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STRUCTURE OF E;-RINGS

ADA VARISCO

To the memory of Umberto Gasapina

We give a complete classification of E3-rings (i.e. non-idempotent rings
with set of idempotents E, where every non-idempotent subring containing
four idempotents contains the whole E) and prove that the class of non-trivial
regular E3-rings is empty. '

Introduction.

In [1] we have defined Ej-rings R (k positive integer) as those non-
idempotent rings whose subrings containing £ + 1 idempotents either are
idempotent or contain E, the set of idempotents of R. In that paper E;-rings
and E,-rings are completely described: the first ones are all trivial, i.e. they
contain exactly two idempotents, save for rings isomorphic or antiisomorphic
to R = (e, f) with2e = 2f = 0 and e¢f = e, fe = f, containing
three idempotents. On the other hand, non-trivial E,-rings (i.e. containing
at least four idempotents) are the rings where E is a proper multiplicative
subsemigroup, and moreover, either E is commutative of order 4 with identity
or E \ 0 is a singular band of prime order p > 2 such that E \ 0 = {e + ha |
h=0,1,...,p— 1} forsomeec E\0,ac R\0.

It seems to be of some interest to go on with the study of Ej-rings for
k > 2. Here we present a characterization of Es3-rings.
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In what follows Z will denote the centre of the ring R, and (R, -) the
multiplicative semigroup of R. The term “subsemigroup” (subgroup) stands
for “multiplicative subsemigroup” (multiplicative subgroup). The symbol
(a, b, ...) represents the subring of R generated by the elements a, b, ... Non
defined terminology and notation may be found in [2] and [3].

According to [1], we say that R is a non-trivial E; -ring if it satisfies the
following conditions:

1) RO Eand|E| >4

ii) If A is a subring of R, |[A N E| > 3 implies either A € E or A D E.
The main object of the note is to prove the following.
Theorem 1. A non-idempotent ring R is a non- trzvzal Es-ring if and only if it
satisfies one of the following conditions:
i) R is a non-commutative E,-ring with |E | > 5;
ii) |[E| =5and E ={0,¢, f,2f —e,3f — 2¢};
i) |[R| =8, E={0,e, f, fe,e+ fe, e+ f+fe}and R\E = {e+f, f+ fe)};
) [R| =8, E={0,e, f,et+ef, f+ef,e+ f+ef}and R\E = {e+ f, ef };
v) |[E| =5, E ={0,¢, f,(ef)? (fe)*} and (ef)* = e+ef +efe, (fef)? =
f;
vi) |[E|=5and E ={0,e, fiu,e — f +u);
vii) R is anti-isomorphic to a ring of type iii) or iv) or v).
In preparation for the proof of the theorem we establish the following
Lemmas.

Lemma 1. Let R be a non-trivial E3-ring. If R contains two idempotents e, f
such that

(D 2ef # 2efe,

then, either R is an E,-ring with |E| > 5, or |E| = 5 and E = {0, e, [L2f —
e,3f —2e}.

Proof. 1f (1) holds, the idempotents 0, e, e + ef — efe, e + 2ef — 2efe are
distinct, and, since 2e # 0 implies 2¢ € R \ E, the subring (e, ef) contains E.
Consequently, e is a left identity of E. Now, let u be a non-zero idempotent,
and suppose ue # e. It is easy to verify that the subring (e, ue) contains the
four distinct idempotents 0, e, ue, e — ue and the non-idempotent element 2e.
Then, (e, ue) O E and e is a right identity of E, in contradiction to (1). Thus
ue = e forevery u e E \ 0.
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Since fe =e,and E C (e, f) = {ie+jf | i, j €Z}, f is aleft identity of
E. Then,if uf # f for some u € E'\ 0, the subring (f, uf), containing 2 f # 0
and the distinct idempotents O, f, uf, f —uf, contains E, a contradiction, since
(f, uf) is commutative. Thus, uf = f for any u € E \ 0, and we may conclude
that E \ O is a right zero semigroup. So (1) becomes

2) 2f # 2e.

