ON L^{1}-CONVERGENCE OF REES-STANOJEVIĆ'S SUMS WITH COEFFICIENTS FROM THE CLASS K

XHEVAT Z. KRASNIQI

In this paper are considered the modified cosine sums introduced by Rees and Stanojević [2] with coefficients from the class K. In addition, is proved that the condition $\lim _{n \rightarrow \infty}\left|a_{n+1}\right| \log n=0$ is a necessary and sufficient condition for the L^{1}-convergence of the cosine series. Also, an open problem about L^{1}-convergence for the r-th derivative of the cosine series is presented.

1. Introduction and Preliminaries

Let us consider the cosine trigonometric series

$$
\begin{equation*}
g(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos m x \tag{1}
\end{equation*}
$$

with its partial sums denoted by

$$
S_{n}(x)=\frac{a_{0}}{2}+\sum_{m=1}^{n} a_{m} \cos m x
$$

and let $\lim _{n \rightarrow \infty} S_{n}(x)=g(x)$.
Entrato in redazione: 27 febbraio 2010
AMS 2010 Subject Classification: 42A20, 42 A 32.
Keywords: cosine sums, Conjugate Fejer's kernel, L^{1}-convergence.

A lot of authors investigated the L^{1}-convergence of the series (1) under different classes of coefficients. Was W. H. Young [9] who showed that condition $\lim _{m \rightarrow \infty} a_{m} \log m=0$ is necessary and sufficient condition for cosine series with so-called convex ($\triangle^{2} a_{m} \geq 0$, where $\triangle a_{m}=a_{m}-a_{m+1}, \triangle^{2} a_{m}=\triangle a_{m}-\triangle a_{m+1}$) coefficients and A. N. Kolmogorov [1] extended this result to the cosine series with quasi-convex $\left(\sum_{m=1}^{\infty} m\left|\triangle^{2} a_{m-1}\right|<\infty\right)$ coefficients.

Likewise, in various papers are introduced different modified cosine and sine sums which we shall make for them a list as follows:
C. S. Rees and Č. V. Stanojević [2] have introduced the following modified cosine sums

$$
\begin{equation*}
g_{n}(x)=\frac{1}{2} \sum_{m=0}^{n} \triangle a_{k}+\sum_{m=1}^{n} \sum_{j=m}^{n}\left(\triangle a_{j}\right) \cos m x, \tag{2}
\end{equation*}
$$

until Kumari and Ram [6], introduced new modified cosine and sine sums as

$$
f_{n}(x)=\frac{a_{0}}{2}+\sum_{m=1}^{n} \sum_{j=m}^{n} \triangle\left(\frac{a_{j}}{j}\right) m \cos m x
$$

and

$$
h_{n}(x)=\sum_{m=1}^{n} \sum_{j=m}^{n} \triangle\left(\frac{a_{j}}{j}\right) m \sin m x .
$$

Later on, N. Hooda, B. Ram and S. S. Bhatia [5] introduced new modified cosine sums as

$$
R_{n}(x)=\frac{1}{2}\left(a_{1}+\sum_{m=0}^{n} \triangle^{2} a_{m}\right)+\sum_{m=1}^{n}\left(a_{m+1}+\sum_{j=m}^{n} \triangle^{2} a_{j}\right) \cos m x .
$$

Recently K. Kaur, S. S. Bhatia, and B. Ram [4] introduced new modified sine sums as

$$
K_{n}(x)=\frac{1}{2 \sin x} \sum_{m=1}^{n} \sum_{j=m}^{n}\left(\triangle a_{j-1}-\triangle a_{j+1}\right) \sin m x,
$$

and a new class of sequences defined as follows:
A sequence $\left\{a_{m}\right\}$ is said to belongs to the class \mathbf{K}, if $a_{m} \rightarrow 0, m \rightarrow \infty$, and

$$
\sum_{m=1}^{\infty} m\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|<\infty, \quad\left(a_{0}=0\right) .
$$

The class \mathbf{K} can be generalized in the following manner: A sequence $\left\{a_{m}\right\}$ is said to belongs to the class $\mathbf{K}^{r},(r=0,1, \ldots)$, if $a_{m} \rightarrow 0$, as $m \rightarrow \infty$, and

$$
\sum_{m=1}^{\infty} m^{r+1}\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|<\infty, \quad\left(a_{0}=0\right) .
$$

For $r=0$, clearly $\mathbf{K} \equiv \mathbf{K}^{0}$ and $\mathbf{K}^{r} \subset \mathbf{K}, r \geq 1$.
Further, wishing to generalize the class \mathbf{K}^{r} we define a certain subclass of \mathbf{K}^{r} as follows:

