|. If
Ay =A,then |X|=0,X=U=A,XV = aBs, and hence conditions (5-8)
hold.

Let Ay # A. Then A, and A3 have positive length, and hence they are
nonempty words. Let A; = C;a; for 1 <i < 3 and consider two subcases.

(a) Let |[Y| > |aBs|. Then |Y| > |asaBs;|, whence X Y = DasaB;, where
Daj is a suitable word. If asa is a transformed pair, then it is right because the
word Asa ends with it. Thus XY = DasaB; and the requirements (5-8) hold for
A = Das and B = Bs. If asza is not a transformed pair, then XY = DazaBs,
A = Das,and B = B;.

(b) Suppose that |Y| = |aBs]|. Let

(1) X=Xc, V=V, U=U'c, ¥ =Y.

Applying Property 4 we obtain C; = X', C, =C3=U', By = B, = V/,
Bz = Y’ and

2) C1Cy = a1a, C3C) = ad, C3C4 = Azd.

Consider formulas (2). It follows from Condition (1) of Property 5 that
each of them is either trivial (that is, = can be replaced by =) or a defining
relation. If the first equality in (2) is trivial, then ¢; = a; and ¢, = a, that is,
the second equality has the form c;a = aya. If follows from the form of our
defining relations that c3a = a,a cannot be one of them, and hence c;a = aya.
Thus ¢; = a,. If the third of the equalities in (2) is a defining relation, then, by
Condition (3) of Property 5, the right-hand sides of the equalities in (2) coincide,
whence a3 = a, and the third equality has the form a,cs = a>a and so it cannot
be a defining relation. Therefore, aycq4 = aa, and hence ¢; = ¢5 and ¢; = c4.
In an analogous way we can prove that the triviality of any of the equalities in
(2) implies all three of these equalities are trivial.

If all equalities in (2) are nontrivial, i.e., all of them are defining realtions,
then, by Condition (3) of Property 5, the right-hand sides of the equalities in (2)
coincide. They are not special transformed pairs, and hence, by Property 2, all
relations in (2) coincide, that is, ¢; = ¢3 and ¢y = ¢4.

Thus, ¢; = ¢3 and ¢, = ¢4 in all cases. It follows that XY = X'c, ¢, ¥’
and XY = X'cic;Y' = X'ajaY’ = A,aBs, so that requirements (5-8) are
satisfied.

Case 2. Let |A|] < |X|. Then |B;| > |Y|. This case is dual to Case 1 with
respect to the involution that replaces each word by the word consisitng of the
same letters written in the opposite order. UJ
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Property 6. Let XV = Aix;i‘y;l‘Bl, UV = Azxj’fzzy]‘fzsz, UY = A3x;jyj’:§B3
sign ji = sign jo = sign js, |Ai] = |Ay] = |As], |By] = |B;| = |Bs|, and
[1,i2, i3 > m, where m is a fixed integer such that m > 2. Then XV = Ax}yiB,
where A and B are words such that |A| = |A,|, |B| = |By| andi > m — 1,

signj = sign J.

Remark. It follows from i; > m that the case i} = n+2 is possible, and hence

our convention about the letters x* 2 and y"*+2 is applied.
] pp

J
Proof. Case 1. Let |X| < |Aj|. It follows that [x[!y?By| < [Y]. By
Property 3, the word A3le-33 cannot end with a transformed pair, and hence
XY = Cx;j y;j B3, where C is a suitable word. Therefore XY = fc;; yj’i Bs
and our claim holds.

Case 2. Let |[X]| > |A1x;:y;:|- Arguing as in Case 1, we obtain XY =

A,-x;: yj’l‘ D and XY = Alx]’:: yj’l' D, which implies our claim.
Case 3. Let |X| = |A;] + 1. We use notations from (1). By Property 4,
A] EX/,AQEA3EU/,BIEBzEV’,B3EY/aI‘1d
S TN R 7 Y i3 s

(3) C102 = X Yy s C3C2 = X;7y7, C3ca = x0Y7,
where each of the equalities in (3) is either trivial or a defining relation. Clearly,
XY = X'cic,Y' = A;icicgBs. It suffices to prove that C1Ca 18 x;y; and
I >m — 1, signj = sign j. -

If any two of the formulas in (3) coincide, then ¢; = ¢3 or ¢, = ¢4, whence
C1C4 = T304 =X}y, OI CIC4 = C1C; = x;y;! and our Property holds.

Let no two formulas in (3) coincide. If three different defining relations
correspond to these formulas, then it follows from their external form that

PR E S R N DN GRS SV AN S RS

they are xiv; = x3; ,u3; 5, u;jv; = x37_ v5:;, and u;y; = X3; Uéj _ (for
definiteness’ sake we assumed that j > 0). It follows that cic; = x; yJ’. and
I > m — 1 because one of our conditions was i + 1 > m.