Moreover, E C (e, f) = (e, f —e) = {me+n(f —e) | m,n € Z}, and every
e + n(f — e) is a non-zero idempotent. Conversely, if me + n(f — e) is a non-
zero idempotent, we must have [me + n(f — e)]e = e, whence me = e. Thus
we may conclude that

(3) E\NO={e+n(f —e)|neZ;.

Now, let us prove that either p(f — e¢) = 0 for some prime p # 2 or
4(f —e) = 0. Suppose 4(f — e) # 0. Then, the subring (e, 2(f — e)),
containing the distinct idempotents 0, e, e + 2(f — e),e + 4(f — e) and the
non-idempotent 2(f — e), contains E, whence f = he + 2k(f — e) for some
h, k € Z. This implies he = ¢, whence (2k — 1)(f —e) = 0, and f — e has odd
finite additive order r. Let p # r be a prime factor of r. Since 2p(f — e) # 0,
the idempotents 0, e, e + p(f —e), e + 2p(f — e) are distinct, so the subring
(e, p(f — e)) contains E. Hence, f = se + tp(f — e) for some s, t € Z. This
implies se = e, whence (pt — 1)(f — e) = 0. This means that pt — 1 is a
multiple of r, contrary to the fact that p divides r. Thus r = p. At this point
we have shown that either p(f —e) = 0 for some odd prime p or 4(f —e) = 0.
In the first case, R is an E>-ring by Th. 2.1 of [1], and |E| > 4 induces p > 5
and |E| > 5. In the second case, since 2(f — e) # 0, by (2), E consists of the
five distinct elements O, e, f,2f —e,3f — 2e.

Lemma 2. Let R be a non-trivial E3-ring. If 2xy = 2yx for every x,y € E,
and there exist two idempotents e, f such that

) ef = f and f# fete,

then |R| =8, E ={0,¢, f, fe,e+ fe,e+ f+ fe} and R\e = {e+ f, f+ fe}.

Proof. We first notice that fe is a non-zero idempotent: otherwise, f = ef =
(ef)? = 0, a contradiction. Since 0, ¢, fe,e — fe are distinct idempotents
and e is not a right identity of..E, the subring Re is idempotent, whence
2¢ = 0, and 2f = 2ef = 0. Then, (e, f) = {he + kf + jfe} with
h,k, j € {0, 1}. Moreover, since (e, f) contains the non-idempotent f + fe,
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we have (e, f) D E, and it is easily seen that E consists of the six distinct
elements O, e, f, fe,e + fe,e + f + fe. This implies that, for every z € R,
the idempotent e + ez + eze, coincides either with e or with e + f =+ fe. Since
ze € E, we have eze = ze, so we may conclude that either ez + ze = 0 or
ez +ze = f + fe. Suppose ez + ze = 0 for some z€ R \ E. Then, ez = ze;
moreover, e+ fe commutes with both e and f, so it is a central idempotent, and
the subring H = (e, e + fe, z) is commutative. This is a contradiction, since
(e, e+ fe, z), containing the distinct idempotents 0, e, fe, e + fe, contains E.
Thus, ez+ze = f+ fe forevery z € R\ E. Now, consider the element z+ f with
ZER\E.If z+ f € R\ E, we get, by the above, e(z+ f)+(z+ f)e = f + fe,
whence ef = fe, a contradiction. Thus, z + f € E, and it is immediate that
2+ f €fe, fe},implying R\ E = {e+ f, f + fe}.

Lemma 3. Let R be a non-trivial Es-ring. If 2xy = 2yx for every x,y € E,
and there exist two idempotents e, f such that

5) efetef £ f#e+ef —efe and (efe)? #e,

then |R| =8, E = {0, e, f,e+ef, f+ef, e+ f+ef}and R\E = {e+ f, ef }.