Let $\alpha:=\left\{\alpha_{m}\right\}$ be a positive monotone sequence tending to infinity. A sequence $\left\{a_{m}\right\}$ belongs to the class $\mathbf{K}(\alpha)$ if $a_{m} \rightarrow 0$, as $m \rightarrow \infty$, and

$$
\sum_{m=1}^{\infty} \alpha_{m}\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|<\infty, \quad\left(a_{0}=0\right)
$$

If we denote the class $\mathbf{K}(\alpha)$, where $\alpha_{m}:=m^{r+1}$, by \mathbf{K}^{r}, that is, if we introduce the definition $\mathbf{K}^{r}:=\mathbf{K}\left(m^{r+1}\right)$, we immediately get the generalization of the classes \mathbf{K}^{r}, for any positive integer r.

All of the authors, (see also [7], [8]), cited above studied the L^{1}-convergence of these cosine and sine sums proving different results. Among others let us formulate the following statements proved in [4]:

Theorem 1.1. Let the sequence $\left\{a_{n}\right\}$ belong to the class \mathbf{K}, then $K_{n}(x)$ converges to $g(x)$ in the L^{1}-norm.

Corollary 1.2. If $\left\{a_{n}\right\}$ belongs to the class \mathbf{K}, then the necessary and sufficient condition for the L^{1}-convergence of the cosine series (1) is $\lim _{n \rightarrow \infty} a_{n} \log n=0$.

As usually with $D_{n}(x)$ and $\tilde{D}_{n}(x)$ we shall denote the Dirichlet and its conjugate kernels defined by $D_{n}(x)=\frac{a_{0}}{2}+\sum_{m=1}^{n} \cos m x, \tilde{D}_{n}(x)=\sum_{m=1}^{n} \sin m x$, respectively.

The object of this paper is to prove analogous statements as the Theorem 1.1 and the Corollary 1.2 when we use the modified cosine sums $g_{n}(x)$ instead of new modified sine sums $K_{n}(x)$. More precisely, we shall show that Theorem 1.1 and the Corollary 1.2 hold good for modified cosine sums (2) with coefficients from the class \mathbf{K}.

Throughout this paper the constants in the O-expression denote positive constants and they may be different in different relations.

2. Main Results

We shall prove the following main result.

Theorem 2.1. Let the sequence $\left\{a_{n}\right\}$ belong to the class \mathbf{K}, then $g_{n}(x)$ converges to $g(x)$ in the L^{1}-norm.

Proof. During the proof we shall use the same technique as in [4]. We have

$$
\begin{align*}
g_{n}(x) & =\frac{a_{0}}{2}+\sum_{m=1}^{n} a_{m} \cos m x-a_{n+1} D_{n}(x) \\
& =\frac{1}{2 \sin x} \sum_{m=1}^{n} 2 a_{m} \sin x \cos m x-a_{n+1} D_{n}(x) \quad\left(a_{0}=0\right) \\
& =\frac{1}{2 \sin x} \sum_{m=1}^{n} a_{m}[\sin (m+1) x-\sin (m-1) x]-a_{n+1} D_{n}(x) \\
& =\frac{1}{2 \sin x} \sum_{m=1}^{n}\left(a_{m-1}-a_{m+1}\right) \sin m x \tag{3}\\
& +a_{n} \frac{\sin (n+1) x}{2 \sin x}+a_{n+1} \frac{\sin n x}{2 \sin x}-a_{n+1} D_{n}(x) \\
& =\frac{1}{2 \sin x} \sum_{m=1}^{n}\left(a_{m-1}-a_{m+1}\right) \sin m x+\left(a_{n}-a_{n+1}\right) \frac{\sin (n+1) x}{2 \sin x}
\end{align*}
$$

Applying the Abel's transformation in (3) we get

$$
\begin{align*}
g_{n}(x) & =\frac{1}{2 \sin x} \sum_{m=1}^{n}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x) \\
& +\left(a_{n}-a_{2 n}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x}+\left(a_{n}-a_{n+1}\right) \frac{\sin (n+1) x}{2 \sin x} \tag{4}
\end{align*}
$$

and passing on limit when $n \rightarrow \infty$ we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g_{n}(x)=\frac{1}{2 \sin x} \sum_{m=1}^{\infty}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x) \tag{5}
\end{equation*}
$$