Let defining relations correspond to the first two formulas in (3), while
the third formula is trivial. If i3 = n + 2, then c3cq4 = xl_signjxyl_signh,

whence ¢3¢y = xl_sign €2 Therefore, the second formula in (3) has the form
)cl_Sign €2 = )cj’z2 yj'z2 It follows from the external form of the defining relations
that sign j, = —sign js, contrary to our assumption. Thus i3 # n + 2.
Therefore, ¢3¢y = xjf cy = xj’z vjl: whence cjcy = vjlz However,
c1¢y F ¢3¢z, since otherwise, by Corollary 2 to Property 1, the first two formulas

of (3) coincide, contrary to our assumption. Thus c¢|c¢, = u;: vjlz It follows that

—_— i3 0y o _I3F+) i+l
CiC4 = Uy, = X3, ys;, and Property 6 holds.
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If we assume that one of the first two formulas in (3) is trivial, while
the remaining two formulas are defining relatlons then an analogous argument

proves that Property 6 holds.
Let the first formula in(3) bea deﬁnmg relation, while the remaining two -

formulas are tr1V1al ‘Then first formula in (3) must have the form c; y’2 = x!! yJ‘]’

smce 03c2 = X yj2 Therefore clyj2 = uly?and i; = i, + 1, as it follows

)’
i
from the external form of the deﬁnmg relations. Also, c3c4 = x; 3yj’3, whence

iy i

X2 = x 2, 50 that iy = 13 and J2 = Js. It follows that ¢cjcy = u’zyj3 = uly;.

J2
Therefore, ¢i¢5 = u s yJ2 = x3 i y3 . (because _1.1 = iy + 1), and hence Property 6
holds. | . __ ' _ '

An analogous argument shows that Property 6 holds when not the first, but
the second or the third formulas of (3) are deﬁmng relations, while the remaining
two formulas’ are tr1v1al A

‘ Fmally, suppOse that all three equa11t1es in (3) are trivial. Then c¢jc; =

yj and ¢se; = x.7y;2, whence yj1 __' 2, and so i1 =1y and Jj1 = Jja. Also,

cscq = x’3y’3, and hence xJ’: = x,s0that iy = i3 and j; = j;. Thus all
three equahtles in (3) c01n01de and we are back to the case we have already

considered. :
Obv1uously, Cases 1 2 and 3 exhaust all the poss1b1ht1es g

Property 7. szom Ay holds in S.

Proof. Suppose that the hypothe51s of A, holds for elements U}, V/, X f Y €
S,i=1,...,nand j =1, ;1:3f~1 thatls ,
vn 31 1 Xl ) Vl = S‘JHZ Yiil_;HZ /\ X, ; X12+;j Y21+31_] .
/\/\ Ul V= X I A UL -vz-’— X5 YA |

-1 l : : -
i=lj= Uz Yl — XI-H Yl+l /\‘Ul ; YI ..__. X!+l Yi—;—}l

:where X'H’1 = X1 | and Y"+1 = Yi We have to prove that X1 Yl =

Slgnj 51gn1
X1 Y1 or, equlvalently, X! Yl L= X Y1
FlI’St of.all we rewrite (4) in the form

i [ il pi+d K 7__ il vkl
XV Xy 2/\X VI = X5 YA

F ey 3:-l [~ ‘]‘-2
AN _XglllYg’f‘l/\aU' V" 2D (e
f=1j=I \ U Y’ ._.Xl-l-l Yl-l'l /\U’ =Xl__3j Y-l——;}
Let XL Y1, = A%B' ne _BiA'...B*A, where By,...,Bi,..., B’

are special transformed palrs whlle the ‘words A Al ... AS contain no
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occurrences of special transformed pairs. Obviously, X 1-1Y11 can be always
written in such a form. Let A; = CaD. Introducing the words A =

A°B!...B'C and B = D...B*A® we obtain X! ,Y!, = AaB. It follows
from (5) that X}’ j” = AaB, U"V” = AaB, and U”Y” = AaB. Clearly, all
assumptions of Property 5 are fulﬁlled. By Property 5, X J” I = ApaBy, where
|Ao| = |Al, |Bo| = |B|, Apa does not end and a B, does not begin with a special
transformed pair, and if Aa ends (a B begins) with a transformed pair, then Aga
end (a By begins) with the same transformed pair. This is true for every j > 0.

This and formulas (5) imply X]’.’“IVJ.”“1 = A;aB;, Uj"‘IVj”‘1 = A,aB,, and
Uj"“1 Yj”"1 = AsaBs, where all assumptions of Property 5 hold. By Property 5,
XJ’?‘IYj”‘1 = AyaBy, where |A;| = |A4|, |B1] = |B4| and the remaining
claims of Property 5 hold too. Applying Property 5 once more we obtain
X J'.’_zY j”“z = AsaBs, where AsaBs satisfies all the claims of Property 5.

Applying Property 5 n times we see that XY/ has the form AgaBs, where
|Ag| = |A| and |Bg| = |B|. Since a is an arbitrary letter chosen in the subword
A’ of the word X! Y1, we see that X!Y] = A°C'A'...CIA!...C345,
where C' are two-lettered words. If C' is not a special transformed pair, then,

applying Property 5 to X{Y| sufficiently many times, we obtain X! ¥!, and
see that B = C*, which is impossible because B' is a special transformed pair.
Therefore, the words C' are special transformed pairs.

Write X!, Y! in the form Ax{y; B, where x{y! = B’. Then (5) implies
X'V = Ax|y|B, Uiy = Ax{y|B, and U'Y! = Ax{y!B. Applying

Property 6, we obtain XJ’.’YJ.” Alx”yj”Bl, where |A;| = |A|, |Bi| = |B|,
and iy > n+ 1, j; < 0. Applying Property 6 again, we obtain in the same
way that X'V = A, xy(By with |Az] = |Aql, |Bol = |Byl, iy > n.

Applying Property 6 n times, we obtain XY, = As xl3 yJ3B3, where |As| = |A],
|Bs| = |B|,i3 > 2 and j3 < 0. However, it is obv10us that xl3 ‘3 = C'. Smce
C' is a special transformed pair, we have C* = x*2y7*? that is, Cl =

If B = )c_ly_1 then, arguing in exactly the same way, we prove that
C! = B'. Therefore, X' | Y! = X1y/. ]
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