Proof. If the non-zero idempotents e, ¢ + ef — efe, e + (ef)? — (efe)? are
distinct, the subring eR, containing the non-idempotent ef — efe, contains
E, which implies ef = f, contrary to the hypothesis. Thus we have either
e = e+ (ef)?—(efe)? or e+ef —efe=e+(ef)?—(efe)?. Since 2ef = 2fe,
each of the two cases leads to (ef)? € E. For the same reason we must have
(ef)* €{0, e, e + ef — efe}, which implies (ef)? = 0, in view of (efe)? +# e.
Now, consider the non-zero idempotents e, e + ef — efe,e + fe — efe. If
they are distinct, we have (e, ef, fe) D E, whence f = ae + Bef + yfe +
ofef + cefe + {(fe)2, for some integers «, 8, ¥, 8, &, ¢. This implies also
f=(+B+y+38)fef, whence ef = 0, contrary to (5). Thus we must
have fe = efe, implying fe = (fe)? = (fe)® = 0. Since the subring (e, f)
contains the distinct idempotents 0, e, f, e + ef and the non-idempotent ef, it
contains E. Consequently, every idempotent v may be expressed in the form
v=ae+ Bf + vef witha, Be€Z and y €{0, 1}, in view of 2ef = 2fe = 0.
Therefore, v = v? = a?e + B%f + (@B + ay + By)ef, whence a’e = ae and
B*f = Bf. Thus ae, Bf € E. Since e # ef # f by the hypotheses, the non-
idempotent subrings ¢R and Rf cannot contain E, hence ae € {0, e,¢ + ¢ f}
and Bf € {0, f, f+ef}. This allows us to conclude that the distinct idempotents
of R are 0, ¢, fietef, f+efie+ f+ef.

Now, it remains to show that R \ E = {e + f, ef}. Putting for simplicity
u = e+ f + ef, we may represent E in the more convenient form E =
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{O,e, fu,u —e,u — f}, and we immediately see that u is the identity of
E, hence u is central. For every z € R \ E, the commutative subring H, =
(e, u, eze) contains the distinct idempotents 0, e, u, u — e. Since H, cannot
contain E, we have H, C E, implying eze € E, and 2u = 2¢ = 2f = 0.
Moreover, since eR 2 E, eze belongs to the subset {0,e,e + ef}. But,
eze = e + ef implies eze = e, a contradiction, hence eze € {0, e}. Then,
ifeze R\ E, we have eze =0 and (e, u, ez) D E, whence f = ae + Bu + ez
with o, B € {0, 1}. From this we deduce 0 = ae + Be and f = Bf, whence
a = f = 1. Therefore, ez = ef. On the other hand, if ez € E, we must
have ez € {0, e, e + ef}; consequently, in any case, ez € {0, e, e + ef, ef}.
Finally, consider the element ze: if ze € R \ E, we have (e, u, ze) D E, whence
f =ae+ Bu+ze witha, B €{0, 1}. This implies ef = ae+ Be+ eze = efe,
contrary to the hypothesis. Thus ze € E, and it is immediate that ze € {0, e}.
Moreover, since the subring (e, u, z), which contains E, is not commutative, we
have ez # ze, implying ez + ze = ef. Consider now the element z + f. If it
lies in R \ E, from the above it follows that e(z + f) + (z + f)e = ef, which
induces ef = 0, a contradiction. Thus z + f € E, whence z + f € {e, u — e},
that is z € {e + f, ef}. This completes the proof.

Lemma 4. Let R be a non-trivial Eg-ring. If 2xy = 2yx for every x,y € E
and there exist two idempotents e, f such that

(6) efe#ef # f#etef —efe and (efe) =e,

then either R is a ring of the type described in Lemma 2 or |[E| = 5,
E={0,¢, f,(ef)*, (fe)’} and e + ef —efe = (ef)?, (fef)* = f.

Proof. 1f fe = e, the relations (6) become e # ef # £, so we are just in the
hypotheses of Lemma 2, save for the exchange between e and f. Then we may
assume fe # e. We notice that the subring eR contains the non-idempotent
ef — efe and the non-zero idempotents e, e + ef — efe, (ef)?. Since ef # f,
eR cannot contain E; therefore the three idempotents are not distinct, and it is
clear that \ |

(N (ef) =e+ef —efe.