In a similiar fashion we can show that

$$
\begin{align*}
& S_{n}(x)=\quad \frac{1}{2 \sin x} \sum_{m=1}^{n}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x) \\
& +\left(a_{n}-a_{2 n}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x}+a_{n+1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x}, \\
& g(x)=\lim _{n \rightarrow \infty} S_{n}(x)=\frac{1}{2 \sin x} \sum_{m=1}^{\infty}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x), \tag{6}
\end{align*}
$$

and the series

$$
\frac{1}{2 \sin x} \sum_{m=1}^{\infty}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x)
$$

converges (see [4]).
Therefore $\lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ exists, and from (5) and (6) the following equality

$$
\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} S_{n}(x)=g(x)
$$

holds. Hence

$$
\begin{aligned}
g(x)-g_{n}(x) & =\frac{1}{2 \sin x} \sum_{m=n+1}^{\infty}\left(\triangle a_{m-1}-\triangle a_{m+1}\right) \tilde{D}_{m}(x) \\
& -\left(a_{n}-a_{2 n}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x}-\left(a_{n}-a_{n+1}\right) \frac{\sin (n+1) x}{2 \sin x} .
\end{aligned}
$$

Denoting with $\tilde{F}_{m}(x)=\frac{1}{m+1} \sum_{i=0}^{m} \tilde{D}_{i}(x)$ the conjugate Fejer kernel, then the use of Abel's transformation gives

$$
\begin{aligned}
g(x)-g_{n}(x) & =\frac{1}{2 \sin x} \lim _{\ell \rightarrow \infty}\left[\sum_{m=n+1}^{\ell-1}(m+1)\left(\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right) \tilde{F}_{m}(x)\right. \\
& \left.+(\ell+1)\left(\triangle a_{\ell-1}-\triangle a_{\ell+1}\right) \tilde{F}_{\ell}(x)-(n+1)\left(\triangle a_{n}-\triangle a_{n+2}\right) \tilde{F}_{n}(x)\right] \\
& -\left(a_{n}-a_{2 n}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x}-\left(a_{n}-a_{n+1}\right) \frac{\sin (n+1) x}{2 \sin x} \\
& =\frac{1}{2 \sin x}\left[\sum_{m=n+1}^{\infty}(m+1)\left(\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right) \tilde{F}_{m}(x)\right. \\
& \left.-(n+1)\left(\triangle a_{n}-\triangle a_{n+2}\right) \tilde{F}_{n}(x)\right]-\left(a_{n}-a_{2 n}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x} \\
& -\left(a_{n}-a_{n+1}\right) \frac{\sin (n+1) x}{2 \sin x} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|g-g_{n}\right\| & =O\left(\sum_{m=n+1}^{\infty}(m+1)\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right| \int_{-\pi}^{\pi}\left|\tilde{F}_{m}(x)\right| d x\right) \\
& +(n+1)\left|\triangle a_{n}-\triangle a_{n+2}\right| \int_{-\pi}^{\pi}\left|\tilde{F}_{n}(x)\right| d x \\
& +\left|a_{n}-a_{2 n}\right| \int_{-\pi}^{\pi}\left|\frac{\tilde{D}_{n}(x)}{2 \sin x}\right| d x \\
& +\left|a_{n}-a_{n+1}\right| \int_{-\pi}^{\pi}\left|\frac{\sin (n+1) x}{2 \sin x}\right| d x
\end{aligned}
$$

The first and fourth terms tend to zero as $n \rightarrow \infty$ based on facts that

$$
\int_{-\pi}^{\pi}\left|\tilde{F}_{m}(x)\right| d x=\pi
$$

and $\left\{a_{m}\right\}$ belongs the class \mathbf{K}.
Further, for the second term, denoted by $\Lambda(n)$, for large enough n we obtain

$$
\begin{aligned}
\Lambda(n) & =O\left((n+1)\left|\triangle a_{n}-\triangle a_{n+2}\right|\right) \\
& =O\left((n+1)\left|\sum_{m=n}^{\infty}\left(\triangle^{2} a_{m}-\triangle^{2} a_{m+2}\right)\right|\right) \\
& =O\left((n+1) \sum_{m=n+1}^{\infty}\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|\right) \\
& =O\left(\sum_{m=n+1}^{\infty} m\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|\right)=o(1)
\end{aligned}
$$

Since $\int_{-\pi}^{\pi}\left|\frac{\tilde{D}_{n}(x)}{2 \sin x}\right| d x=O(n)$ then the third term tends to zero, as well. Indeed, we have

$$
\begin{aligned}
\left|a_{n}-a_{2 n}\right| \int_{-\pi}^{\pi}\left|\frac{\tilde{D}_{n}(x)}{2 \sin x}\right| d x & =O\left(n\left|\sum_{m=n}^{\infty}\left(\triangle a_{m}-\triangle a_{m+2}\right)\right|\right) \\
& =O\left((n+1) \sum_{m=n+1}^{\infty}\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|\right) \\
& =O\left(\sum_{m=n+1}^{\infty} m\left|\triangle^{2} a_{m-1}-\triangle^{2} a_{m+1}\right|\right)=o(1)
\end{aligned}
$$

This completes the proof of our theorem.
Corollary 2.2. If $\left\{a_{n}\right\}$ belongs to the class \mathbf{K}, then the necessary and sufficient condition for the L^{1}-convergence of the cosine series (1) is $\lim _{n \rightarrow \infty}\left|a_{n+1}\right| \log n=$ 0 .

Proof. Sufficiency. We can write

$$
\begin{aligned}
\left\|g-S_{n}\right\| & \leq\left\|g-g_{n}\right\|+\left\|S_{n}-g_{n}\right\| \\
& =\left\|g-g_{n}\right\|+\left\|a_{n+1}\left(\frac{\sin n x}{2 \sin x}+\frac{\sin (n+1) x}{2 \sin x}\right)\right\| \\
& =\left\|g-g_{n}\right\|+\left|a_{n+1}\right| \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x
\end{aligned}
$$

From the well-known relation $\int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x \sim \log n$ and our assumption that $a_{n} \log n=o(1)$, we obtain $\left|a_{n+1}\right| \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x=o(1)$ as $n \rightarrow \infty$. Also, according to the Theorem 2.1 $\left\|g-g_{n}\right\|=o(1)$, as $n \rightarrow \infty$. This completes the sufficient condition.

Necessity. The following holds

$$
\begin{aligned}
\left|a_{n+1}\right| \log n & \sim\left|a_{n+1}\right| \int_{-\pi}^{\pi}\left|D_{n}(x)\right| d x=\left\|a_{n+1} D_{n}(x)\right\| \\
& =\left\|S_{n}-g_{n}\right\| \leq\left\|S_{n}-g\right\|+\left\|g-g_{n}\right\|=o(1)
\end{aligned}
$$

by our assumption and the Theorem 2.1.
The Corollary 2.2 is proved completely.
We saw in Section 2 how we extended the class \mathbf{K} to the class $\mathbf{K}^{r},(r=$ $0,1, \ldots)$. Since the condition $\lim _{n \rightarrow \infty}\left|a_{n+1}\right| \log n=0$ is a special case of the condition $\lim _{n \rightarrow \infty} n^{r}\left|a_{n+1}\right| \log n=0,(r=0)$, then the following propositions may be true:

Theorem 2.3. Let the sequence $\left\{a_{n}\right\}$ belong to the class \mathbf{K}^{r}, then $g_{n}^{(r)}(x)$ converges to $g^{(r)}(x)$ in the L^{1}-norm.

Corollary 2.4. If $\left\{a_{n}\right\}$ belongs to the class \mathbf{K}^{r}, then the necessary and sufficient condition for the L^{1}-convergence of the r-th derivative of the cosine series (1) is $\lim _{n \rightarrow \infty} n^{r}\left|a_{n+1}\right| \log n=0$.

The question is: Do these propositions are true or not? This is still an open problem.

REFERENCES

[1] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la series de Fourier-Lebesgue, Bull. Polon. Sci. Ser. Sci. Math. Astron. Phys. (1923), 73-76.
[2] C. S. Rees - Č. V. Stanojević, Necessary and sufficient condition for intergrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579-586.
[3] K. Kaur - S. S. Bhatia, Integrability and L^{1}-convergence of Ress-Stanojević sums with generalized semiconvex coefficients, IJMMS 30 (11) (2002), 645-650.
[4] K. Kaur - S. S. Bhatia - B. Ram, Integrability and L^{1}-convergence of modified sine sums, Georgian Math. J. 11 (1) (2004), 99-104.
[5] N. Hooda - B. Ram - S. S. Bhatia, On L ${ }^{1}$-convergence of a modified cosine sum, Soochow J. of Math. 28 (3) (2002), 305-310.
[6] S. Kumari - B. Ram, L^{1}-convergence of modified cosine sums, Indian J. Pure Appl. Math. 19 (11) (1977), 1101-1104.
[7] X. Z. Krasniqi, A note on L^{1}-convergence of the sine and cosine trigonometric series with semi-convex coefficients, Int. J. Open Probl. Comput. Sci. Math. 2 (2) (2009), 231-239.
[8] N. L. Braha - X.Z. Krasniqi, On L^{1} convergence of certain cosine sums, Bull. Math. Anal. Appl. 1 (1) (electronic only) (2009), 55-61.
[9] W. H. Young, On Fourier series of bounded function, Proc. London Math. Soc. 12 (2) (1913), 41-70.

XHEVAT Z. KRASNIQI
Department of Mathematics and Computer Sciences
University of Prishtina
Avenue "Mother Theresa" 5, Prishtinë 10000
Republic of Kosova
e-mail: xheki00@hotmail.com