If ef = fef, we have e = (efe)> = (fe)?, whence fe = e, contrary to the
hypothesis. Thus, the subring Rf contains the non-idempotent ef — fef and
the three non-zero idempotents f, f +ef — fef, (ef)?. Since Rf 2 E, in view
of ef # e, these idempotents cannot be distinct, and we immediately see that

(8) (ef)? = f +ef — fef.
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This implies (efe)? = fe + efe — (fe)?, that is

©) | (fe)’ = fe+efe—e
and
(10) (fef)* = f.

Moreover, by comparing (7) and (8) we get

(11) fef = f —e+efe.

Since 2xy = 2yx for every x, y € E, the relations (efe)? = e and (fef)? = f
imply :

(12) 2e =2f
therefore it is clear that the subring (e, f) consists of the elemehts
(13) ae+ Bf +yef +8fe+cefe

with @ € Z and B,,8,¢ € {0,1}. Now put E = {0, ¢, f, (ef)?, (fe)?} and
let us show that E = E. In fact, since E C (e, f), every u € E has the
form (13), so that, from the preceding relations we may deduce u = u? =
te+ (B*+By +BS+v8)f + (@B +ay+ By +y*+Be+ye)ef + (@p+
BS+as+Pe+8%+6¢e)fe+ (d+ay —By —B6—8°—B8e—y?—ye)efe for
some ¢ € Z. There are three distinct cases: B = y; 8 = 6; ¥ # B # § implying
y = 8. In the first two cases it is easily seenthat E = E. If y = § = 1 and
B=0,wehave u =ne+ f(a+¢e+ 1)(ef + fe);if y =6 =0and B =1,
we have u = fe = f + (¢ + ¢)(ef + fe), for some (n, ¥ €Z).

Thus, in any case,

(14) u=he+ f+k(ef + fe)

for some h € Z and k € {0, 1}. If kK = 0, we may suppose # odd; otherwise, u =
(h+ 1) f € E by the above. Then (14) implies u = u? = h?e + hef +hfe+ f,
whence (b2 — h)e + h(ef + fe) = 0. Consequently, (k> — 1)e +ef + fe =0
in view of (12). This implies ef = efe, contrary to the hypothesis. If k = 1,
we find, using relations (7), (9), (10), (11), (12), u> = (h + 3)2e, which implies
ueE. Thus E = E as required.
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Lemma 5. Let R be a non-trivial Es-ring, and let e, f be two non-zero distinct
idempotents of R, with

ef =f, fe=e, 2e=2f.

Then, the only idempotents of the subring (e, f) are O, e, f.

Proof. If2f =0, wehave (e, f) = {0, e, f, e+ f} with (e + f)? = 0 and the
statement is true. Now suppose 2f # 0. Then, (e, f) = {kf,e + kf | k € Z}.
By means of an immediate calculation we get

kf e E ifandonlyif (1—k)feFE and
kf €{0, f} ifandonlyif (1—k)fe{0, f}.

Therefore, if there exists a non-zero idempotent kf # f, (1 — k) f too is a non-
zero idempotent distinct from f. Since 2f € R\ E, if kf # (1—k) f, the subring
(f), containing the distinct idempotents 0, f, kf, (1 —k) f, contains E, contrary
to ef # fe. Thus, kf = (1—k) f, which implies kf = (kf)? = k(1—k)f =0,
a contradiction. Consequently, the only idempotents of the form kf are O and f.
Analogously, the only idempotents of the form ke are 0 and ¢. Now, if e + k f e
E for some integer k, we have e+kf = (e+kf)? = (k+ e+ (k+ Dkf € {
whence e + kf € {0, €}.

Lemma 6. If e, f are distinct non-zero idempotents.of a ring R, and ef = fe,
the subring (e, f) contains at least four distinct idempotents.

Proof. It is immediate that the four distinct idempotents are 0, e, f, x with
x—efwhenef;éOefx—e—i—fwhenef O;x =e— f whenef = f;
x=f—ewhenef =e.

Lemma 7. Let R be a non-trivial E3-ring satisfying the conditions:
i) 2xy = 2yx forevery x,y€E;
ii) ef = f, fe = e for some distinct e, f € E;
iii) xy # yx implies either xy = y,yx = x or Xy = x, yx = y for every
x,yekLE.
Then |E| =5and E = {0, ¢, fiu,e — f + uj.
Proof. Letu € E \ {0, e, f}. By the hypotheses it follows that one of the
following conditions holds:
1) eu = ue,
2) eu = u,ue = e,
3) eu =e,ue = u.
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Symmetrically, one of the following holds:

D) fu=uf,
I fu=uuf = f,
) fu= f,uf =u.

We may immediately reduce to examine the following three cases:

1I) eu = ue, fu =uf,

2II) eu =u,ue =e¢, fu=u,uf = f,

3II) eu =e,ue =u, fu = f,uf = u.
The last leads to the contradiction f = fu = fue = fe = e. Now, let us
examine the case 1I). If 2e s 0, the commutative subring (e, u) contains four
distinct idempotents (Lemma 4) and the non-idempotent 2e. Then it contains E,
a contradiction, since ef # fe. Consequently, 2¢ = 0 and e + u is idempotent.
Since (e + u) f # f(e + u), the hypotheses imply either

{(€+u)f=f\ Cor {(e—i-u)f:e—!-u
fle+u)=e+u fle+wy=f

In the first case we have uf = 0 and fu = u, a contradiction. In the second
weget f+uf =e+uand e+ fu = f, which, in view of 2f = 2e = 0,
lead to the contradiction u- = 0. Then, it remains to study the case 2II). In
this case, E \ O is a right zero-semigroup; moreover, 2¢ = 2f = 2u, by
the hypotheses. So, each of the subrings (e, f), (e, u), (f, u) has exactly three
idempotents, by Lemma 5. On the other hand, the subring (e, f, u), containing
four distinct idempotents and the non-idempotent e — f, contains E. Since
(e, fru) = the + kf + ju | h,k,j € Z}, if there exists and idempotent v
distinct from 0, e, f, u, it may be written in the form v = e — f + ju for some
odd integer j. Then, wehave e — f + ju = (e — f + ju)* = j(e — f) + jiu,
whence ju = (ju)?. Since ju € (e, u) N (f, u), it follows from Lemma 5 that
either ju = 0, or ju = u. But, ju = 0 implies v = e — f, a contradiction.
Thus, ju = u. Since the element ¢ — f + u is actually idempotent, we may
conclude that E = {0, ¢, f,u,e — f + u}.

Remark 1. It is immediate to see that, in the statement of Lemma 7, the
condition ef = f, fe = e may be replaced by the condition ef = e, fe = f.

Lemma 8. An Es-ring whose idempotents are central is trivial.

Proof. Let E C Z, and let H be a non-idempotent subring of R containing
two distinct non-zero idempotents. Then, H contains at least four distinct
idempotents, by Lemma 6, and R is an E,-ring with central idempotents. Hence
|E| = 4, by Theorem 2.1 of [1].
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Proof of Theorem 1. “Only if part”. Let R be a non-trivial E3-ring. If R
contains two idempotents e, f with 2ef # 2efe, R is either of type i) or of
type ii) by Lemma 1 and by Theorem 2.1 of [1]. To the same conclusion we
arrive starting from the hypothesis that 2 fe = 2efe for some e, f € E. Then,
suppose 2xy = 2yx for every x, y € E, and consider the following subcases:

A) Thereexiste, f € E withef #efeande+ef —efe # f.Ifef = f, R
turns out to be a ring of type iii), by Lemma 2. If ef s f and (efe)? # e, R is
of type iv) by Lemma 3. Finally, if ef # f and (efe)® = e, R is of type v) by
Lemma 4.

B) There exist e, f € E with fe # efe and e + fe — efe # f. Itis easily
seen that R is anti-isomorphic to one of the rings of case A).

C) Forevery e, f € E, either

ef =efe or e+ef —efe=f,
and symmetrically, either

fe=efe or e+ fe—efe=1f.

Since the relations e + ef —efe = f and e + fe — efe = f are equivalent
respectively to ef = f, fe =eandtoef = e, fe = f, we may conclude that,
for every e, f € E one on the following holds:

1) ef = fe,
2) ef =f fe=e,
3) ef =e, fe=f.

If ef = feforeverye, feE,then E C Z, and R (Lemma 8) should be a
trivial E;-ring, a contradiction. Otherwise, R is a ring of type vi), by Lemma 7

and Remark 1.
“If part”. It is immediate.

Remark 2. Neither of the classes of rings described in the statement of Theo-

rem 1 is empty, as we will show by means of the following examples.

Example 1. The ring of all square matrices over the field Z, (p prime > 3) of

the form [; 8:' is a non-trivial E3-ring of type i) (see Example 2 of [1]).
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Example 2. Let R be the ring of square matrices over the ring Zg, of the form

[ ; 8} Since the non-zero idempotents of r are

10 10 T1 0 10
=lo ol =1 0| “=|2 o] ¥= 3 0|’

withu =2f — e and v = 3f — 2¢, R is a non-trivial Es-ring of type ii).

Example 3. Let R = (e, f) the ring generated by the idempotent matrices

000 000
e=[o 10], f=[11 o}
01 0 00 0

over the ring Z,. It is a routine verification that e fe = e, fef = f, and that
the distinct idempotents of R are 0, e, f, ef, fe. Moreover, since the conditions
(ef)) =e+ef + efe and (fef)? = f are trivially satisfied, and e + f is not
idempotent, R turns out to be a non-trivial £, -ring of type v).

Example 4. Let G be the additive abelian group generated by three elements
e, f, & with defining relations 2¢ = 2 f = 2¢g = 0, and let S, S, and S5 be the
multiplicative semigroups respectively defined by the following multiplication
tables:

S1 e f g S | e f g S3 e f &
e e f g e e f ¢ e e g g
f g f & f e f & f 10 50
g g f & g e f g g 0 g 0

Since G = {he + kf + jg} with h, k, j € {0, 1}, if we extend these products
to all elements of G, making use of the distributive laws, we construct three
rings Ry, R, and R; which are non-trivial E3-rings of the types iii), vi) and iv)
respectively.

In [1] we proved that R is a non-trivial regular Ej-ring if and only if
IR > 4 and R is the direct sum of two division rings. It is natural to ask
whether something analogous holds for E; -rings. The answer is negative. In
fact, we may establish the following.
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Theorem 2. A non-trivial E3-ring cannot be regular.

Proof. Let R be a non-trivial regular E3-ring. If R satisfies the hypotheses
either of Lemma 1 or of Lemma 7, E \ 0 turns out to be a right-zero semigroup,
therefore the element e — f is not regular: in fact, (e — f)x(e — f) = (e — f),
with x(e — f) idempotent, implies e — f = 0. In the hypotheses of Lemma 2,
we have ef = f and 2¢ = 2f = 0; moreover, every idempotent has the
form he + kf + jfe (h,k, jeZ). Since (f + fe)(he + kf + jfe) = 0,
the element f + fe is not regular. In the hypotheses of Lemma 3, we have
fe =0 # ef,and R = {0,¢, fief,e+ fie+ef, f +ef.e+ f + ef}.
Therefore, it is clear that efxef = 0 for every x € R, so that the element
ef 1s not regular. Finally, in the hypotheses of Lemma 4, if R is of the type
described in Lemma 2, the statement is true by the above. Otherwise, let us
show that the element ef — efe is not regular. In fact, it is obvious that, if
(ef —efe)x(ef —efe) = ef — efe, the idempotent x(ef — efe) cannot
coincide with 0, e, (ef)?. Since E = {0, ¢, f, (ef)?, (fe)?}, we may have
either x(ef —efe) = f, implying fe = 0 or x(ef — efe) = (fe)? implying
(fe)®> = 0. Since (efe)® = e, in both cases we get ¢ = 0, a contradiction.
Thus, in each of the cases examined R contains some non-regular element. Any
other case is easily reduced to one of these.
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